Lessons learned from the development of a parallel sparse direct solver

Kyungjoo Kim

Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

Sep 6, 2013

Outline

- ① Source of sparse matrix: *hp*-FEM
- 2 Parallelization strategy
- 3 Heterogeneous architectures: multi-level matrix blocking

4 Discussion

Source of sparse matrix: *hp*-Finite Element Method (FEM)

Figure : A sparse system of equations is generated based on a FE-mesh¹.

Figure : Example of high order basis functions.

¹The airfoil mesh is obtained from Matlab.

K. Kim

hp-FEM delivers fast convergence rate

Example: projection of the manufactured solution: $\psi = \sin(x)\cos(y)z$

Figure : For a smooth solution, the use of high p delivers a fast convergence rate.

Application: wave propagation problems

Figure : Underwater acoustics with a rouch seabed ², approximated by p=6, # of elements= 1,130 (368 in the domain of interest), # of DOFs = 200k.

²The image is produced by Jeffrey Zitelli.

Application: wave propagation problems

Figure : Underwater acoustics with a rouch seabed ², approximated by p=6, # of elements= 1,130 (368 in the domain of interest), # of DOFs = 200k.

²The image is produced by Jeffrey Zitelli.

Sparse system of equations generated by hp-FEM

• All operations are essentially dense.

Node Type	Edge	Face	Interior
# of DOFs	O(p)	$O(p^2)$	$O(p^3)$

(b) Element matrix

(P-1)(P-2)/2

P-1

Figure : The shape of an unassembled element matrix.

Sparse system of equations generated by hp-FEM

• All operations are essentially dense.

Node Type	Edge	Face	Interior
# of DOFs	O(p)	$O(p^2)$	$O(p^3)$

Figure : Nonzero patterns keeping the same system DOFs.

Multifrontal factorization in FEM

- Characterized by recursive procedure on the assembly tree.
- Performs supernodal elimination and assembly for each frontal matrix.
- Converts the sparse matrix factorization into multiple dense subproblems.

Figure : The factorization is completed ascending the assembly tree.

Two-level parallelism

- High degree tree-level parallelism on leaves.
- Increasing opportunity in **matrix-level** parallelism.

Asynchronous task execution in harmony with two-level parallelism

- Load imbalance due to irregular task sizes.
- Bandwidth-bounded tasks on leaves vs compute-bounded tasks nearby the root.

Two-level parallelism

- High degree **tree-level** parallelism on leaves.
- Increasing opportunity in matrix-level parallelism.

Asynchronous task execution in harmony with two-level parallelism

- Load imbalance due to irregular task sizes.
- Bandwidth-bounded tasks on leaves vs compute-bounded tasks nearby the root.

Parallelization strategy

Fine-grained task generation: algorithms-by-blocks

E.Chan et al., 2007., Satisfying your dependencies with Supermatrix.

G.Quintana-Ortí et al., 2009., Programming matrix algorithms-by-blocks for thread-level Parallelism.

K. Kim

Hierarchical DAG scheduling

Tasks are **locally** analyzed and **globally** ordered.

- Tree-level tasks (priori known structure) are generated via parallel post-order tree traversal.
- Fine-grained tasks are generated by using algorithms-by-blocks.
- Tasks are hierarchically ordered together with multiple Directed Acyclic Graph (DAG) schedulers.

Figure : An example of hierarchical DAGs.

Strong scale

Figure : Factorization phase for fixed p = 4 with a reference time of the sequential UHM solver.

Scheduling tasks to multiple GPUs

We want to achieve portable performance with manageable programming complexity.

Challenges:

- A large front may not fit into a small device memory (6 GB).
- \rightarrow A large matrix is decomposed of blocks; only computing blocks are transferred to devices.
- Different programming models can be used.
- \rightarrow Blocks are computed via vendor provided libraries (*e.g.*, MKL, CUBLAS).
- Efficient workload balancing among asymmetric computing units.
- \rightarrow Workloads are dynamically partitioned based on device performance.

Scheduling tasks to multiple GPUs

We want to achieve portable performance with manageable programming complexity.

Challenges:

- A large front may not fit into a small device memory (6 GB).
- \rightarrow A large matrix is decomposed of blocks; only computing blocks are transferred to devices.
- Different programming models can be used.
- \rightarrow Blocks are computed via vendor provided libraries (*e.g.*, MKL, CUBLAS).
- Efficient workload balancing among asymmetric computing units.
- \rightarrow Workloads are dynamically partitioned based on device performance.

Figure : Multi-level matrix blocking improves unit performance and efficiency.

Task handling: bulk-synchronous approach

Suppose that the target architecture has four computing units and one GPU whereas their performance ratio is 1:3.

- Dense subproblems are computed within a sequence of supersteps.
- Each superstep consists of tasks that can be executed concurrently.
- Tasks are dispatched to heterogeneous computing units in a round-robin fashion (easy to exploit multiple GPUs).

Dense problems: two Fermi GPUs

Figure : Dense LU factorization without pivoting accelerated by multiple GPUs.

Sparse factorization: two Fermi GPUs

		Performance		Spe	ed-up
Cores	GPUs	Time [sec]	GFLOP/sec	vs 1 core	vs 12 cores
1	0	291	11.13	1.00	-
2	0	213	15.21	1.36	-
4	0	85	38.11	3.42	-
8	0	45	71.98	6.46	-
12	0	33	98.16	8.81	1.00
12	1	23	140.84	12.65	1.43
12	2	19	170.50	15.31	1.69

Table : Sparse LU with partial pivoting accelerated by multiple GPUs.

Discussion: runtime parallelism vs structured parallelism

How can we put runtime parallelism in harmony with structured parallelism ?

	Runtime	Structured	
Granularity	Fine	Finer	
Concurrency	Out-of-order scheduling	Dependent on algorithms	
Locality	Data affinity scheduling	Predefined data partitions	
Parallel overhead	High	Low	

Discussion: runtime parallelism vs structured parallelism

How can we put runtime parallelism in harmony with structured parallelism ?

Requirements in DLA interface:

- DLA algorithms are designed with abstract communicators.
- Tasks are generated from DLA algorithms with light-weight communicators.
- Runtime resource manager dynamically controls resource allocation for given tasks.

Summary

Lessons learned

Increased reliance on DLA libraries.

- Application problem is characterized by **dense** block sparse matrix.
- Supernodal sparse factorization forms a tree of **dense** problems.

High performance computing in the application context.

- Multi-level tasking effectively combines multifrontal factorization with runtime task parallelism.
 - \checkmark high performance of DLA libraries \rightarrow high performance sparse direct solver.
- Dynamic task subdivision approach provide reduce the number of data transfer to devices and provide a suitalbe granularity to devices.

Can BLIS provide building blocks for users to build their own parallelism ?

Thank you.