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NLP + ACTION



NLP + Action

❖ Trends in language understanding

❖ Plain Text Corpora → NLP + Vision → NLP + Vision + Action

> 2015                   > 2018

no grounding static datasets       active perception

❖ Language + Embodied AI

❖ Instruction following in realistic situated environments – egocentric RGB cameras, agent 
actions



NLP + Action

1. ALFRED, A Benchmark for Interpreting Grounded Instructions for Everyday Tasks, 

CVPR 2020

❖ Egocentric vision + Natural language instructions → Action sequences for household tasks

2. Grounding Language in Play, arXiv 2020

❖ Teleoperated play + Natural language instructions → Continuous robotic control
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ALFRED is a benchmark for 

learning a mapping from 

natural language instructions 

and egocentric vision to 

sequences of actions for 

household tasks.

Introduction



• Include both high-level goal and low-level natural language instructions.

• Include object and state interactions.

• Enable discretized, grid-based movement rather than topological graph navigation.

• Require spatially located interaction masks instead of choosing from a set of object classes.



Related Work

• Vision & Language Navigation: 

– Navigation in static environment

– No object interactions and state changes

• Vision & Language Task Completion

– Based on simpler block worlds and fully observable scenes

– AI2-THOR, an interactive 3D environment for visual AI, where AI 

agents can navigate in the scenes and interact with objects to 

perform tasks.



Related Work

• Embodied Question Answering

– Question answering using templated language or static scenes

– No task completion

• Instruction Alignment

– Learning visual correspondence from recorded videos

– Not in an interactive setting

• Robotics Instruction Following

– Consider different tasks individually

– Limited to fewer scenes and objects



ALFRED Dataset

ALFRED includes 25,743 English language directives describing 8,055 expert 

demonstrations averaging 50 steps each, resulting in 428,322 image-action pairs.



http://www.youtube.com/watch?v=1XoRLNmXffo


• Expert demonstrations are composed of an agent’s egocentric visual 

observations of the environment, actions taken at each timestep, and 

ground-truth interaction masks.

• Navigation actions: MoveAhead, RotateRight, RotateLeft, LookUp, 

and LookDown.

• Manipulation actions: Pickup, Put, Open, Close, ToggleOn, ToggleOff, 

and Slice. 

Expert demonstrations



• Language directives include a high-level goal together with low-level 

instructions. 

• AMT workers write low-level, step-by-step instructions for each 

highlighted sub-goal segment. 

• Ex: “Walk to the coffee maker on the right.” 

• They also write a high-level goal that summarizes what the robot 

should accomplish during the expert demonstration. 

• Ex: “Rinse off a mug and place it in the coffee maker.”

Language directives



Sequence-to-Sequence Model 

• A bidirectional-LSTM generates a representation of the 

language input

• A CNN encodes the visual input

• A decoder LSTM infers a sequence of low-level actions while 

attending over the encoded language

• At each timestep, the model produces the expert action and 

associated interaction mask for manipulation actions. 



Sequence-to-Sequence Model 



Language encoding

• a natural language goal 

• step-by-step instructions 

• Construct a single input sequence 

• Fed the sequence into a bidirectional LSTM encoder to produce an 

encoding 



Visual Encoding 



Attention over language 



Action decoding 



Action and mask prediction

Action loss: softmax cross entropy

Mask loss: binary cross entropy 

rebalanced for sparsity 



Progress Monitors

Progress prediction helps learn the utility of each state in the process 

of achieving the overall task.

normalized time-stamp value

Sub-goal prediction encourages the agent to coarsely track its 

progress through the language directive.

normalized number of completed sub-goals



Evaluation Metrics

• Task Success

• Goal-Condition Success 

• Path Weighted Metrics 

• Sub-Goal Evaluation 



Task Success

1 if the object positions and state changes correspond correctly 

to the task goal-conditions at the end of the action sequence, 

and 0 otherwise. 

