

OCT 13 2020

NLP + ACTION

PRESENTERS: PRIYANKA MANDIKAL, BINGYE LI

NLP + Action

- Trends in language understanding
 - ◆ Plain Text Corpora → NLP + Vision → NLP + Vision + Action

> 2015

Source	An admitting privilege							
	to carry out a diagnosis							
Reference	Le privilège d'admissic							
	d'un hôpital, d'admettr							
	diagnostic ou un traiten							
RNNenc-50	Un privilège d'admission							
	centre médical d'un dia							
RNNsearch-50	Un privilège d'admissi-							
	centre médical pour effe							
	soins de santé à l'hôpita							
Google	Un privilège admettre							
Translate	centre médical pour eff							
	que travailleur de soins							

no aroundina

static datasets

"construction worker in orange safety vest is working on road."

> 2018

active perception

now: put the object in the trash

- Language + Embodied AI
- Instruction following in realistic situated environments egocentric RGB cameras, agent actions

NLP + Action

- 1. ALFRED, A Benchmark for Interpreting Grounded Instructions for Everyday Tasks, CVPR 2020
 - ✤ Egocentric vision + Natural language instructions → Action sequences for household tasks
- 2. Grounding Language in Play, arXiv 2020
 - ✤ Teleoperated play + Natural language instructions → Continuous robotic control

OCT 13 2020

ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, Dieter Fox

PRESENTER: BINGYE LI

Introduction

ALFRED is a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks.

Goal: "Rinse off a mug and place it in the coffee maker" "pick up the dirty mug from the coffee maker" "turn and walk to the sink" "walk to the coffee maker on the right" t = 10t = 21object interaction visual navigation navigation "put the clean mug in the coffee maker" "pick up the mug and go back to the coffee maker" "wash the mug in the sink" t =object interaction visual navigation object interaction state changes memory

	— Language —		— Virt	ual Environ	ment —	— Inference —		
	# Human Annotations		Visual Quality	Movable Objects	State Changes	Vis. Obs.	Navigation	Interaction
TACoS [43]	17k+	High&Low	Photos	×	×	_	_	_
R2R [3]; Touchdown [14]	21k+; 9.3k+	Low	Photos	×	×	Ego	Graph	×
EQA [15]	×	High	Low	×	×	Ego	Discrete	×
Matterport EQA [55]	×	High	Photos	×	×	Ego	Discrete	×
IQA [20]	×	High	High	×	 Image: A second s	Ego	Discrete	Discrete
VirtualHome [42]	2.7k+	High&Low	High	1	1	3 rd Person	×	Discrete
VSP [58]	×	High	High	1	 Image: A second s	Ego	×	Discrete
ALFRED 🧓	25k+	High&Low	High	1	1	Ego	Discrete	Discrete + Mask

- Include both high-level goal and low-level natural language instructions.
- Include object and state interactions.
- Enable discretized, grid-based movement rather than topological graph navigation.
- Require spatially located interaction masks instead of choosing from a set of object classes.

Related Work

- Vision & Language Navigation:
 - Navigation in static environment
 - No object interactions and state changes
- Vision & Language Task Completion
 - Based on simpler block worlds and fully observable scenes
 - AI2-THOR, an interactive 3D environment for visual AI, where AI agents can navigate in the scenes and interact with objects to perform tasks.

Related Work

- Embodied Question Answering
 - Question answering using templated language or static scenes
 - No task completion
- Instruction Alignment
 - Learning visual correspondence from recorded videos
 - Not in an interactive setting
- Robotics Instruction Following
 - Consider different tasks individually
 - Limited to fewer scenes and objects

ALFRED Dataset

-	Pick & Place	Stack & Place	Pick Two & Place	Clean & Place	Heat & Place	Cool & Place	Examine in Light
item(s)	Book	Fork (in) Cup	Spray Bottle	Dish Sponge	Potato Slice	Egg	Credit Card
receptacle	Desk	Counter Top	Toilet Tank	Cart	Counter Top	Side Table	Desk Lamp
scene #	Bedroom 14	Kitchen 10	Bathroom 2	Bathroom 1	Kitchen 8	Kitchen 21	Bedroom 24
expert demonstration							C. 11 2
							4.0

ALFRED includes 25,743 English language directives describing 8,055 expert demonstrations averaging 50 steps each, resulting in 428,322 image-action pairs.

Expert demonstrations

- Expert demonstrations are composed of an agent's egocentric visual observations of the environment, actions taken at each timestep, and ground-truth interaction masks.
- Navigation actions: MoveAhead, RotateRight, RotateLeft, LookUp, and LookDown.
- Manipulation actions: Pickup, Put, Open, Close, ToggleOn, ToggleOff, and Slice.

