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Introduction

» Dense matrix-matrix multiplication (MMM)
» Goal: Reduce I/O cost for machines with hierarchical memory

> Novel contributions:
» 1/O lower bounds with a tight constant
» A family of algorithms for machines with any number of levels

of memory hierarchy
» Outperform the state-of-the-art Goto's Algorithm by 38%
when there is low bandwidth to main memory

2mnk
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Problem definition

» Classical MMM
» C+=AB
» Cismxn, Aismx k,and Bis k X n

> Reduce I/O cost for MMM algorithms
n k
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Hierarchical memory

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory
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Blocked algorithms

» MMM is an operation with a lot of opportunities for reuse

» Each element of A is used n times
» Each element of B is used m times
» Each element of C is used k times

» With O(n?) elements, one can perform O(n3%) flops
> If all matrices fit into fast memory, amortize O(n?) memops
with O(n?) flops
» Work with blocks of matrices at a time, where the blocks can
fit into fast memory
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Building blocks of dense linear algebra

» MMM is the bottom of the food chain
Level-3 BLAS

LAPACK/FLAME
ScaLAPACK/Elemental

v

v

v
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Goto's Algorithm
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Goto's Algorithm
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Goto's Algorithm
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Goto's Algorithm
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|/O cost of Goto's Algorithm

» Reuse dictates the |/O cost for Goto's Algorithm
» Each time an element is read from main memory:

» An element of A is reused n. times
» An element of B is reused m times
» An element of C is reused k. times

» Overall 1/O costs of:
> A mok

ne
» B: mnk
m

. mnk
» G 12
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Roofline model

4 core Intel i7-7700k
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Roofline model

Bandwidth to main memory: 51.2 GB/s Bandwidth to main memory: 6.4 GB/s
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1/O lower bounds

» Theoretical minimum 1/O cost for an operation

» We want to find the greatest |/O lower bound
» Model of computation
> 2 layers of memory: slow and fast
Slow memory has unlimited capacity
Fast memory has capacity S
Data must be in fast memory before computing with it

v vy
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Related work

» Hong and Kung (1981)

» 1/0 lower bound: Q (’"—\}%‘)

» lIrony, Toledo, and Tiskin (2004)

> 1/O lower bound: 2\'}75"\"/5

» With a little calculus this can be improved to

mnk

NG
» Tyler Smith, Robert van de Geijn, Bradley Lowery, and Julien
Langou (2017)
» 1/0 lower bound 2’"’;"
» Under submission at ACM TOMS
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Lower bound strategy

v

v

v

v

Consider any algorithm for MMM

Break the algorithm into phases

>

Each phase has an 1/O cost of exactly S'?

If there must be at least h phases, and each phase has an 1/0
cost of S, the overall /O cost must be at least Sh.
Determine minimum number of phases

| 4

vV vy vy

Let F be an upper bound on the multiplications during a phase
There are mnk total multiplications during MMM

There must be at least mf”k phases

Determine F based on the number of elements available

Each phase: 25 elements available as inputs and 25 elements

available as outputs

1

except the last
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Upper bound on elementary multiplications in a phase
Irony, Toledo, and Tiskin (2004)

v

Inequality from Loomis and Whitney (1949)

» Using N4, Ng, and N¢ elements of A, B, and C

» Can perform at most v/NaNgNc¢ multiplications
At most 25 elements available as inputs, and 2S5 elements
available as outputs

> NA < 25, NB < 25, and NC < 2S

At most V853 = (2\@) (S\@) multiplications in a phase

. 1 mnk
» Gives an overall lower bound of —=
2\/5 \/§

v

v
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Improving the lower bound

> Assume we perform FMAs instead of elementary
multiplications

> In an FMA, elements of A, B, and C are all inputs
» We can reason about the input cost of C

» What if we generalize the /0O cost of each phase?

