I/O Lower Bounds and Algorithms for Matrix-Matrix Multiplication Tyler M. Smith

July 5, 2017

Introduction

- Dense matrix-matrix multiplication (MMM)
- ► Goal: Reduce I/O cost for machines with hierarchical memory
- Novel contributions:
 - ► I/O lower bounds with a tight constant $\frac{2mnk}{\sqrt{5}}$
 - A family of algorithms for machines with any number of levels of memory hierarchy
 - Outperform the state-of-the-art Goto's Algorithm by 38% when there is low bandwidth to main memory

Problem definition

Classical MMM

- ► *C* += *AB*
- C is $m \times n$, A is $m \times k$, and B is $k \times n$
- Reduce I/O cost for MMM algorithms

Hierarchical memory

Blocked algorithms

MMM is an operation with a lot of opportunities for reuse

- Each element of A is used n times
- Each element of B is used m times
- Each element of C is used k times
- With $\mathcal{O}(n^2)$ elements, one can perform $\mathcal{O}(n^3)$ flops
 - ► If all matrices fit into fast memory, amortize O(n²) memops with O(n³) flops
- Work with blocks of matrices at a time, where the blocks can fit into fast memory

Building blocks of dense linear algebra

- MMM is the bottom of the food chain
- Level-3 BLAS
- LAPACK/FLAME
- ScaLAPACK/Elemental

Outline

- Introduction
- State-of-the-art MMM
 - Goto's Algorithm
- Lower bounds
- Algorithms
- Experiments

I/O cost of Goto's Algorithm

Reuse dictates the I/O cost for Goto's Algorithm

- Each time an element is read from main memory:
 - An element of A is reused n_c times
 - An element of B is reused m times
 - An element of C is reused k_c times
- Overall I/O costs of:

$$A: \frac{mnk}{n_c}$$

$$B: \frac{mnk}{m}$$

$$C: \frac{mnk}{k_c}$$

Roofline model

4 core Intel i7-7700k

Roofline model

Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- Algorithms
- Experiments

I/O lower bounds

- Theoretical minimum I/O cost for an operation
- We want to find the greatest I/O lower bound
- Model of computation
 - 2 layers of memory: slow and fast
 - Slow memory has unlimited capacity
 - Fast memory has capacity S
 - Data must be in fast memory before computing with it

Related work

- Hong and Kung (1981)
 - I/O lower bound: $\Omega\left(\frac{mnk}{\sqrt{S}}\right)$
- Irony, Toledo, and Tiskin (2004)
 - ► I/O lower bound: $\frac{mnk}{2\sqrt{2}\sqrt{5}}$
 - With a little calculus this can be improved to $\frac{mnk}{\sqrt{5}}$
- Tyler Smith, Robert van de Geijn, Bradley Lowery, and Julien Langou (2017)
 - ▶ I/O lower bound $\frac{2mnk}{\sqrt{s}}$
 - Under submission at ACM TOMS

Lower bound strategy

- Consider any algorithm for MMM
- Break the algorithm into phases
 - Each phase has an I/O cost of exactly S 1
- If there must be at least h phases, and each phase has an I/O cost of S, the overall I/O cost must be at least Sh.
- Determine minimum number of phases
 - Let *F* be an upper bound on the multiplications during a phase
 - There are mnk total multiplications during MMM
 - There must be at least $\frac{mnk}{F}$ phases
 - Determine F based on the number of elements available
 - ► Each phase: 2*S* elements available as inputs and 2*S* elements available as outputs

¹except the last

Upper bound on elementary multiplications in a phase Irony, Toledo, and Tiskin (2004)

- Inequality from Loomis and Whitney (1949)
 - Using N_A , N_B , and N_C elements of A, B, and C
 - Can perform at most $\sqrt{N_A N_B N_C}$ multiplications
- At most 2S elements available as inputs, and 2S elements available as outputs
 - $N_A \leq 2S$, $N_B \leq 2S$, and $N_C \leq 2S$
- At most $\sqrt{8S^3} = (2\sqrt{2})(S\sqrt{S})$ multiplications in a phase
- Gives an overall lower bound of $\frac{1}{2\sqrt{2}} \frac{mnk}{\sqrt{5}}$