Language directives

- Language directives include a high-level goal together with low-level instructions.
- AMT workers write low-level, step-by-step instructions for each highlighted sub-goal segment.
- Ex: "Walk to the coffee maker on the right."
- They also write a high-level goal that summarizes what the robot should accomplish during the expert demonstration.
- Ex: "Rinse off a mug and place it in the coffee maker."

Sequence-to-Sequence Model

- A bidirectional-LSTM generates a representation of the language input
- A CNN encodes the visual input
- A decoder LSTM infers a sequence of low-level actions while attending over the encoded language
- At each timestep, the model produces the expert action and associated interaction mask for manipulation actions.

Sequence-to-Sequence Model

Language encoding

- a natural language goal $\overline{G} = \langle g_1, g_2, \dots g_{L_g} \rangle$
- step-by-step instructions $\overline{S} = \langle s_1, s_2 \dots s_{L_s} \rangle$
- Construct a single input sequence \overline{X} =

 $\langle g_1, g_2, \ldots g_{L_g}, <$ SEP>, $s_1, s_2 \ldots s_{L_s}
angle$

 Fed the sequence into a bidirectional LSTM encoder to produce an encoding

$$x = \{x_1, x_2, \dots, x_{L_g + L_s}\}$$

Visual Encoding

Each visual observation o_t is encoded with a frozen ResNet-18 CNN followed by two more 1×1 convolution layers and a fully-connected layer.

Attention over language

Action decoding

Action and mask prediction

Action loss: softmax cross entropy Mask loss: binary cross entropy rebalanced for sparsity $a_t = \operatorname{argmax} (W_a \ [h_t; u_t])$ $m_t = \sigma \ (\operatorname{deconv} \ [h_t; u_t])$

Progress Monitors

Progress prediction helps learn the utility of each state in the process of achieving the overall task.

 $p_t = \sigma (W_p [h_t; u_t]) \in [0, 1]$ normalized time-stamp value

Sub-goal prediction encourages the agent to coarsely track its progress through the language directive.

 $c_t = \sigma (W_c [h_t; u_t]) \in [0, 1]$ normalized number of completed sub-goals

Evaluation Metrics

- Task Success
- Goal-Condition Success
- Path Weighted Metrics
- Sub-Goal Evaluation

Task Success

1 if the object positions and state changes correspond correctly to the task goal-conditions at the end of the action sequence, and 0 otherwise.

"Put a hot potato slice on the counter" succeed if any potato slice object has changed to the heated state and is resting on any counter top surface.

Goal-Condition Success

The goal-condition success of a model is the ratio of goal-conditions completed at the end of an episode to those necessary to have finished a task.

"Put a hot potato slice on the counter"

- a potato must be sliced
- a potato slice should become heated
- a potato slice should come to rest on a counter top.
- the same potato slice that is heated should be on the counter top.

Path Weighted Metrics

Both two metrics have a path weighted version, that considers the length of the expert demonstration.

The path weighted score P_s for metric s is given as $p_s = s \times \frac{L^*}{max(L^*, \hat{L})}$

where \hat{L} is the number of actions the model took in the episode, and L^* is the number of actions in the expert demonstration.

Goal-Condition Success

The ability of a model to accomplish the next sub-goal conditioned on the preceding expert sequence.

Analysis

		Validatio	n			Test					
	S	Seen	Ui	Unseen			leen	Unseen			
Model	Task	Goal-Cond	Task	Goal-Cond		Task	Goal-Cond	Task	Goal-Cond		
NO LANGUAGE	0.0 (0.0)	5.9 (3.4)	0.0 (0.0)	6.5 (4.7)		0.2 (0.0)	5.0 (3.2)	0.2 (0.0)	6.6 (4.0)		
NO VISION	0.0 (0.0)	5.7 (4.7)	0.0 (0.0)	6.8 (6.0)		0.0 (0.0)	3.9 (3.2)	0.2 (0.1)	6.6 (4.6)		
GOAL-ONLY	0.1 (0.0)	6.5 (4.3)	0.0 (0.0)	6.8 (5.0)		0.1 (0.1)	5.0 (3.7)	0.2 (0.0)	6.9 (4.4)		
INSTRUCTIONS-ONLY	2.3 (1.1)	9.4 (6.1)	0.0 (0.0)	7.0 (4.9)		2.7 (1.4)	8.2 (5.5)	0.5 (0.2)	7.2 (4.6)		
Seq2Seq	2.4 (1.1)	9.4 (5.7)	0.1 (0.0)	6.8 (4.7)		2.1 (1.0)	7.4 (4.7)	0.5 (0.2)	7.1 (4.5)		
+ PM PROGRESS-ONLY	2.1 (1.1)	8.7 (5.6)	0.0 (0.0)	6.9 (5.0)		3.0 (1.7)	8.0 (5.5)	0.3 (0.1)	7.3 (4.5)		
+ PM SUBGOAL-ONLY	2.1 (1.2)	9.6 (5.5)	0.0 (0.0)	6.6 (4.6)		3.8 (1.7)	8.9 (5.6)	0.5 (0.2)	7.1 (4.5)		
+ PM Both	3.7 (2.1)	10.0 (7.0)	0.0 (0.0)	6.9 (5.1)		4.0 (2.0)	9.4 (6.3)	0.4 (0.1)	7.0 (4.3)		
Human	-	-	-	-		-	-	91.0 (85.8)	94.5 (87.6)		

