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Introduction

I Dense matrix-matrix multiplication (MMM)

I Goal: Reduce I/O cost for machines with hierarchical memory
I Novel contributions:

I I/O lower bounds with a tight constant 2mnk√
S

I A family of algorithms for machines with any number of levels
of memory hierarchy

I Outperform the state-of-the-art Goto’s Algorithm by 38%
when there is low bandwidth to main memory
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Problem definition

I Classical MMM
I C += AB
I C is m × n, A is m × k , and B is k × n

I Reduce I/O cost for MMM algorithms
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Hierarchical memory
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Blocked algorithms

I MMM is an operation with a lot of opportunities for reuse
I Each element of A is used n times
I Each element of B is used m times
I Each element of C is used k times

I With O(n2) elements, one can perform O(n3) flops
I If all matrices fit into fast memory, amortize O(n2) memops

with O(n3) flops

I Work with blocks of matrices at a time, where the blocks can
fit into fast memory
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Building blocks of dense linear algebra

I MMM is the bottom of the food chain

I Level-3 BLAS

I LAPACK/FLAME

I ScaLAPACK/Elemental
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I/O cost of Goto’s Algorithm

I Reuse dictates the I/O cost for Goto’s Algorithm
I Each time an element is read from main memory:

I An element of A is reused nc times
I An element of B is reused m times
I An element of C is reused kc times

I Overall I/O costs of:
I A: mnk

nc
I B: mnk

m
I C : mnk

kc
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I/O lower bounds

I Theoretical minimum I/O cost for an operation

I We want to find the greatest I/O lower bound
I Model of computation

I 2 layers of memory: slow and fast
I Slow memory has unlimited capacity
I Fast memory has capacity S
I Data must be in fast memory before computing with it
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Related work

I Hong and Kung (1981)

I I/O lower bound: Ω
(

mnk√
S

)
I Irony, Toledo, and Tiskin (2004)

I I/O lower bound: mnk
2
√

2
√
S

I With a little calculus this can be improved to mnk√
S

I Tyler Smith, Robert van de Geijn, Bradley Lowery, and Julien
Langou (2017)

I I/O lower bound 2mnk√
S

I Under submission at ACM TOMS
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Lower bound strategy

I Consider any algorithm for MMM
I Break the algorithm into phases

I Each phase has an I/O cost of exactly S 1

I If there must be at least h phases, and each phase has an I/O
cost of S , the overall I/O cost must be at least Sh.

I Determine minimum number of phases
I Let F be an upper bound on the multiplications during a phase
I There are mnk total multiplications during MMM
I There must be at least mnk

F phases
I Determine F based on the number of elements available
I Each phase: 2S elements available as inputs and 2S elements

available as outputs

1except the last
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Upper bound on elementary multiplications in a phase
Irony, Toledo, and Tiskin (2004)

I Inequality from Loomis and Whitney (1949)
I Using NA, NB , and NC elements of A, B, and C
I Can perform at most

√
NANBNC multiplications

I At most 2S elements available as inputs, and 2S elements
available as outputs

I NA ≤ 2S , NB ≤ 2S , and NC ≤ 2S

I At most
√

8S3 =
(
2
√

2
) (

S
√
S
)

multiplications in a phase

I Gives an overall lower bound of 1
2
√

2
mnk√

S
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Improving the lower bound

I Assume we perform FMAs instead of elementary
multiplications

I In an FMA, elements of A, B, and C are all inputs
I We can reason about the input cost of C

I What if we generalize the I/O cost of each phase?
I Each phase can have S + M inputs and S + M outputs
I This adds a degree of freedom to our lower bound
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Upper bound on FMAs during a phase

I There are at most S + M inputs
I NA + NB + NC ≤ S + M

I We again use the Loomis-Whitney inequality

I Maximize
√
NANBNC when NA + NB + NC = S + M

I Maximized when NA = NB = NC

I Then our lower bound is 3
√

3Mmnk
(S+M)

√
S+M

I Finding the greatest lower bound
I Maximizing over M, this occurs when M = 2S
I The greatest lower bound is 2mnk√

S
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Resident C

+= AC B
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Resident C
Partition m dimension

+=
mc
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Resident C
Partition n dimension

+=
mc

nc
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Resident C
Move mc × nc block of C into fast memory

+=
mc

nc
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Resident C
Stream panels of A and B from slow memory

+=
mc

nc
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Resident C
Partition k dimension

+=
mc

nc 1
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Resident C
Move vectors into fast memory

+=
mc

nc 1
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I/O cost for Resident C

+=mc

nc 1

I I/O cost per block dot product:
I Ci,j : mcnc reads and mcnc writes.
I Ai : mck reads.
I Bj : knc reads.

