I/O Lower Bounds and Algorithms for Matrix-Matrix Multiplication Tyler M. Smith

July 5, 2017

Introduction

- \triangleright Dense matrix-matrix multiplication (MMM)
- \triangleright Goal: Reduce I/O cost for machines with hierarchical memory
- \blacktriangleright Novel contributions:
	- ► I/O lower bounds with a tight constant $\frac{2mnk}{\sqrt{6}}$ S
	- \triangleright A family of algorithms for machines with any number of levels of memory hierarchy
	- \triangleright Outperform the state-of-the-art Goto's Algorithm by 38% when there is low bandwidth to main memory

Problem definition

 \triangleright Classical MMM

- $C += AB$
- \triangleright C is $m \times n$, A is $m \times k$, and B is $k \times n$
- Reduce I/O cost for MMM algorithms

Blocked algorithms

 \triangleright MMM is an operation with a lot of opportunities for reuse

- \blacktriangleright Each element of A is used *n* times
- Each element of B is used m times
- \blacktriangleright Each element of C is used k times
- \blacktriangleright With $\mathcal{O}(n^2)$ elements, one can perform $\mathcal{O}(n^3)$ flops
	- If all matrices fit into fast memory, amortize $\mathcal{O}(n^2)$ memops with $\mathcal{O}(n^3)$ flops
- \triangleright Work with blocks of matrices at a time, where the blocks can fit into fast memory

Building blocks of dense linear algebra

- \triangleright MMM is the bottom of the food chain
- \blacktriangleright Level-3 BLAS
- \blacktriangleright LAPACK/FLAME
- \triangleright ScaLAPACK/Elemental

Outline

- \blacktriangleright Introduction
- ► State-of-the-art MMM
	- ► Goto's Algorithm
- \blacktriangleright Lower bounds
- \blacktriangleright Algorithms
- \blacktriangleright Experiments

I/O cost of Goto's Algorithm

Reuse dictates the I/O cost for Goto's Algorithm

- \blacktriangleright Each time an element is read from main memory:
	- An element of A is reused n_c times
	- \triangleright An element of B is reused m times
	- An element of C is reused k_c times
- \triangleright Overall I/O costs of:

► A:
$$
\frac{mnk}{n_c}
$$

\n▶ B:
$$
\frac{mnk}{m}
$$

\n▶ C:
$$
\frac{mnk}{k_c}
$$

Roofline model

4 core Intel i7-7700k

Roofline model

Bandwidth to main memory: 51.2 GB/s

Bandwidth to main memory: 6.4 GB/s

Outline

- \blacktriangleright Introduction
- \triangleright State-of-the-art MMM
- \blacktriangleright Lower bounds
- \blacktriangleright Algorithms
- \blacktriangleright Experiments

I/O lower bounds

- \triangleright Theoretical minimum I/O cost for an operation
- \triangleright We want to find the greatest I/O lower bound
- \blacktriangleright Model of computation
	- \triangleright 2 layers of memory: slow and fast
	- \triangleright Slow memory has unlimited capacity
	- \blacktriangleright Fast memory has capacity S
	- \triangleright Data must be in fast memory before computing with it

Related work

- \blacktriangleright Hong and Kung (1981)
	- ► I/O lower bound: $\Omega\left(\frac{mnk}{\sqrt{5}}\right)$
- \blacktriangleright Irony, Toledo, and Tiskin (2004)
	- ► I/O lower bound: $\frac{mnk}{2\sqrt{2}\sqrt{5}}$
	- ► With a little calculus this can be improved to $\frac{mnk}{\sqrt{S}}$
- ▶ Tyler Smith, Robert van de Geijn, Bradley Lowery, and Julien Langou (2017)
	- I/O lower bound $\frac{2mnk}{\sqrt{5}}$ S
	- \triangleright Under submission at ACM TOMS