~8% goal-condition success rate (partially complete tasks)

		Validatio	on		Test				
	S	Seen	Unseen		S	Seen		seen	
Model	Task	Goal-Cond	Task	Goal-Cond	Task	Goal-Cond	Task	Goal-Cond	
NO LANGUAGE	0.0 (0.0)	5.9 (3.4)	0.0 (0.0)	6.5 (4.7)	0.2 (0.0)	5.0 (3.2)	0.2 (0.0)	6.6 (4.0)	
NO VISION	0.0 (0.0)	5.7 (4.7)	0.0 (0.0)	6.8 (6.0)	0.0 (0.0)	3.9 (3.2)	0.2 (0.1)	6.6 (4.6)	
GOAL-ONLY	0.1 (0.0)	6.5 (4.3)	0.0 (0.0)	6.8 (5.0)	0.1 (0.1)	5.0 (3.7)	0.2 (0.0)	6.9 (4.4)	
INSTRUCTIONS-ONLY	2.3 (1.1)	9.4 (6.1)	0.0 (0.0)	7.0 (4.9)	2.7 (1.4)	8.2 (5.5)	0.5 (0.2)	7.2 (4.6)	
SEQ2SEQ	2.4 (1.1)	9.4 (5.7)	0.1 (0.0)	6.8 (4.7)	2.1 (1.0)	7.4 (4.7)	0.5 (0.2)	7.1 (4.5)	
+ PM PROGRESS-ONLY	2.1 (1.1)	8.7 (5.6)	0.0 (0.0)	6.9 (5.0)	3.0 (1.7)	8.0 (5.5)	0.3 (0.1)	7.3 (4.5)	
+ PM SUBGOAL-ONLY	2.1 (1.2)	9.6 (5.5)	0.0 (0.0)	6.6 (4.6)	3.8 (1.7)	8.9 (5.6)	0.5 (0.2)	7.1 (4.5)	
+ PM Both	3.7 (2.1)	10.0 (7.0)	0.0 (0.0)	6.9 (5.1)	4.0 (2.0)	9.4 (6.3)	0.4 (0.1)	7.0 (4.3)	
Human	-	-	-	-	-	-	91.0 (85.8)	94.5 (87.6)	

- Vision and language modalities are necessary to accomplish the tasks.
- The NO LANGUAGE model finishes some goal-conditions by interacting with familiar objects seen during training.
- The NO VISION model similarly finishes some goal-conditions by following low-level language instructions for navigation and memorizing interaction masks for common objects.

		Validatio	on		Test				
	S	leen	Unseen		Seen		Uns	een	
Model	Task	Goal-Cond	Task	Goal-Cond	Task	Goal-Cond	Task	Goal-Cond	
NO LANGUAGE	0.0 (0.0)	5.9 (3.4)	0.0 (0.0)	6.5 (4.7)	0.2 (0.0)	5.0 (3.2)	0.2 (0.0)	6.6 (4.0)	
NO VISION	0.0 (0.0)	5.7 (4.7)	0.0 (0.0)	6.8 (6.0)	0.0 (0.0)	3.9 (3.2)	0.2 (0.1)	6.6 (4.6)	
GOAL-ONLY	0.1 (0.0)	6.5 (4.3)	0.0 (0.0)	6.8 (5.0)	0.1 (0.1)	5.0 (3.7)	0.2 (0.0)	6.9 (4.4)	
INSTRUCTIONS-ONLY	2.3 (1.1)	9.4 (6.1)	0.0 (0.0)	7.0 (4.9)	2.7 (1.4)	8.2 (5.5)	0.5 (0.2)	7.2 (4.6)	
Seq2Seq	2.4 (1.1)	9.4 (5.7)	0.1 (0.0)	6.8 (4.7)	2.1 (1.0)	7.4 (4.7)	0.5 (0.2)	7.1 (4.5)	
+ PM PROGRESS-ONLY	2.1 (1.1)	8.7 (5.6)	0.0 (0.0)	6.9 (5.0)	3.0 (1.7)	8.0 (5.5)	0.3 (0.1)	7.3 (4.5)	
+ PM SUBGOAL-ONLY	2.1 (1.2)	9.6 (5.5)	0.0 (0.0)	6.6 (4.6)	3.8 (1.7)	8.9 (5.6)	0.5 (0.2)	7.1 (4.5)	
+ PM Both	3.7 (2.1)	10.0 (7.0)	0.0 (0.0)	6.9 (5.1)	4.0 (2.0)	9.4 (6.3)	0.4 (0.1)	7.0 (4.3)	
Human	-	-	-	-	-	-	91.0 (85.8)	94.5 (87.6)	

