

igh-Performance Machine Learning Primitives

High Performance Computing Kernels in N-body Problems

Chenhan D. Yu

Sep 18, 2017 The 5th BLIS retreat!!! Austin, TX

Copyright @ 2017, The University of Texas at Austin

I am on the job market.

Both academia and industry positions are very welcome!

The Spirit of HMLP

O(2mnk) FLOPS, O(mn+mk+kn) MOPS, ~ 95% PEAK, if k is large enough (k > 1*KC)

N-body Operators [A. Gray, '03]

Describing the "interactions \times " between data points

Learning = Less Outputs

Instead, we need some kind of reduction of C. e.g. select r columns (nearest neighbors) [SC'15]

Instead, we need some kind of reduction of C. e.g. pool each 3-by-3 block (convolution + pooling layer)

Significants

These memory reduction schemes require a more flexible interface than GEMM

N-body Computation Primitives

BLIS (Framework + Kernel)

Preserve the BLIS structure (the Goto algorithm)

Worry About Optimization?

Reduce storage and slow memory complexity by O(mn)

Reduce loads/stores from O(mc*nc) to O(mc)

Copyright @ 2017, The University of Texas at Austin

Gesture Recognition

Classification

Kernel Density Estimation

Portable Performance*

Still O(kN²) does not scale when N is large!

Approximation [SC'15,'17, KDD'15, IPDPS'15-'17, SISC]

The Largest Problem?

For example, I systematically discover low-rank and sparse matrix structures such that I can invert a 32M-by-32M kernel matrix in 10 seconds but not 3 years.

> *Note: Direct MATVEC on a 32Mx32M matrix takes 120 minutes using 3,072 Haswell cores. Cholesky factorization takes 2.8 years to complete.

More Primitives

Thank You!