
Integer GEMM
(under)performance

Marat Dukhan
Software Engineer on Caffe 2

• Fully-connected layers

• im2col+GEMM algorithm for convolution

• 1x1 convolutional layers

GEMM in Neural Networks

Android CPU Landscape
Overview of CPU microarchitectures

Low-End Mid-End High-End

ARMv7 Cortex-A5
Cortex-A7

Cortex-A8
Cortex-A9

Cortex-A12
Cortex-A15
Cortex-A17

Krait

ARMv8 Cortex-A53
Cortex-A55

Cortex-A57
Cortex-A72
Cortex-A73

Kryo
Mongoose

• Cortex-A7
• 64-bit SIMD units for load/store and integer SIMD
• NEON FP32 instructions run at 1 element/cycle (i.e. scalar execution)
• Single-issue NEON pipeline

• Cortex-A53
• 64-bit SIMD load units
• 128-bit integer and floating-point SIMD compute and store units
• Single-issue NEON pipeline, but with useful co-issue capabilities

• Co-issue for NEON compute + general-purpose load
• Co-issue for NEON 64-bit load + 64-bit move to NEON co-processor

Android CPU Landscape
Overview of low-end microarchitecture

• Load MR elements of A panel
• Load NR elements of B panel
• Use vector-scalar multiply-accumulate instruction

(VMLA.F32 Qd, Qn, Qm[x]) to compute a block of C
• Optimal MR x NR blocks:

• Cortex-A7: 6x6 (6x8 is marginally worse)
• Cortex-A53: 6x8

SGEMM for mobile low-end
ARM NEON µkernel

VLD1.32 {d0-d2}, [rA]!
VLD1.32 {q2-q3}, [rB]!

6x2 = 12 VMLA.F32 instructions
VMLA.F32 q4, q2, d0[0]
VMLA.F32 q5, q3, d0[0]
VMLA.F32 q6, q2, d0[0]
VMLA.F32 q7, q3, d0[0]
... repeat for d0[1]...d2[1]

Example of 6x8 ARM NEON µkernel
SGEMM

• CNNs are very tolerant to quantization noise
• Little accuracy loss with 8-bit quantization
• Idea: instead of a single FP32, process 4 8-bit ints
• Theory: 4x speedup on SIMD!
• Implementation: Google's gemmlowp library

Integer GEMM
Background

• NEON VMLAL instruction does not have a .U8 version
• Need to extend data to uint16 (VMOVL.U8) for VMLAL.U16

• Loading uint16 data may be faster on some µarchitectures
• Two instructions cripple performance

• VMOVL.U8 instructions, not needed in FP32 version
• VMLAL.U16 accumulates to uint32, does only 4 MACs

Integer GEMM
Implementation with vector-scalar multiply-accumulate

VLD1.32 {d0}, [rA]!
VMOVL.U8 q0, d0 # extend to uint16
VLD1.32 {d1}, [rB]!
VMOVL.U8 q1, d2 # extend to uint16

VMLAL.U16 q2, d2, d0[0] # multiply-accumulate in uint32
VMLAL.U16 q3, d3, d0[0] # multiply-accumulate in uint32
... repeat for d0[1]...d1[1]

Example of 6x8 ARM NEON µkernel
U8GEMM

• Idea (gemmlowp): use vector-vector VMLAL.U8
• First, VMULL.U8 Qd, Dm, Dn to multiply to uint16
• Then, VPADAL.U16 to accumulate to uint32
• This µkernel assumes 8 kc values are packed sequentially
• Still problematic w.r.t performance

• Two instructions instead of one
• VPADAL.U16 accumulates to uint32, outputs 4 values/cycle
• VPADAL.U16 is slow on low-end cores

Integer GEMM
Implementation with vector-vector multiply-accumulate

VLD1.32 {d0-d2}, [rA]!
VLD1.32 {d4-d6}, [rB]!