- Providing only high-level, underspecified goal language is insufficient to complete the tasks but is enough to complete some goal-conditions.
- Using just low-level, step-by-step instructions, performs similarly to using both highand low-levels.

		Validatio	on			Test				
	S	leen	Ui	Unseen		S	een	Unseen		
Model	Task	Goal-Cond	Task	Goal-Cond		Task	Goal-Cond	Task	Goal-Cond	
NO LANGUAGE	0.0 (0.0)	5.9 (3.4)	0.0 (0.0)	6.5 (4.7)		0.2 (0.0)	5.0 (3.2)	0.2 (0.0)	6.6 (4.0)	
NO VISION	0.0 (0.0)	5.7 (4.7)	0.0 (0.0)	6.8 (6.0)		0.0 (0.0)	3.9 (3.2)	0.2 (0.1)	6.6 (4.6)	
GOAL-ONLY	0.1 (0.0)	6.5 (4.3)	0.0 (0.0)	6.8 (5.0)		0.1 (0.1)	5.0 (3.7)	0.2 (0.0)	6.9 (4.4)	
INSTRUCTIONS-ONLY	2.3 (1.1)	9.4 (6.1)	0.0 (0.0)	7.0 (4.9)		2.7 (1.4)	8.2 (5.5)	0.5 (0.2)	7.2 (4.6)	
SEQ2SEQ	2.4 (1.1)	9.4 (5.7)	0.1 (0.0)	6.8 (4.7)		2.1 (1.0)	7.4 (4.7)	0.5 (0.2)	7.1 (4.5)	
+ PM PROGRESS-ONLY	2.1 (1.1)	8.7 (5.6)	0.0 (0.0)	6.9 (5.0)		3.0 (1.7)	8.0 (5.5)	0.3 (0.1)	7.3 (4.5)	
+ PM SUBGOAL-ONLY	2.1 (1.2)	9.6 (5.5)	0.0 (0.0)	6.6 (4.6)		3.8 (1.7)	8.9 (5.6)	0.5 (0.2)	7.1 (4.5)	
+ PM Both	3.7 (2.1)	10.0 (7.0)	0.0 (0.0)	6.9 (5.1)		4.0 (2.0)	9.4 (6.3)	0.4 (0.1)	7.0 (4.3)	
Human	-	-	-	-		-	-	91.0 (85.8)	94.5 (87.6)	

- The two progress monitoring signals are marginally helpful, increasing the success rate by ~1% to ~2%.
- They also lead to more efficient task completion, as indicated by the consistently higher path weighted scores.

	Sub-Goal Ablations - Validation										
Model	G_{oto}	Pickup	P_{ut}	Cool	Heat	Clean	Slice	Toggle	Avg.		
No Lang	28	22	71	<mark>89</mark>	<mark>87</mark>	64	19	90	59		
S2S	49	32	80	87	85	<mark>82</mark>	23	97	67		
S2S + PM	51	32	<mark>81</mark>	88	85	81	25	100	<mark>68</mark>		
No Lang	17	9	31	75	86	13	8	4	30		
S2S	21	20	51	<mark>94</mark>	88	21	14	54	45		
D S2S + PM	22	21	46	92	<mark>89</mark>	57	12	32	46		

- Visual semantic navigation (Goto, Pickup) is considerably harder in unseen environments.
- Simple sub-goals like Cool, and Heat are achieved at a high success rate of ~90% because these tasks are mostly object-agnostic.

