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Background

I BLAS-like Library Instantiation Software (BLIS)
I Framework for rapidly instantiating the BLAS (or BLAS-like)

functionalities using the GotoBLAS approach
I Productivity multiplier for the developer

I With BLIS, an expert has to
I Identifying parameter values (e.g. block sizes); and
I Implementing an efficient micro-kernel in assembly (in essence,

a series of outer-products)



Background

I “Is Search Really Necessary to Generate High-Performance
BLAS?” [Yotov et al, 2005]

I Showed that empirical search in ATLAS can be replaced with
simple analytical models

I Key differences
I ATLAS

I Scalar instructions

I Single level, Fully
Associative Cache

I Compared against
ATLAS generated code
(no user kernels)

I BLIS

I SIMD instructions

I Hierarchy of Set
Associative Caches

I Compared against
hand-coded
implementations



GotoBLAS at a glance

I 5 parameters (mr, nr, kc,mc, and nc)
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Model Architecture

I Vector registers
I Each vector register holds Nvec elements.

I FMA instructions
I Throughput of Nfma per clock cycle.
I Instruction latency is given by Lfma.

I Caches
I All caches are set-associative.
I Cache replacement policy is LRU.
I Cache lines are the same for all caches.



Parameters: mr, nr

I Recall:
I mr and nr determine the size of the micro-block of C
I Each element is computed exactly once in each iteration of the

micro-kernel

+
=mr

nr

I Strategy
I Pick the smallest micro-block of C (mr × nr) such that no

stalls arising from dependencies and instruction latency occur
when computing one iteration of the micro-kernel.



Parameters: mr, nr

I Recall:
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I Each FMA instruction computes Nvec elements
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Parameters: mr, nr

I Minimum size of the micro-block of C

mrnr ≥ NvecLfmaNfma

I Ideally,

mr, nr ≈
√
NvecLfmaNfma

I In practice,

mr(or nr) =

⌈√
NvecLfmaNfma

Nvec

⌉
Nvec



Parameters: kc, mc, nc

I Recall that kc, mc, and nc are dimensions of the matrices that
are kept in different caches

I L1 : Micro-panel of B - kc × nr

I L2 : Packed block of A - mc × kc
I L3 (if available) : Packed block of B - kc × nc

I Pick largest kc, mc and nc such that the matrices will still be
kept in their caches



Parameters: kc, mc, nc

I Consider the L1 cache:
I Same micro-panel of B is used between different invocations

of the micro-kernel
I Micro-panels of A are used only once
I For simplicity, micro-panels of A and B are the same size

Option 1
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Parameters: kc, mc, nc

I Observation 1: A and B are packed
I Elements of A and B are in contiguous memory locations

I Observation 2: Caches are set associative
I Cache lines are evicted when all W cache lines in a set is filled
I At least one cache line is filled with elements from C.
I Micro-panels of A and B can, at most, fill W − 1 cache lines

in each set
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Parameters: kc, mc, nc

I Recall: Want new micro-panel of A to evict old micro-panels
of A

I Starting location of each micro-panel of A must be mapped to
the same set

I Size of a micro-panel of A must be a multiple (CAr
) of the

number of sets in the cache
A0 A1 . . . Amc

I CAr is the number of cache lines in each set allocated to a
micro-panel of A.

I kc can then be computed as follow

kc =
CArNL1CL1

mrSData



Validation

I Compare parameter values from model against OpenBLAS
and manually optimized BLIS implementations

I Model should yield similar (if not identical) parameter values
as those in existing implmentations since all three apporaches
use the GotoBLAS approach



Validation

I Size of micro-block of C, mr and nr

Architecture OpenBLAS BLIS Model

mr nr mr nr mr nr

Intel Dunnington 4 4 4 4 4 4
Intel SandyBridge 8 4 8 4 8 4
TI C6678 - - 4 4 4 4
AMD Piledriver 8 (6) 2 (4) 4 6 4 6



Validation

I Values of kc, and mc.

I nc not shown because either architecture had no L3 cache, or
varying nc resulted in minimal performance variation

Architecture BLIS Model

kc mc kc mc

Intel Dunnington 256 384 256 384
Intel SandyBridge 256 96 256 96
TI C6678 256 128 256 128
AMD Piledriver 120 1088 128 1792



Conclusion

I An analytical model for determining the parameter values
required by BLIS

I Parameter values that are similar if not identical to those in
expert-tuned implementations

I Consistent result with Yotov et. al:
Analytical modeling is sufficient for high performance BLIS



Future Work

I Relax Assumptions
I Include bandwidth considerations
I Different cache replacement policies
I Complex arithmetics

I More complicated linear algebra algorithms (e.g. LAPACK)
I Extend model to LAPACK-type algorithms
I Can BLIS parameters be used to determine optimal block for

LAPACK algorithms?

I Hardware Co-design
I Analytical model for LAP [Pedram et. al. 2012] is similar to

the analytical model presented here
I Possible for model to be used in cache design/cache

replacement policies?