» Each phase can have S + M inputs and S + M outputs
» This adds a degree of freedom to our lower bound
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Upper bound on FMAs during a phase

v

There are at most S + M inputs
» Na+ Ng+Ne <S+ M

» We again use the Loomis-Whitney inequality
Maximize VNasNgN¢c when Ny + Ng + Ne =S+ M

Maximized when Ng = Ng = N¢
3v3Mmnk
(S+M)VS+M

Finding the greatest lower bound

v

v

v

Then our lower bound is

v

» Maximizing over M, this occurs when M = 25§

'« 2mnk
» The greatest lower bound is NG
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Roofline model

Bandwidth to main memory: 51.2 GB/s Bandwidth to main memory: 6.4 GB/s
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Resident C
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Resident C

Partition m dimension

mc{
_|__
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Resident C

Partition n dimension

Nc

mc{
_|__
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Resident C

Move mc x nc block of C into fast memory

Ne

|
_|__
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Resident C

Stream panels of A and B from slow memory

Ne

|
_|__
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Resident C

Partition k dimension

ne

|
_|__
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Resident C

Move vectors into fast memory

Nc 1

|
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|/O cost for Resident C

n 1

(il += (T

» 1/0O cost per block dot product:
» Cij: mcnc reads and mcnc writes.
> A;: mck reads.
» Bj: kn. reads.

» Total 1/O cost:

» C: mn reads and mn writes.
» A 1K reads.

Ne

» B: M7k reads.

mc
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Choosing blocksizes for Resident C

> If me =~ n.~+VS
» Total /O cost:

» C: mn reads and mn writes.

> A: ’:’/”Ek reads.
» B: m—\/’%‘ reads.

» If m, n, k are large and we can ignore lower ordered terms
s 2mnk
|
[/O cost is e
» Same as lower bound
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Three algorithms

Resident C

Resident B % += j

Resident A (T — j 11 AERARRERRN

. Data in cache.
I:' Data in main memory.
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Resident A, B, and C algorithms in Goto's Algorithm

[ s toop around microkernel |
5t loop around kernel

Pack A, — A,

1 H - - - Resident A

Resident C
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Algorithms for multiple levels of cache

v

Suppose we have 2 levels of cache: L, and L

v

We have 3 algorithms

» Resident A, Resident B, and Resident C
» Each is associated with a shape of MMM

v

Suppose we have one of those shapes at the L, level

v

Then how do we also encounter one at the Li level?
» We can do it with two loops
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Resident C at the L, cache

Resident block of L, cache.
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L1 outer loop

Partition k dimension

Resident block of L, cache.
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L1 outer loop

Partition k dimension

Resident block of L, cache.
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L1 inner loop

Partition either m or n direction

Resident block of L, cache.
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L1 inner loop

Partition either m or n direction

+= HI:IH L —

= Jm —— 1] += [ |m

Resident block of L, cache.
. Resident block of L; cache.
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L1 inner loop

Partition either m or n direction

flmm ] - []m

Resident block of L, cache.
I:I Guest panel of Ly cache.
. Resident block of L; cache.

+= HI:H += BT
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Resident A at the L, cache

g+

]+

Resident block of L, cache.
D Guest panel of Ly cache.
. Resident block of L; cache.

45 /69



Resident B at the L, cache

O += 23

— l += |:|

= += IO 1 += WEET

Resident block of L, cache.
D Guest panel of Ly cache.
. Resident block of L; cache.
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Families of algorithms

v

We start out with one of the three shapes at the Lj cache

v

With 2 loops, we have one of the other two shapes at the
Lp_1 cache

v

Repeat the process for subsequent levels of cache

We name algorithms based on the resident matrix at each
level of cache

> e.g. B3A2 Cl

v
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Tradeoffs

//////

» Blocking for L,_; cache means more data must fit into Ly

» For LRU caches, all elements used during one iteration of the
Lp_1 outer loop must fit into the Lj cache
> For ideal caches, the L resident matrix and Lj guest matrix
must fit into the L}, cache
» This increases L 1/O cost
» Depends on the ratio between S, and S,_1
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What if it's not worth optimizing for both levels of cache?

» One option is to use smaller blocksizes for the L,_; cache

» Skipping a level of cache
» Optimize for the L, and Ly_» caches
» Under the right circumstances, the L, guest matrix can be
placed in the L,_; cache
» We can think of Goto's Algorithm as “skipping” the L3 and L;
caches.
» We can call Goto's Algorithm “AxCgr"
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Experimental setup

» Custom-built PC with an unlocked CPU and enthusiast
motherboard

» Vary BCLK, CPU multiplier, and the memory multiplier to
change system characteristics
> System Details
Intel i7-7700K CPU
> 4 core
» Hyperthreading disabled
» Turbomode disabled, CPU set to 4.2 GHz
» Hypothesis: If we reduce bandwidth to main memory,
algorithms that better utilize the last level cache become more
efficient than those that do not.

v
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MOMMS

» Multilevel Optimized Matrix-matrix Multiplication Sandbox
» Framework written in Rust