“Put a hot potato slice on the counter”

succeed if any potato slice object has changed to the heated state 

and is resting on any counter top surface. 



Goal-Condition Success 

The goal-condition success of a model is the ratio of goal-conditions 

completed at the end of an episode to those necessary to have 

finished a task. 

“Put a hot potato slice on the counter”

• a potato must be sliced

• a potato slice should become heated

• a potato slice should come to rest on a counter top.

• the same potato slice that is heated should be on the counter top. 



Path Weighted Metrics 



Goal-Condition Success 

The ability of a model to accomplish the next sub-goal 

conditioned on the preceding expert sequence. 



Analysis

∼8% goal-condition success rate (partially complete tasks)



• Vision and language modalities are necessary to accomplish the tasks.

• The NO LANGUAGE model finishes some goal-conditions by interacting with 

familiar objects seen during training. 

• The NO VISION model similarly finishes some goal-conditions by following low-level 

language instructions for navigation and memorizing interaction masks for common 

objects.



• Providing only high-level, underspecified goal language is insufficient to complete 

the tasks but is enough to complete some goal-conditions. 

• Using just low-level, step-by-step instructions, performs similarly to using both high-

and low-levels. 



• The two progress monitoring signals are marginally helpful, increasing the success 

rate by ∼1% to ∼2%. 

• They also lead to more efficient task completion, as indicated by the consistently 

higher path weighted scores. 



• Visual semantic navigation (Goto, Pickup) is considerably harder in unseen 

environments. 

• Simple sub-goals like Cool, and Heat are achieved at a high success rate of ∼90% 

because these tasks are mostly object-agnostic. 





Conclusion

• Result: A baseline model based on recent embodied vision-and-language tasks 

performs poorly on ALFRED 

• Challenges: long-horizon task planning, visual semantic navigation, object 

detection, referring expression grounding, and action grounding 

• Goal: Shrink the gap between research benchmarks and real-world 

applications 
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Motivation

❖ Children learn language in the context of rich, sensorimotor experience 

➔ language acquisition is embodied

❖ Infants contribute actions while care-takers contribute relevant words

➔ language acquisition is highly-social



Main Problem

❖ Assuming real humans play a critical role in robot language acquisition, what 

is the most efficient way to go about it?

❖ How can we scalably pair robot experience with relevant human language to 

bootstrap instruction following?



Problem Setting

❖ Control a robotic arm within a 

physics simulator

❖ Manipulate objects in the 

environment

❖ Conditioned on an external natural 

language instruction



Challenges

❖ High-dimensional continuous sensory inputs and actuators

❖ Even simple instruction following is notoriously hard

E.g. “Sweep the block into the drawer” 

❖ Relate language to low-level perception (What does a block look like? What is a drawer?)

❖ Perform visual reasoning (What does it mean for block to be in drawer?)

❖ Solve a complex sequential decision problem (What commands do I send to my arm to “sweep”)

❖ Complex task specification → long-horizon robotic object manipulation from 

natural language instructions



Related Work

❖ Robot learning from general sensors

❖ Imitation learning: requires many human demonstrations

❖ Reinforcement Learning: hand-designed reward functions

❖ Task-agnostic control: Single agent must reach any goal on command

❖ Model-based control: Learn model through interactions and then plan; exploration issues

❖ Goal-relabeling: used in both IL and RL ; this paper

❖ Covering state space: Exploration vs Tele-operated play

❖ Instruction following: restricted env and simplified actuators
“learning to follow natural language is still not the standard in instruction following research” →
restricted vocab and grammar



Prior Work

Learning from Play (LfP): Lynch et. al. 
CORL 2019

❖ Learning general-purpose skills from 
onboard sensors

❖ Tele-operated “play” data → relabeled 
imitation learning → goal-directed 
policy

❖ Limitation: tasks need to be specified 
using a goal image → impractical in 
real-world environments



Prior Work

Learning from Play



Overview

1a. Cover the space with 

teleoperated play

1b. Pair play with human language 

(Hindsight Instruction Pairing)