Improving the lower bound

- Assume we perform FMAs instead of elementary multiplications
 - ▶ In an FMA, elements of A, B, and C are all inputs
 - We can reason about the input cost of C
- What if we generalize the I/O cost of each phase?
 - Each phase can have S + M inputs and S + M outputs
 - This adds a degree of freedom to our lower bound

Upper bound on FMAs during a phase

- There are at most S + M inputs
 - $\blacktriangleright N_A + N_B + N_C \le S + M$
- We again use the Loomis-Whitney inequality
- Maximize $\sqrt{N_A N_B N_C}$ when $N_A + N_B + N_C = S + M$
- Maximized when $N_A = N_B = N_C$
- Then our lower bound is $\frac{3\sqrt{3}Mmnk}{(S+M)\sqrt{S+M}}$
- Finding the greatest lower bound
 - Maximizing over M, this occurs when M = 2S
 - The greatest lower bound is $\frac{2mnk}{\sqrt{5}}$

Roofline model

Bandwidth to main memory: 51.2 GB/s

Bandwidth to main memory: 6.4 GB/s

Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- Algorithms
 - Single level of cache
 - Multiple levels of cache
- Experiments

Partition *m* dimension

Partition *n* dimension

Move $m_c \times n_c$ block of C into fast memory

Stream panels of A and B from slow memory

Partition k dimension

Move vectors into fast memory

$\rm I/O$ cost for Resident C

- I/O cost per block dot product:
 - $C_{i,j}$: $m_c n_c$ reads and $m_c n_c$ writes.
 - A_i : $m_c k$ reads.
 - ► B_j: kn_c reads.
- Total I/O cost:
 - C: mn reads and mn writes.
 - A: $\frac{mnk}{n_c}$ reads.
 - B: $\frac{mnk}{m_c}$ reads.

Choosing blocksizes for Resident C

- If $m_c \approx n_c \approx \sqrt{S}$
- Total I/O cost:
 - C: mn reads and mn writes.

• A:
$$\frac{mnk}{\sqrt{S}}$$
 reads.

- B: $\frac{mnk}{\sqrt{S}}$ reads.
- ▶ If *m*, *n*, *k* are large and we can ignore lower ordered terms
 - ► I/O cost is $\frac{2mnk}{\sqrt{5}}$
 - Same as lower bound

Three algorithms

Data in cache.

Data in main memory.

Resident A, B, and C algorithms in Goto's Algorithm

Algorithms for multiple levels of cache

- Suppose we have 2 levels of cache: L₂ and L₁
- We have 3 algorithms
 - Resident A, Resident B, and Resident C
 - Each is associated with a shape of MMM
- ▶ Suppose we have one of those shapes at the L₂ level
- ▶ Then how do we also encounter one at the L₁ level?
 - We can do it with two loops

Resident C at the L_2 cache

Resident block of L_2 cache.

L₁ outer loop Partition *k* dimension

Resident block of L_2 cache.

L₁ outer loop Partition *k* dimension

L_1 inner loop

Partition either m or n direction

Resident block of L_2 cache.

L_1 inner loop

Partition either m or n direction

L_1 inner loop

Partition either m or n direction

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.

Resident A at the L_2 cache

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.

Resident B at the L_2 cache

Resident block of L_2 cache.

Guest panel of L_2 cache.

Resident block of L_1 cache.

Families of algorithms

- ▶ We start out with one of the three shapes at the L_h cache
- ▶ With 2 loops, we have one of the other two shapes at the L_{h-1} cache
- Repeat the process for subsequent levels of cache
- We name algorithms based on the resident matrix at each level of cache
 - ▶ e.g. *B*₃*A*₂*C*₁

Tradeoffs

- Blocking for L_{h-1} cache means more data must fit into L_h
- ► For LRU caches, all elements used during one iteration of the L_{h-1} outer loop must fit into the L_h cache
- For ideal caches, the L_h resident matrix and L_h guest matrix must fit into the L_h cache
- This increases $L_h I/O$ cost
 - Depends on the ratio between S_h and S_{h-1}

What if it's not worth optimizing for both levels of cache?