VMULL.U8 q4, d0, d4 # multiply to uint16
VMULL.U8 q5, d0, d5 # multiply to uint16
VMULL.U8 q6, d0, d6 # multiply to uint16

VPADAL.U16 q7, q4 # accumulate to uint32
VPADAL.U16 q8, q5 # accumulate to uint32
VPADAL.U16 q9, q6 # accumulate to uint32

repeat for d1...d2

Example of 3x8 X 8x3 ARM NEON µkernel (gemmlowp)
U8GEMM

• Idea (gemmlowp): a1 * b1 + a2 * b2 fits into int16 if we
restrict either as or bs to [-127, 127]

• First, VMULL.S8 Qd, Dm, Dn to multiply to int16
• Then, VMLAL.S8 Qd, Dm, Dn to multiply-accumulate in int16
• Then, VPADAL.S16 to accumulate to uint32
• This µkernel assumes 16 kc values are packed sequentially
• Slightly improves performance

• Expensive VPADAL is amortized between two VMULLs

Integer GEMM
Implementation with signed vector-vector multiply-accumulate

VLD1.32 {d0-d2}, [rA]!
VLD1.32 {d4-d7}, [rB]!

VMULL.S8 q4, d0, d4 # multiply
VMLAL.S8 q4, d1, d5 # multiply-accumulate in int16
VPADAL.S16 q7, q4, q0 # accumulate to int32

... repeat for 4x2 tile of NEON registers

Example of 4x16 X 16x2 ARM NEON µkernel (gemmlowp)
I8GEMM

Performance
Measured and estimated OPS/cycle

Cortex-A7 Cortex-A53
SGEMM 6x6 (FB impl): FLOPS/cycle measured 1.619
SGEMM 6x8 (FB impl): FLOPS/cycle measured 1.613 5.888
SGEMM 6x8 (FB impl): FLOPS/cycle estimated 1.745 6.000
U8GEMM 6x4 X 4x8 (FB impl): OPS/cycle est. 3.03 6.56
7x VLDR Dd, [Rn, #imm] 7 4
7x VMOVL.U8 Qd, Rm 14 7
48x VMLAL.U16 Qd, Qn, Qm[x] 106 48
U8GEMM 3x8 X 8x3 (gemmlowp): OPS/cycle est. 2.40 4.80
6x VLDR Dd, [Rn, #imm] 6 3
9x VMULL.U8 Qd, Dn, Dm 18 9
9x VPADAL.U16 Qd, Qn, Qm 32 18
I8GEMM 4x16 X 16x2 (gemmlowp): OPS/cycle est. 3.30 6.74
12x VLDR Dd, [Rn, #imm] 12 6
8x VMLAL.S8 Qd, Dn, Dm 17.6* 8
8x VMULL.S8 Qd, Dn, Dm 16 8
8x VPADAL.S16 Qd, Qn, Qm 32 16

Performance
Analysis

Int8 GEMM vs SGEMM on low-end ARM cores:
• 2x speedup on Cortex-A7 (due to slow FP units)
• At most 10% speedup on Cortex-A53
Why small speedups?
• Accumulation to int32 is expensive
• No dual-issue of VMUL + VPADAL on low-end

Performance
Instruction set effects

Lack of instructions to multiply and accumulate
neighboring lanes to 32 bits is what kills performance.
• Scalar SMLASD existed in ARMv6, but no NEON version
• Instruction like DP4A (nVidia Pascal) would be helpful

Cortex-A7 Cortex-A53
SGEMM 6x6 (FB impl): FLOPS/cycle measured 1.619
SGEMM 6x8 (FB impl): FLOPS/cycle measured 1.613 5.888
U8GEMM 6x4 X 4x8 (NEON DP4A): OPS/cycle est. 12.39 24.77
U8GEMM 6x4 X 4x8 (NEON SMLASD): OPS/cycle est. 6.98 13.96

• 8-bit Integer GEMM promised great speedups, but in
practice doesn't deliver where we need them most - on
low-end mobile phones

• This fact is due to a combination of ARM NEON ISA
limitations and single-issue NEON pipelines

• 4x speedups could be realized if ARM NEON included a
4x 8-bit int dot product with 32-bit accumulation

Conclusion