Rank 🌻	Submission	Created 👙	Unseen Success Rate	Seen Success Rate	Seen PLWSR	Unseen PLWSR	Seen GC	Unseen GC	Seen PLW GC Success Rate	Unseen PLW GC Success Rate
1	Hierarchical Attention Model Van-Quang Nguyen and Takayuki	08/01/2020	0.0445	0.1239	0.0820	0.0224	0.2068	0.1234	0.1879	0.0944
2	Baseline Seq2Seq + Progress M Singh, Bhambri, Kim, Choi (Gl	07/22/2020	0.0150	0.0541	0.0251	0.0070	0.1232	0.0808	0.0827	0.0520
3	Baseline + ImprovedMask personal	07/29/2020	0.0066	0.0385	0.0207	0.0032	0.1018	0.0798	0.0757	0.0551
4	baseline DeepblueAl	07/10/2020	0.0059	0.0365	0.0202	0.0019	0.0851	0.0714	0.0533	0.0410
5	Baseline Seq2Seq+PM (both) Shridhar et. al (UW)	03/28/2020	0.0039	0.0398	0.0202	0.0008	0.0942	0.0703	0.0627	0.0426
5	baseline personal	07/05/2020	0.0039	0.0359	0.0161	0.0006	0.0889	0.0690	0.0618	0.0421
7	baseline v2 DeepblueAl	07/17/2020	0.0033	0.0150	0.0071	0.0008	0.0605	0.0695	0.0383	0.0401
8	Baseline_v2 Personal	08/04/2020	0.0026	0.0033	0.0007	0.0005	0.0453	0.0690	0.0316	0.0413
9	test personal	08/20/2020	0.0020	0.0027	0.0009	0.0006	0.0463	0.0690	0.0333	0.0458
9	Baseline	08/04/2020	0.0020	0.0027	0.0009	0.0006	0.0463	0.0690	0.0333	0.0458

Conclusion

- Result: A baseline model based on recent embodied vision-and-language tasks performs poorly on ALFRED
- Challenges: long-horizon task planning, visual semantic navigation, object detection, referring expression grounding, and action grounding
- Goal: Shrink the gap between research benchmarks and real-world applications

OCT 13 2020

GROUNDING LANGUAGE IN PLAY

Pierre Sermanet, Corey Lynch

Robotics at Google

PRESENTER: PRIYANKA MANDIKAL

Motivation

- Children learn language in the context of rich, sensorimotor experience
 - → language acquisition is embodied

- Infants contribute actions while care-takers contribute relevant words
 - → language acquisition is highly-social

Main Problem

Assuming real humans play a critical role in robot language acquisition, what is the most efficient way to go about it?

How can we scalably pair robot experience with relevant human language to bootstrap instruction following?

Problem Setting

now: do not do anything next:

- Control a robotic arm within a physics simulator
- Manipulate objects in the environment
- Conditioned on an external natural language instruction

Challenges

- High-dimensional continuous sensory inputs and actuators
- Even simple instruction following is notoriously hard
 - E.g. "Sweep the block into the drawer"
 - Relate language to low-level perception (What does a block look like? What is a drawer?)
 - Perform visual reasoning (What does it mean for block to be in drawer?)
 - Solve a complex sequential decision problem (What commands do I send to my arm to "sweep")
- ☆ Complex task specification → long-horizon robotic object manipulation from natural language instructions

Related Work

- Robot learning from general sensors
 - Imitation learning: requires many human demonstrations
 - Reinforcement Learning: hand-designed reward functions
- Task-agnostic control: Single agent must reach any goal on command
 - Model-based control: Learn model through interactions and then plan; exploration issues
 - ✤ Goal-relabeling: used in both IL and RL ; this paper
- Covering state space: Exploration vs Tele-operated play
- Instruction following: restricted env and simplified actuators
 "learning to follow *natural* language is still not the standard in instruction following research" → restricted vocab and grammar

Prior Work

Learning from Play (LfP): Lynch et. al. CORL 2019

- Learning general-purpose skills from onboard sensors
- ★ Tele-operated "play" data → relabeled imitation learning → goal-directed policy
- ✤ Limitation: tasks need to be specified using a *goal image* → impractical in real-world environments

Prior Work

Learning from Play

Goal

Single Play-LMP policy

Overview

- 1a. Cover the space with teleoperated play
- 1b. Pair play with human language (Hindsight Instruction Pairing)

Overview

2) Train on image and language goals

2. Multicontext imitation learning

- train a single policy to solve image or language goals

- highly data efficient

Overview

3) Follow human language

3. Condition on human language at test time

Preliminaries

- Relabeled Imitation Learning
 - Goal conditioned learning train a single agent to reach any goal
 - Goal conditioned behavior cloning \rightarrow relabel collected data

$$\mathcal{L}_{\text{GCBC}} = \mathbb{E}_{(\tau, s_g) \sim \mathcal{D}_R} \left[\sum_{t=0}^{|\tau|} \log \pi_{\theta} \left(a_t | s_t, s_g \right) \right]$$

- Teleoperated Play
 - adds diversity to the dataset (fully cover state space)
- Learning from Play (LfP)
 - combines relabeled imitation learning with teleoperated play

$$\mathcal{L}_{\text{LfP}} = \mathbb{E}_{(\tau, s_g) \sim D_{\text{play}}} \left[\sum_{t=0}^{|\tau|} \log \pi_{\theta} \left(a_t | s_t, s_g \right) \right]$$

APPROACH

Hindsight Instruction Pairing

- Sample any robot behavior from play, then ** collect an optimal instruction
- After-the-fact natural lang instructions, operator actions not affected by instructions \rightarrow more diverse play and instruction dataset
- No restrictions on vocabulary or grammar •••

"pick the object and then lift it up." "pull the drawer." "drag the object into the drawer" "drop the object, and again pickup the object high" "close the drawer" "do nothing."