Overview

2. Multicontext imitation learning

- train a single policy to solve 

image or language goals 

- highly data efficient



Overview

3. Condition on human language at 

test time



Preliminaries

❖ Relabeled Imitation Learning 
– Goal conditioned learning – train a single agent to reach any goal 
– Goal conditioned behavior cloning → relabel collected data

❖ Teleoperated Play 
– adds diversity to the dataset (fully cover state space)

❖ Learning from Play (LfP) 
– combines relabeled imitation learning with teleoperated play



APPROACH



Hindsight Instruction Pairing

❖ Sample any robot behavior from play, then 

collect an optimal instruction

❖ After-the-fact natural lang instructions, operator 

actions not affected by instructions → more 

diverse play and instruction dataset

❖ No restrictions on vocabulary or grammar



Hindsight Instruction Pairing

- Assumes access to Dplay consisting of 

hindsight goal image samples

- From Dplay → D(play,lang) consisting of 

hindsight instruction samples



Instruction Samples



Multicontext Imitation Learning (MCIL)

❖ Generalization of contextual imitation to 
multiple heterogenous contexts

❖ Multiple imitation learning datasets, each with 
a different way of describing tasks and different 
cost of collection

❖ E.g. goal image, task id, natural language, video 
demonstration, etc

❖ Trains 

❖ A single latent goal conditioned policy                                                                           
over all datasets simultaneously

❖ A set of encoders, one per dataset; 
each maps task description → shared latent 
space



Multicontext Imitation Learning (MCIL)

Training Procedure:

❖ At each training step, for each dataset: 

❖ sample a minibatch of trajectory-context pairs

❖ encode the contexts in the latent space

❖ Contextual imitation objective (per dataset)

❖ Full MCIL objective → averaged over all datasets



Multicontext Imitation Learning (MCIL)

❖ Advantages

❖ Being context-agnostic → enables highly efficient training

❖ Learn the majority of control from the cheapest data source

❖ Learn general task conditioning from a small number of labelled examples

E.g. Natural language instructions < 1% of collected robot experience!

❖ Broadly useful beyond this paper



LangLfP

❖ Special case of MCIL

❖ Two datasets 

❖ Tasks
❖ hindsight goal image

❖ hindsight instructions

❖ Encoders: 
❖ Maps image goal and instructions → shared visuo-lingual goal space

❖ Learns perception, language understanding and control end-to-end



LangLfP: Perception 

Module

❖ Observations:  

❖ High-dim image (200x200x3)

❖ Proprioceptive sensor readings i.e. 

robot joint angles and locations in 

Cartesian coordinate space



LangLfP: Language 

Module

❖ Two approaches:

❖ From scratch (LangLfP)

❖ Transfer Learning (TransferLangLfP)



LangLfP: Language 

Module from Scratch

❖ Tokenize raw text into 

subwords

❖ Retrieve subword embeddings 

from a lookup table

❖ Summarize embeddings into a 

point in z space

❖ Embedding fed to 2-layer MLP



TransferLangLfP: 

Language Module via 

Transfer Learning

❖ Pretrained embeddings from 

Multilingual Universal Sentence 

Encoder (MUSE)

❖ Maps sentences → 512-D vector

❖ Benefits

❖ Serves as a strong prior if there is a 

semantic match between source and 

target domains

❖ Encodes word similarity  → follow 

out-of-distribution instructions in zero 

shot



LangLfP: Control Module

❖ Implement multicontext control policy:

❖ Use Latent Motor Plans (from LfP paper)

❖ Goal directed imitation architecture 

❖ Uses latent variables to model multimodality

❖ Seq2seq CVAE that auto-encodes contextual demos through a latent “plan” 

space

❖ Decoder: goal-conditioned policy

❖ Refer to LfP for more details



Multicontext LMP: Goal Image



Multicontext LMP: Language



LfP vs LangLfP



Experimental Setup: Environment

❖ Situated robot in a 3D environment

❖ 8-DOF robot arm and parallel 

gripper

❖ RGB video sensors

❖ Proprioceptive sensors

❖ Goal: Agent must perform high-

frequency, closed-loop continuous 

control to solve user-described 

manipulation tasks



Experimental Setup: Methods

❖ LangBC – language, but no play – multi-task demos – D(demo,lang)