- One option is to use smaller blocksizes for the L_{h-1} cache
- Skipping a level of cache
 - Optimize for the L_h and L_{h-2} caches
 - ► Under the right circumstances, the L_h guest matrix can be placed in the L_{h-1} cache
 - ▶ We can think of Goto's Algorithm as "skipping" the L₃ and L₁ caches.
 - We can call Goto's Algorithm " $A_2 C_R$ "

Outline

- Introduction
- State-of-the-art MMM
- Lower bounds
- Algorithms
- Experiments

Experimental setup

- Custom-built PC with an unlocked CPU and enthusiast motherboard
- Vary BCLK, CPU multiplier, and the memory multiplier to change system characteristics
- System Details
 - Intel i7-7700K CPU
 - 4 core
 - Hyperthreading disabled
 - Turbomode disabled, CPU set to 4.2 GHz
- Hypothesis: If we reduce bandwidth to main memory, algorithms that better utilize the last level cache become more efficient than those that do not.

MOMMS

- Multilevel Optimized Matrix-matrix Multiplication Sandbox
- Framework written in Rust
- Use composition to instantiate different algorithms for MMM

Algorithms for an Intel i7-7700K

Roofline model

Varying bandwidth for the i7-7700K

Algorithms for an Intel i7-7700K

Different shapes of MMM

Comparing with other implementations for the i7-7700K

Conclusion

- New lower bounds
 - We can reason about the optimality of algorithms
- A new family of algorithms
 - Better L3 cache utilization
 - We know how to use further levels of the memory hierarchy (L4, out of core, etc)
- Future work
 - Parallelization
 - Algorithms for other operations (rest of the level-3 BLAS, matrix factorizations, etc)

Thank you! Questions?

- Tyler M. Smith
- tms@cs.utexas.edu
- MOMMS can be found at github.com/tlrmchlsmth/momms

Backup

Tradeoffs

I/O cost of Goto's Algorithm

Let's look at the I/O cost of C

- Each element of C is involved in k flops
- \triangleright k_c flops accumulated into an element of C each time it is read and written from main memory
- Each element of C is read and written to and from main memory $\frac{k}{k}$ times.
- ► I/O cost of $\frac{2mnk}{k_c}$
- Can analyze I/O cost of A and B similarly

 - I/O cost of A is mnk/n_c
 I/O cost of B can be amortized completely

An algorithm for an Intel i7-5775C C_4A_2 Algorithm

Partition m dimension with blocksize 3600

Varying bandwidth for the i7-5775C

Comparing with other implementations for the i7-5775C

Upper bound on FMAs during a phase with $I/O \cos S$

- Again, we will use the Loomis-Whitney Inequality
- ▶ In MMM, A, B, and C are inputs
- ▶ There are at most 2*S* inputs

▶
$$N_A + N_B + N_C \le 2S$$

▶ $\sqrt{N_A N_B N_C} \le \sqrt{xyz}$ for some $x, y, z \in \mathbb{R}$
▶ $x + y + z = 2S$

• Maximize \sqrt{xyz} under the constraint x + y + z = 2S

▶
$$x = y = z = \frac{25}{3}$$

- $F = \frac{2\sqrt{2}}{3\sqrt{3}}S\sqrt{S}$
- Then our lower bound is $S\left(\frac{3\sqrt{3}}{2\sqrt{2}}\frac{mnk}{S\sqrt{5}}-1\right)$

• Or:
$$\frac{3\sqrt{3}}{2\sqrt{2}}\frac{mnk}{\sqrt{5}} - S = \frac{1.837mnk}{\sqrt{5}} - S$$

Analysis of ATLAS Whaley, Petitet, and Dongarra (2001)

Analysis of ATLAS

Whalev. Petitet. and Dongarra (2001)

Figure 1: One step of matrix-matrix multiply

- Inner-kernel is an $n_b \times n_b \times n_b$ MMM
 - Fills the L1 cache with a square block of A or B
 - Streams the other two matrices
- ► The next inner-kernel invocation uses the same block of C, different A and B.
- Each element of A, B, and C reused in cache n_b times
- ► I/O cost for each of A, B, and C is $\frac{mnk}{\sqrt{S_1}}$
- Overall cost is roughly $\frac{3mnk}{\sqrt{S_1}}$