Task: type the instruction that answers: "How do I go from start to finish?"

<type instruction>

video (start to finish)

start frame

Hindsight Instruction Pairing

- Assumes access to D_{play} consisting of hindsight goal image samples
- From $D_{\text{play}} \rightarrow D_{(\text{play,lang})}$ consisting of hindsight instruction samples

Algorithm 3 Pairing robot sensor data with natural language instructions.

- 1: Input: D_{play} , a relabeled play dataset holding (τ, s_g) pairs.
- 2: Input: $D_{(\text{play,lang})} \leftarrow \{\}.$
- 3: **Input:** get_hindsight_instruction(): human overseer, providing after-the-fact natural language instructions for a given τ .
- 4: Input: K, number of pairs to generate, $K \ll |D_{\text{play}}|$.
- 5: for 0...K do
- 6: # Sample random trajectory from play.
- 7: $(\tau, -) \sim D_{\text{play}}$
- 8: # Ask human for instruction making τ optimal.
- 9: $l = \text{get_hindsight_instruction}(\tau)$
- 10: Add (τ, l) to $D_{(\text{play,lang})}$
- 11: end for

Instruction Samples

Task Natural language instructions				
	"move the door all the way to the right"			
open sliding	"slide the door to the right"			
door	"move the sliding door all the way to the right			
	and let go"			
alosa sliding	"Grasp the door handle, then slide the door			
door	to the left"			
0001	"move the door all the way to the left"			
onan drawar	"open the cabinet drawer"			
open drawer	"open the drawer and let go"			
alasa drawar	"close the drawer and let go"			
close drawer	"close the drawer"			
	"Pick up the block"			
grasp flat	"grasp the object and lift it up"			
	"grasp the object and move your hand up"			
	"Pick up the object from the drawer			
grasp lift	and drop it on the table."			
	"hold the block and place it on top of the table"			
grasp upright	"Pick the object and lift it up"			
grasp upright	"grasp the object and lift"			
knock	"push the block forward"			
KHOCK	"push the object towards the door"			
	"Drag the block from the shelf			
pull out shalf	towards the drawer"			
puil out sitell	"pick up the object from the shelf			
	and drop it on the table"			

	Task	Natural language instructions		
		"grasp the object and place it inside		
	put in shelf	the cabinet shelf"		
	put in shen	"Pick the object, move it into the shelf		
		and then drop it."		
	push red	"go press the red button"		
		"Press the red button"		
	nuch graan	"press the green button"		
_	push green	"push the green button"		
_	nuch blue	"push the blue button"		
	push blue	"press down on the blue button."		
	rotate left	"Pick up the object, rotate it 90 degrees		
		to the left and		
		drop it on the table"		
		"rotate the object 90 degrees to the left"		
	rotate right	"turn the object to the right"		
		"rotate the block90 degrees to the right"		
	sweep	"roll the object into the drawer"		
		"drag the block into the drawer"		
	sweep left	"Roll the block to the left"		
		"close your fingers and roll the object		
		to the left"		
	awaan right	"roll the object to the right"		
	sweep right	"Push the block to the right."		

Multicontext Imitation Learning (MCIL)

- Generalization of contextual imitation to multiple heterogenous contexts
- Multiple imitation learning datasets, each with a different way of describing tasks and different cost of collection
 - E.g. goal image, task id, natural language, video demonstration, etc
- Trains
 - A single *latent goal* conditioned policy $\pi_{\theta}(a_t|s_t, z)$ over *all* datasets simultaneously
 - A set of encoders, one per dataset; each maps task description → shared latent space

Multicontext Imitation Learning (MCIL)

Training Procedure:

- At each training step, for each dataset:
 - sample a minibatch of trajectory-context pairs
 - encode the contexts in the latent space
- Contextual imitation objective (per dataset)

$$\mathcal{L}_{\text{context}}(D,h) = \mathbb{E}_{(\tau, c) \sim D} \left[\sum_{t=0}^{|\tau|} \log \pi_{\theta} \left(a_t | s_t, f_{\theta}(c) \right) \right]$$

✤ Full MCIL objective → averaged over all datasets

$$\mathcal{L}_{\text{MCIL}} = \frac{1}{|\mathcal{D}|} \sum_{k}^{|\mathcal{D}|} \mathcal{L}_{\text{context}}(D_k, h_k)$$