Lower bound strategy

- \triangleright Consider any algorithm for MMM
- \triangleright Break the algorithm into phases
	- \blacktriangleright Each phase has an I/O cost of exactly S 1
- If there must be at least h phases, and each phase has an I/O cost of S, the overall I/O cost must be at least Sh.
- \triangleright Determine minimum number of phases
	- \triangleright Let F be an upper bound on the multiplications during a phase
	- \blacktriangleright There are *mnk* total multiplications during MMM
	- If There must be at least $\frac{mnk}{F}$ phases
	- \triangleright Determine F based on the number of elements available
	- Each phase: 2S elements available as inputs and 2S elements available as outputs

 $^{\rm 1}$ except the last

Upper bound on elementary multiplications in a phase Irony, Toledo, and Tiskin (2004)

 \blacktriangleright Inequality from Loomis and Whitney (1949)

- In Using N_A , N_B , and N_C elements of A, B, and C
- F Using N_A , N_B , and N_C elements of A, B, and C
F Can perform at most $\sqrt{N_A N_B N_C}$ multiplications
- At most 2S elements available as inputs, and 2S elements available as outputs
	- \blacktriangleright $N_A < 2S$, $N_B < 2S$, and $N_C < 2S$
- At most $\sqrt{8S^3} = (2$ √ $\overline{2}$) $\left($ S √ $\overline{\mathcal{S}}\big)$ multiplications in a phase

► Gives an overall lower bound of $\frac{1}{2\sqrt{2}}$ $\frac{mnk}{\sqrt{5}}$

Improving the lower bound

- \triangleright Assume we perform FMAs instead of elementary multiplications
	- In an FMA, elements of A, B, and C are all inputs
	- \triangleright We can reason about the input cost of C
- \triangleright What if we generalize the I/O cost of each phase?
	- Each phase can have $S + M$ inputs and $S + M$ outputs
	- \triangleright This adds a degree of freedom to our lower bound

Upper bound on FMAs during a phase

- \blacktriangleright There are at most $S + M$ inputs
	- \blacktriangleright $N_A + N_B + N_C \leq S + M$
- \triangleright We again use the Loomis-Whitney inequality
- Maximize $\sqrt{N_A N_B N_C}$ when $N_A + N_B + N_C = S + M$
- \blacktriangleright Maximized when $N_A = N_B = N_C$
- Figure 1.1 Then our lower bound is $\frac{3\sqrt{3}Mmnk}{(S+M)\sqrt{S+M}}$ $\frac{3 \sqrt{3 N} m n \kappa}{(S+M)\sqrt{S+M}}$
- \blacktriangleright Finding the greatest lower bound
	- \blacktriangleright Maximizing over M, this occurs when $M = 2S$
	- Figure The greatest lower bound is $\frac{2mnk}{\sqrt{5}}$ S

Roofline model

Bandwidth to main memory: 51.2 GB/s Bandwidth to main memory: 6.4 GB/s

Outline

- \blacktriangleright Introduction
- \triangleright State-of-the-art MMM
- \blacktriangleright Lower bounds
- \blacktriangleright Algorithms
	- \blacktriangleright Single level of cache
	- \blacktriangleright Multiple levels of cache
- \blacktriangleright Experiments

Partition m dimension

Partition *n* dimension

Move $m_c \times n_c$ block of C into fast memory

Stream panels of A and B from slow memory

Partition *k* dimension

Move vectors into fast memory

I/O cost for Resident C

 \blacktriangleright I/O cost per block dot product:

- \blacktriangleright $C_{i,j}$: $m_c n_c$ reads and $m_c n_c$ writes.
- \blacktriangleright A_i : $m_c k$ reads.
- \blacktriangleright B_j : kn_c reads.
- \blacktriangleright Total I/O cost:
	- \triangleright C: mn reads and mn writes.

A:
$$
\frac{mnk}{n_c}
$$
 reads.

 \blacktriangleright B: $\frac{mnk}{m_c}$ reads.