» Use composition to instantiate different algorithms for MMM

52 /69



Algorithms for an Intel i7-7700K

B3A; Algorithm Goto's Algorithm
Partition n with blocksize 768 Partition n with blocksize 3000
4= 4=
Partition k with blocksize 768 Partition k with blocksize 192
— 7
77
77
4= +=
— — Block is reused in L3 cache.
iti i i Partiti ith blocksize 12
Partition m with blocksize 120 artition m with blocksize 120 E:I Block is reused in L2 cache.
+= I ]
o) =] ]
Inner kernel Inner kernel

777777

7777 77777
2777777777

7
777777
222227
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Roofline model

51.2 GB/s (2 channels of DDR4 3200 RAM)

6.4 GB/s (1 channel of DDR4 800 RAM)
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Varying bandwidth for the i7-7700K
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Algorithms for an Intel i7-7700K

A3zB, Algorithm C3A; Algorithm
Partition m with blocksize 768 Partition n dimension with blocksize 624
+= +=
Partition k with blocksize 768 Partition m dimension with blocksize 624
] —
77
77
| | = ] =
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— — Block is reused in L3 cache.
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Different shapes of MMM
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Comparing with other implementations for the i7-7700K
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Conclusion

» New lower bounds
» We can reason about the optimality of algorithms
> A new family of algorithms
» Better L3 cache utilization
» We know how to use further levels of the memory hierarchy
(L4, out of core, etc)
> Future work
> Parallelization
» Algorithms for other operations (rest of the level-3 BLAS,
matrix factorizations, etc)
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Thank you!

Questions?

> Tyler M. Smith

> tms@cs.utexas.edu
» MOMMS can be found at github.com/tlrmchlsmth/momms
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Backup
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Tradeoffs

Relative 1/0 cost

1/O cost relative to lower bound for different scenarios
4

—— LRU Ly, optimizing for Ly and Lp_1.
- - - Best case optimizing for L, and Lj_;.

Blocking for only Lj_j.

25)
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|/O cost of Goto's Algorithm

> Let's look at the 1/O cost of C

>

>

Each element of C is involved in k flops

k. flops accumulated into an element of C each time it is read
and written from main memory

Each element of C is read and written to and from main
memory k% times.

[/O cost of %

analyze 1/0 cost of A and B similarly

[/O cost of Ais T2%
[/O cost of B can be amortized completely
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An algorithm for an Intel i7-5775C
C4 Az Algorithm

Partition m dimension with blocksize 3600

+=

Partition n dimension with blocksize 3600

Partition k dimension with blocksize 192

+=

Partition m dimension with blocksize 120

|

Inner kernel D Block is reused in L4 cache.
777777777777

Z Block is reused in L3 cache.
5555555555550
1020002200500 . .
[7] Block is reused in L2 cache.
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Varying bandwidth for the i7-5775C
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Comparing with other implementations for the i7-5775C
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Upper bound on FMAs during a phase with 1/0 cost S

> Again, we will use the Loomis-Whitney Inequality

In MMM, A, B, and C are inputs

There are at most 2S5 inputs
» Na+ Ng+ Nc <25
» VNaNgN¢c < /xyz for some x,y,z € R
» x+y+z=25

Maximize \/xyz under the constraint x +y +z = 2§

> X:y:Z:é

3
_ V2

F = 3\/55\@

Then our lower bound is S (ﬁ mnk _ 1)

2v/25Vs

. 3vV3mnk ¢ _ 1.837mnk _
Or: NN S = NG

v

v

v

v

v

V)

v
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Analysis of ATLAS

Whaley, Petitet, and Dongarra (2001)

for( j=0; j<N-1; j+=NB )

for( i=0; i<M-1; i+=\B )

{
for( p=0; p<K—1; p+=N\B )
ON_CHIP.MATMUL( A[i:i+NB][p:p+NB],
, Blp:pNB][j:j+NB], C[i:i+NB]J[j:j+NB] );
}
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Analysis of ATLAS

Whaley, Petitet, and Dongarra (2001)

N K
A.'
B1,2
M C — M A e B_ B K
A, 1|:43,2| 2,2
B2

Figure 1: One step of matrix-matrix multiply

v

Inner-kernel is an np x np x np MMM
» Fills the L1 cache with a square block of A or B
» Streams the other two matrices
The next inner-kernel invocation uses the same block of C,
different A and B.
Each element of A, B, and C reused in cache np times

‘o mnk
I/O cost for each of A, B, and C is NGy
3mnk

NS

v

v

v

v

Overall cost is roughly
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