Algorithm 1 Multicontext imitation learning

- 1: **Input:** $\mathcal{D} = \{D^0, ..., D^K\}, D^k = \{(\tau_i^k, c_i^k)\}_{i=0}^{D^k}$, One dataset per context type (e.g. goal image, language instruction, task id), each holding pairs of (demonstration, context).
- 2: **Input:** $\mathcal{F} = \{f_{\theta}^{0}, ..., f_{\theta}^{K}\}$, One encoder per context type, mapping context to shared latent goal space, e.g. $z = f_{\theta}^{k}(c^{k})$.
- 3: Input: $\pi_{\theta}(a_t|s_t, z)$, Single latent goal conditioned policy.
- 4: **Input:** Randomly initialize parameters $\theta = \{\theta_{\pi}, \theta_{f^0}, ..., \theta_{f^K}\}$
- 5: while True do

9٠

11:

14:

16:

- $\mathcal{L}_{MCIL} \leftarrow 0$
- 7: # Loop over datasets.
- 8: **for** k = 0...K **do**

Sample a (demonstration, context) batch from this dataset.

- 10: $(\tau^k, c^k) \sim D^k$
 - # Encode context in shared latent goal space.
- 12: $z = f_{\theta}^k(c^k)$ 13: # Accumula
 - # Accumulate imitation loss.
 - $\mathcal{L}_{\text{MCIL}} += \sum_{t=0}^{|\tau^k|} \log \pi_{\theta} \left(a_t | s_t, z \right)$

15: end for

- # Average gradients over context types.
- 17: $\mathcal{L}_{\text{MCIL}} *= \frac{1}{|\mathcal{D}|}$
- 18: # Train policy and all encoders end-to-end.
- 19: Update θ by taking a gradient step w.r.t. \mathcal{L}_{MCIL}
- 20: end while

Multicontext Imitation Learning (MCIL)

- Advantages
 - ✤ Being context-agnostic → enables highly efficient training
 - Learn the majority of control from the cheapest data source
 - Learn general task conditioning from a small number of labelled examples
 E.g. Natural language instructions < 1% of collected robot experience!
 - Broadly useful beyond this paper

LangLfP

- Special case of MCIL
- Two datasets
 - $\mathcal{D} = \{D_{\text{play}}, D_{(\text{play,lang})}\}$
- Tasks
 - hindsight goal image
 - hindsight instructions
- ♦ Encoders: $\mathcal{F} = \{g_{enc}, s_{enc}\}$
 - ✤ Maps image goal and instructions → shared visuo-lingual goal space
- Learns perception, language understanding and control end-to-end

LangLfP: Perception Module

- Observations:
 - High-dim image (200x200x3)
 - Proprioceptive sensor readings i.e. robot joint angles and locations in Cartesian coordinate space

LangLfP: Language Module

- Two approaches:
 - From scratch (LangLfP)
 - Transfer Learning (TransferLangLfP)

LangLfP: Language Module from Scratch

- Tokenize raw text into subwords
- Retrieve subword embeddings from a lookup table
- Summarize embeddings into a point in *z* space
- Embedding fed to 2-layer MLP

TransferLangLfP: Language Module via Transfer Learning

- Pretrained embeddings from Multilingual Universal Sentence Encoder (MUSE)
- ✤ Maps sentences → 512-D vector
- ✤ Benefits
 - Serves as a strong prior if there is a semantic match between source and target domains
 - ❖ Encodes word similarity → follow out-of-distribution instructions in zero shot

LangLfP: Control Module

- Implement multicontext control policy: $\pi_{\theta}(a_t|s_t, z)$
- Use Latent Motor Plans (from LfP paper)
 - Goal directed imitation architecture
 - Uses latent variables to model multimodality
 - Seq2seq CVAE that auto-encodes contextual demos through a latent "plan" space
 - Decoder: goal-conditioned policy
 - Refer to LfP for more details

Multicontext LMP: Goal Image

Multicontext LMP: Language

LfP vs LangLfP

Experimental Setup: Environment

- Situated robot in a 3D environment
- 8-DOF robot arm and parallel gripper
- RGB video sensors
- Proprioceptive sensors
- Goal: Agent must perform highfrequency, closed-loop continuous control to solve user-described manipulation tasks

Experimental Setup: Methods

- ✤ LangBC language, but no play multi-task demos D_(demo,lang)
- ↔ LfP play, but no language D_{play}
- ↔ LangLfP play and language D_{play} and $D_{(play,lang)}$
- Restricted LangLfP LangLfP restricted to size of D_(demo,lang)
- TransferLangLfP LangLfP using MUSE embeddings D_(play,lang)

 \rightarrow 2 sets of experiments – pixel and state

Experiments: Ask-Me-Anything (AMA)