Choosing blocksizes for Resident C

- If $m_c \approx n_c \approx$ √ S
- \blacktriangleright Total I/O cost:
	- \triangleright C: mn reads and mn writes.
	- A: $\frac{mnk}{\sqrt{5}}$ reads.
	- ▶ *B*: $\frac{mnk}{\sqrt{5}}$ reads.
- If m, n, k are large and we can ignore lower ordered terms
	- ► I/O cost is $\frac{2mnk}{\sqrt{5}}$ S
	- \blacktriangleright Same as lower bound

Three algorithms

Data in cache.

Data in main memory.

Resident A, B, and C algorithms in Goto's Algorithm

Algorithms for multiple levels of cache

- Suppose we have 2 levels of cache: L_2 and L_1
- \triangleright We have 3 algorithms
	- ▶ Resident A, Resident B, and Resident C
	- \blacktriangleright Each is associated with a shape of MMM
- **In Suppose we have one of those shapes at the** L_2 **level**
- \triangleright Then how do we also encounter one at the L_1 level?
	- \triangleright We can do it with two loops

Resident C at the L_2 cache

L_1 outer loop Partition *k* dimension

Resident block of L_2 cache.

L_1 outer loop Partition *k* dimension

L_1 inner loop

Partition either m or n direction

Resident block of L_2 cache.

L_1 inner loop

Partition either m or n direction

L_1 inner loop

Partition either m or n direction

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.

Resident A at the L_2 cache

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.

Resident B at the L_2 cache

Guest panel of L_2 cache.

Resident block of L_1 cache.

Families of algorithms

- \triangleright We start out with one of the three shapes at the L_h cache
- \triangleright With 2 loops, we have one of the other two shapes at the L_{h-1} cache
- \blacktriangleright Repeat the process for subsequent levels of cache
- \triangleright We name algorithms based on the resident matrix at each level of cache
	- e.g. $B_3A_2C_1$

Tradeoffs

► Blocking for L_{h-1} cache means more data must fit into L_h

- \triangleright For LRU caches, all elements used during one iteration of the L_{h-1} outer loop must fit into the L_h cache
- For ideal caches, the L_h resident matrix and L_h guest matrix must fit into the L_h cache
- \blacktriangleright This increases L_h I/O cost
	- ► Depends on the ratio between S_h and S_{h-1}

What if it's not worth optimizing for both levels of cache?

- \triangleright One option is to use smaller blocksizes for the L_{h-1} cache
- \triangleright Skipping a level of cache
	- \triangleright Optimize for the L_h and L_{h−2} caches
	- Inder the right circumstances, the L_h guest matrix can be placed in the L_{h-1} cache
	- \triangleright We can think of Goto's Algorithm as "skipping" the L_3 and L_1 caches.
		- \triangleright We can call Goto's Algorithm " A_2C_R "

Outline

- \blacktriangleright Introduction
- \triangleright State-of-the-art MMM
- \blacktriangleright Lower bounds
- \blacktriangleright Algorithms
- \blacktriangleright Experiments

Experimental setup

- \triangleright Custom-built PC with an unlocked CPU and enthusiast motherboard
- ▶ Vary BCLK, CPU multiplier, and the memory multiplier to change system characteristics
- \triangleright System Details
	- \blacktriangleright Intel i7-7700K CPU
	- \blacktriangleright 4 core
	- \blacktriangleright Hyperthreading disabled
	- \triangleright Turbomode disabled. CPU set to 4.2 GHz
- \blacktriangleright Hypothesis: If we reduce bandwidth to main memory, algorithms that better utilize the last level cache become more efficient than those that do not.

MOMMS

- \triangleright Multilevel Optimized Matrix-matrix Multiplication Sandbox
- \blacktriangleright Framework written in Rust
- \triangleright Use composition to instantiate different algorithms for MMM

Algorithms for an Intel i7-7700K

Roofline model

6.4 GB/s (1 channel of DDR4 800 RAM)

Varying bandwidth for the i7-7700K

Algorithms for an Intel i7-7700K

Different shapes of MMM

Comparing with other implementations for the i7-7700K

Conclusion

- \blacktriangleright New lower bounds
	- \triangleright We can reason about the optimality of algorithms
- \triangleright A new family of algorithms
	- \triangleright Better L3 cache utilization
	- \triangleright We know how to use further levels of the memory hierarchy (L4, out of core, etc)
- \blacktriangleright Future work
	- \blacktriangleright Parallelization
	- \triangleright Algorithms for other operations (rest of the level-3 BLAS, matrix factorizations, etc)

Thank you! Questions?