I Total I/O cost:
I C : mn reads and mn writes.
I A: mnk

nc
reads.

I B: mnk
mc

reads.
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Choosing blocksizes for Resident C

+=
√
S

√
S 1

I If mc ≈ nc ≈
√
S

I Total I/O cost:
I C : mn reads and mn writes.
I A: mnk√

S
reads.

I B: mnk√
S

reads.

I If m, n, k are large and we can ignore lower ordered terms
I I/O cost is 2mnk√

S
I Same as lower bound
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Three algorithms

Resident C

Resident B

Resident A

+=

+=

+=

Data in cache.

Data in main memory.
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Resident A, B, and C algorithms in Goto’s Algorithm
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Algorithms for multiple levels of cache

I Suppose we have 2 levels of cache: L2 and L1

I We have 3 algorithms
I Resident A, Resident B, and Resident C
I Each is associated with a shape of MMM

I Suppose we have one of those shapes at the L2 level
I Then how do we also encounter one at the L1 level?

I We can do it with two loops
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Resident C at the L2 cache

+=

Resident block of L2 cache.
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L1 outer loop
Partition k dimension

+=

Resident block of L2 cache.
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L1 outer loop
Partition k dimension

+= +=

Resident block of L2 cache.
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L1 inner loop
Partition either m or n direction

+=

+=

+=

Resident block of L2 cache.
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L1 inner loop
Partition either m or n direction

+=

+= +=

+= +=

Resident block of L2 cache.

Resident block of L1 cache.
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L1 inner loop
Partition either m or n direction

+=

+= +=

+= +=

Resident block of L2 cache.

Guest panel of L2 cache.

Resident block of L1 cache.
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Resident A at the L2 cache

+=

+= +=

+= +=

Resident block of L2 cache.

Guest panel of L2 cache.

Resident block of L1 cache.
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Resident B at the L2 cache

+=

+= +=

+= +=

Resident block of L2 cache.

Guest panel of L2 cache.

Resident block of L1 cache.
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Families of algorithms

I We start out with one of the three shapes at the Lh cache

I With 2 loops, we have one of the other two shapes at the
Lh−1 cache

I Repeat the process for subsequent levels of cache
I We name algorithms based on the resident matrix at each

level of cache
I e.g. B3A2C1
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Tradeoffs

+=

I Blocking for Lh−1 cache means more data must fit into Lh
I For LRU caches, all elements used during one iteration of the

Lh−1 outer loop must fit into the Lh cache

I For ideal caches, the Lh resident matrix and Lh guest matrix
must fit into the Lh cache

I This increases Lh I/O cost
I Depends on the ratio between Sh and Sh−1
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What if it’s not worth optimizing for both levels of cache?

I One option is to use smaller blocksizes for the Lh−1 cache
I Skipping a level of cache

I Optimize for the Lh and Lh−2 caches
I Under the right circumstances, the Lh guest matrix can be

placed in the Lh−1 cache
I We can think of Goto’s Algorithm as “skipping” the L3 and L1

caches.
I We can call Goto’s Algorithm “A2CR”
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Experimental setup

I Custom-built PC with an unlocked CPU and enthusiast
motherboard

I Vary BCLK, CPU multiplier, and the memory multiplier to
change system characteristics

I System Details
I Intel i7-7700K CPU
I 4 core
I Hyperthreading disabled
I Turbomode disabled, CPU set to 4.2 GHz

I Hypothesis: If we reduce bandwidth to main memory,
algorithms that better utilize the last level cache become more
efficient than those that do not.
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MOMMS

I Multilevel Optimized Matrix-matrix Multiplication Sandbox

I Framework written in Rust

I Use composition to instantiate different algorithms for MMM
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Algorithms for an Intel i7-7700K
B3A2 Algorithm Goto’s Algorithm

+=

+=

+=

+=

+=

Partition n with blocksize 768

Partition k with blocksize 768

Partition m with blocksize 120

Partition k with blocksize 192

Inner kernel

+=

+=

+=

+=

Partition n with blocksize 3000

Partition k with blocksize 192

Partition m with blocksize 120

Inner kernel

Block is reused in L3 cache.