- Multi-stage instruction following
- ✤ Derived from Multi-18 → 18 evaluation tasks described in LfP. E.g. open sliding door, sweep, close sliding door, etc
- ✤ Consider all valid N-stage transitions between the 18 tasks → Chain-2, Chain-3, Chain-4 manipulation benchmarks
- Multi-18 can be seen as a subset of this extended set

Experiments: Ask-Me-Anything (AMA)

Method	Input	Training source	Task conditioning	Multi-18 Success (18 tasks)	Chain-4 Success (925 long-horizon tasks)
LangBC	pixels	predefined demos	text	$20.0\% \pm 3.0$	$7.1\% \pm 1.5$
Restricted LangLfP	pixels	play	text	$47.1\% \pm 2.0$	$25.0\% \pm 2.0$
LfP	pixels	play	goal image	$66.4\% \pm 2.2$	$53.0\% \pm 5.0$
LangLfP (ours)	pixels	play	text	$68.6\% \pm 1.7$	$52.1\% \pm 2.0$
TransferLangLfP (ours)	pixels	play	text	74.1% ±1.5	68.6 % ±1.6
LangBC	states	predefined demos	text	$38.5\% \pm 6.3$	$13.9\% \pm 1.4$
Restricted LangLfP	states	play	text	$88.0\% \pm 1.4$	$64.2\% \pm 1.5$
LangLfP (ours)	states	play	text	$88.5\% \pm 2.9$	$63.2\% \pm 0.9$
TransferLangLfP (ours)	states	play	text	90.5% ±0.8	71.8% ±1.6

- LangLfP ~ LfP, but is more scalable in terms of task conditioning
- TransferLangLfP > LangLfP and original LfP
- RestrictedLangLfP > LangBC; Restricted LangLfP can transition well between tasks; LangBC fails to recover from compounding errors

Experiments: Ask-Me-Anything (AMA)

- As model capacity increases, play model can capitalize on increased strength because of diversity in dataset
- LangBC constrained to predefined behaviors

Results: Ask-Me-Anything (AMA)

Experiments: Knowledge Transfer

- TransferLangLfP outperforms LangLfP
- evidence that world knowledge in large corpora is beneficial for downstream robotic manipulation tasks

Experiments: Knowledge Transfer

Out-of-distribution instructions:

- Synonyms
 - * "Drag the block from the shelf" → "Retrieve the brick from the cupboard"
 - OOD-syn eval set: 14k OOD samples across 18 tasks
 - TransferLangLfP generalizes substantially!
- 16 different languages
 - OOD-16-lang eval set: Translate (Multi-18 + OOD-syn) 240k samples across 18 tasks

Method	OOD-syn (~15k tasks)	OOD-16-lang (~240k tasks)
Random Policy	$0.0\%\pm0.0$	$0.0\%\pm0.0$
LangLfP	$37.6\%\pm2.3$	$27.94\%\pm3.5$
TransferLangLfP	$\textbf{60.2\%} \pm 3.2$	$\textbf{56.0\%} \pm 1.4$

- TransferLangLfP > LangLfP
- LangLfP resorts to producing max likelihood play actions

Results: Knowledge Transfer

Results: TransferLangLfP vs LangLfP

TransferLangLfP

LangLfP

next:

Limitations

Agent times out before task completion

pick up the object and hold it up high

onboard observation

Compounding error \rightarrow awkward arm configurations

Future Work

 \diamond Current \rightarrow goal-directed imitation, lacks autonomous policy improvement

Future \rightarrow Imitation + RL for autonomous policy improvement, not restricted to human actions

♦ Current \rightarrow Single env

Future \rightarrow Large play corpora, generalization to new rooms and objects

Summary

- Introduced LangLfP, an extension of LfP trained both on relabeled goal image play and play paired with human language instructions
- ♦ Multicontext Imitation Learning \rightarrow reduce the cost of language pairing
- Single policy trained with LangLfP can solve many 3D robotic manipulation tasks over a long horizon from onboard sensors via human language
- Simple technique for knowledge transfer; 16 different languages

Discussion

- Transfer learning on 16 langauges
 - For LangLfP, could have translated instructions to English before feeding into the model
- How do ALFRED and LangLfP compare with each other?
 - ✤ ALFRED
 - Pros: mobile robot, larger env diversity, large # of obj state changes (door open/close, lights on/off, bread whole/sliced, tap on/off, vase intact/broken …) → rich lang vocabulary
 - Cons: No physical realism, no fine motor control
 - ✤ LangLfP
 - Pros: contact-rich physics env, 8-DOF motor control
 - Cons: Fixed robot, limited state space, limited obj state changes (restricted to pick-up, door open/close, lights on/off) → limited action vocabulary