- Tyler M. Smith
- \blacktriangleright tms@cs.utexas.edu
- \triangleright MOMMS can be found at github.com/tlrmchlsmth/momms

Backup

Tradeoffs

I/O cost of Goto's Algorithm

 \blacktriangleright Let's look at the I/O cost of C

- Each element of C is involved in k flops
- \triangleright k_c flops accumulated into an element of C each time it is read and written from main memory
- \triangleright Each element of C is read and written to and from main memory $\frac{k}{k_c}$ times.
- \blacktriangleright I/O cost of $\frac{2mnk}{k_c}$
- \triangleright Can analyze I/O cost of A and B similarly
	- \blacktriangleright I/O cost of A is $\frac{mnk}{n}$
	- I/O cost of B can be amortized completely

An algorithm for an Intel i7-5775C C4A² Algorithm

Partition ^m dimension with blocksize 3600 $+$ Partition ⁿ dimension with blocksize 3600 $+$ Partition ^k dimension with blocksize 192 $+=$ Partition ^m dimension with blocksize 120 $+=\frac{8}{5}$ **XXXXXXX** Inner kernel **Block** is reused in L4 cache. Block is reused in L3 cache. $+=$ Block is reused in L2 cache.

Varying bandwidth for the i7-5775C

Comparing with other implementations for the i7-5775C

Upper bound on FMAs during a phase with $1/O$ cost S

- \triangleright Again, we will use the Loomis-Whitney Inequality
- In MMM, A , B , and C are inputs
- \blacktriangleright There are at most 2S inputs

\n- \n
$$
N_A + N_B + N_C \leq 2S
$$
\n
\n- \n $\sqrt{N_A N_B N_C} \leq \sqrt{xyz}$ for some $x, y, z \in \mathbb{R}$ \n
\n- \n $x + y + z = 2S$ \n
\n

Maximize \sqrt{xyz} under the constraint $x + y + z = 2S$

$$
\blacktriangleright x = y = z = \frac{2S}{3}
$$

- \blacktriangleright $F = \frac{2\sqrt{2}}{3\sqrt{2}}$ $\frac{2\sqrt{2}}{3\sqrt{3}}S$ √ S
- Fig. 1.5 Then our lower bound is $S\left(\frac{3\sqrt{3}}{2\sqrt{3}}\right)$ $\frac{3\sqrt{3}}{2\sqrt{2}}$ <u>mnk</u> $\frac{mnk}{5\sqrt{5}}-1\right)$

• Or:
$$
\frac{3\sqrt{3}}{2\sqrt{2}} \frac{mnk}{\sqrt{5}} - S = \frac{1.837mnk}{\sqrt{5}} - S
$$

Analysis of ATLAS

Whaley, Petitet, and Dongarra (2001)

f o r (j =0; j<N−1; j+=NB) { f o r (i =0; i <M−1; i+=NB) { f o r (p=0; p<K−1; p+=NB) { ON CHIP MATMUL(A[i : i+NB] [p : p+NB] , B[p : p+NB] [j : j+NB] , C[i : i+NB] [j : j+NB]) ; } } }

Analysis of ATLAS

Whaley, Petitet, and Dongarra (2001)

Figure 1: One step of matrix-matrix multiply

- Inner-kernel is an $n_b \times n_b \times n_b$ MMM
	- \blacktriangleright Fills the L1 cache with a square block of A or B
	- \triangleright Streams the other two matrices
- \triangleright The next inner-kernel invocation uses the same block of C, different A and B.
- Each element of A, B, and C reused in cache n_b times
- ► I/O cost for each of A, B, and C is $\frac{mnk}{\sqrt{S_1}}$
- ► Overall cost is roughly $\frac{3mnk}{\sqrt{2}}$ S_1