❖ LfP – play, but no language – Dplay

❖ LangLfP – play and language – Dplay and D(play,lang)

❖ Restricted LangLfP – LangLfP restricted to size of D(demo,lang)

❖ TransferLangLfP – LangLfP using MUSE embeddings - D(play,lang)

→ 2 sets of experiments – pixel and state



Experiments: Ask-Me-Anything (AMA)

❖ Multi-stage instruction following

❖ Derived from Multi-18 → 18 evaluation tasks described in LfP. E.g. open 

sliding door, sweep, close sliding door, etc

❖ Consider all valid N-stage transitions between the 18 tasks ➔ Chain-2, 

Chain-3, Chain-4 manipulation benchmarks

❖ Multi-18 can be seen as a subset of this extended set



Experiments: Ask-Me-Anything (AMA)

❖ LangLfP ~ LfP, but is more scalable in terms of task conditioning

❖ TransferLangLfP > LangLfP and original LfP

❖ RestrictedLangLfP > LangBC; Restricted LangLfP can transition well between tasks; LangBC

fails to recover from compounding errors



Experiments: Ask-Me-Anything (AMA)

❖ As model capacity increases, play model can capitalize 

on increased strength because of diversity in dataset

❖ LangBC constrained to predefined behaviors



Results: Ask-Me-Anything (AMA)



Experiments: Knowledge Transfer

❖ TransferLangLfP outperforms 

LangLfP

❖ ➔ evidence that world 

knowledge in large corpora is 

beneficial for downstream robotic 

manipulation tasks



Experiments: Knowledge Transfer

Out-of-distribution instructions:

❖ Synonyms
❖ “Drag the block from the shelf” →

“Retrieve the brick from the cupboard”

❖ OOD-syn eval set: 14k OOD samples 
across 18 tasks

❖ TransferLangLfP generalizes 
substantially!

❖ 16 different languages
❖ OOD-16-lang eval set: 

Translate (Multi-18 + OOD-syn)
240k samples across 18 tasks

❖ TransferLangLfP > LangLfP

❖ LangLfP resorts to producing max likelihood play 

actions



Results: Knowledge Transfer



Results: TransferLangLfP vs LangLfP

TransferLangLfP LangLfP



Limitations

Agent times out before task completion Compounding error → awkward arm configurations



Future Work

❖ Current → goal-directed imitation, lacks autonomous policy improvement

Future → Imitation + RL for autonomous policy improvement, not restricted 

to human actions

❖ Current → Single env

Future → Large play corpora, generalization to new rooms and objects



Summary

❖ Introduced LangLfP, an extension of LfP trained both on relabeled goal 

image play and play paired with human language instructions

❖ Multicontext Imitation Learning → reduce the cost of language pairing

❖ Single policy trained with LangLfP can solve many 3D robotic manipulation 

tasks over a long horizon from  onboard sensors via human language

❖ Simple technique for knowledge transfer; 16 different languages



Discussion

❖ Transfer learning on 16 langauges

❖ For LangLfP, could have translated instructions to English before feeding into the 
model

❖ How do ALFRED and LangLfP compare with each other?

❖ ALFRED
❖ Pros: mobile robot, larger env diversity, large # of obj state changes (door open/close, 

lights on/off, bread whole/sliced, tap on/off, vase intact/broken …) → rich lang vocabulary

❖ Cons: No physical realism, no fine motor control

❖ LangLfP
❖ Pros: contact-rich physics env, 8-DOF motor control

❖ Cons: Fixed robot, limited state space, limited obj state changes (restricted to pick-up, 
door open/close, lights on/off) → limited action vocabulary