Block is reused in L2 cache.
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Varying bandwidth for the i7-7700K
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Algorithms for an Intel i7-7700K
A3B2 Algorithm C3A2 Algorithm
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+=

+=

+=

+=

Partition m with blocksize 768

Partition k with blocksize 768

Partition n with blocksize 120

Partition k with blocksize 192

Inner kernel

+=

+=

+=

+=

+=

Partition n dimension with blocksize 624

Partition m dimension with blocksize 624

Partition k dimension with blocksize 156

Partition m dimension with blocksize 156

inner kernel

Block is reused in L3 cache.

Block is reused in L2 cache.
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Different shapes of MMM
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Comparing with other implementations for the i7-7700K
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Conclusion

I New lower bounds
I We can reason about the optimality of algorithms

I A new family of algorithms
I Better L3 cache utilization
I We know how to use further levels of the memory hierarchy

(L4, out of core, etc)

I Future work
I Parallelization
I Algorithms for other operations (rest of the level-3 BLAS,

matrix factorizations, etc)
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Thank you!
Questions?

I Tyler M. Smith

I tms@cs.utexas.edu

I MOMMS can be found at github.com/tlrmchlsmth/momms
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Backup
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Tradeoffs
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I/O cost of Goto’s Algorithm

I Let’s look at the I/O cost of C
I Each element of C is involved in k flops
I kc flops accumulated into an element of C each time it is read

and written from main memory
I Each element of C is read and written to and from main

memory k
kc

times.

I I/O cost of 2mnk
kc

I Can analyze I/O cost of A and B similarly
I I/O cost of A is mnk

nc
I I/O cost of B can be amortized completely
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An algorithm for an Intel i7-5775C
C4A2 Algorithm

+=

+=

+=

+=

+=

Partition m dimension with blocksize 3600

Partition n dimension with blocksize 3600

Partition k dimension with blocksize 192

Partition m dimension with blocksize 120

Inner kernel Block is reused in L4 cache.

Block is reused in L3 cache.

Block is reused in L2 cache.
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Varying bandwidth for the i7-5775C
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Comparing with other implementations for the i7-5775C
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Upper bound on FMAs during a phase with I/O cost S

I Again, we will use the Loomis-Whitney Inequality

I In MMM, A, B, and C are inputs
I There are at most 2S inputs

I NA + NB + NC ≤ 2S
I
√
NANBNC ≤

√
xyz for some x , y , z ∈ R

I x + y + z = 2S

I Maximize
√
xyz under the constraint x + y + z = 2S

I x = y = z = 2S
3

I F = 2
√

2
3
√

3
S
√
S

I Then our lower bound is S
(

3
√

3
2
√

2
mnk
S
√
S
− 1

)
I Or: 3

√
3

2
√

2
mnk√

S
− S = 1.837mnk√

S
− S
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Analysis of ATLAS
Whaley, Petitet, and Dongarra (2001)

f o r ( j =0; j<N−1; j+=NB )
{

f o r ( i =0; i<M−1; i+=NB )
{

f o r ( p=0; p<K−1; p+=NB )
{

ON CHIP MATMUL( A[ i : i+NB ] [ p : p+NB] ,
B[ p : p+NB ] [ j : j+NB] , C [ i : i+NB ] [ j : j+NB] ) ;

}
}

}
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Analysis of ATLAS
Whaley, Petitet, and Dongarra (2001)

I Inner-kernel is an nb × nb × nb MMM
I Fills the L1 cache with a square block of A or B
I Streams the other two matrices

I The next inner-kernel invocation uses the same block of C ,
different A and B.

I Each element of A, B, and C reused in cache nb times
I I/O cost for each of A, B, and C is mnk√

S1

I Overall cost is roughly 3mnk√
S1
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