Mixing domains and precisions
in BLIS: Initial thoughts

Field G. Van Zee

Science of High Performance Computing
The University of Texas at Austin

The Problem

gemm
— C:=fC+adFR

Let’s simplify by omitting scalars

— C:=C+A4F

Recall: BLAS requires A, B, and C to be stored as the
same datatype (precision and domain)

— single real, double real, single complex, double complex
What if we could lift this constraint?

The Precedent

gemm

— C:=fC+aAdl

BLAS requires

— A, B, and C to be column-stored
CBLAS requires

— A, B, and C to be column-stored, OR...
— A, B, and C to be row-stored

BLIS allows

— Each of {A, B, C} to be column-stored, row-stored, or stored
with general stride (like tensors)

Bottom line: we’ve already solved a similar combinatoric
problem

A closer look

e gemm
— (C:=CH+AF
e What do we want?

— To allow A, B, or C to be stored as any supported
datatype (storage datatype)

* Actually we want more than that

— To allow the A*B to be performed in a precision
different (potentially) than the storage precision of
either A or B (computation precision)

— Potentially same for domain (computation domain)

Combinatoric Analysis

* Each of the three operands may be stored as
one of t storage datatypes

* Assuming two domains, the operation may be
computed in one of t/2 precisions.

* Total number of possible cases to implement
— In general: N=(¢/2)t73 = tT4 /2
— For BLIS (currently): /=4 /2)473 =128
— Notice that BLAS implements only 4/128

Combinatoric Analysis

e ssss, sssd, ssds, ssdd, sscs, sscd, ... zzzs, zzzd.

e But wait! We don’t need to implement them
all... do we?

— Okay, which ones do we omit?

* We must implement all cases because we can
only identify cases that are currently useful to
one or more parties, not cases that will never
be useful to any party.

Combinatoric Analysis

 What about the other gemm parameters?

— Each of three operands can be stored according to
one of three storage formats: 373

— A and B can take one of four conjugation/
transposition arguments: 2 74

e Total:
— N=(4/2)413 313 -2 14 =55,296

Combinatoric Analysis

 What if we hypothetically add a precision?
— Ex: half-precision real; half-precision complex

* Total number of datatype cases to implement
— N=(6/2)613 =648

 When combined with storage, conjugation/
transposition parameters

— N=(6,2)613 313214 =279,936

Combinatoric Analysis

* Don’t try that with auto code generation!

The Path Forward

* So...
— 128 datatype cases (for gemm)
— 55,296 total uses cases

* How will we tackle this with BLIS?

The Path Ferward Behind Us

* So...
— 128 datatype cases (for gemm)
— 55,296 total uses cases

 How wiH did we tackle this with BLIS?
e Surprise! It’s already done

— How much? All of it (for gemm)

Mixed domain+precision

* You must have been working at this non-stop for
months!
— 14 calendar days for mixed domain (June 1 —June 14)

— 14 calendar days for mixed precision, and mixed
domain+precision (June 15 — June 28)

— That includes retrofitting testsuite to test all cases

— And no, I’'m not a laser-focused robot
| sleep and take weekends off

| go to PhD dissertation defenses

| help others in our group at UT
| help others on GitHub

Mixed domain+precision

e Surely this must have exploded BLIS source!

— No.

Source code (framework) Total size (KB)
BLIS pre-mixed dt 148,646 4,699

BLIS post-mixed dt 153,071 (+4,425) 4,840 (+141)

Source code (testsuite) Total lines Total size (KB)

BLIS pre-mixed dt 22,816 678

BLIS post-mixed dt 23,928 (+1,112) 710 (+32)

Mixed domain+precision

* Okay, what about the object code footprint?
— Not really:

BLIS library size (KB) Static library | Shared library | Statically-linked
testsuite

BLIS pre-mixed dt 3,138 2,285 1,631

BLIS post-mixed dt (disabled) 3,142 (+4) 2,285 (+0) 1,661 (+30)

BLIS post-mixed dt (enabled) 3,255 (+117) 2,389 (+104) 1,757 (+126)

Mixed domain: How did we do it?

Mixed

domain case:
C+=AB

R+=RR Already implemented.

R+=RC Pair 1C: project B to real domain.
R+=CR Pair 1C: project A to real domain.
R+=CC Pack to 1r format and compute/accumulate in real domain.

C+=RR Project C to real domain and compute/accumulate in real
domain. (Requires support for general stride storage.)

C+=RC Pair 2C: Treat B as k X 2n real matrix and pack accordingly;
accumulate to C (by rows) via virtual pkernel.

C+=CR Pair 2C: Treat A as 2m X k real matrix and pack
accordingly; accumulate to C (by columns) via virtual

ukernel.

C+=CC Already implemented.

Mixed precision: How did we do it?

Mixed Implementation notes
precision

case:
C+=AB|cp

Ss+=ss|s Already implemented.

s+=sd|s Cast(demote) B to single-precision during packing.
s+=ds|s Cast(demote) A to single-precision during packing.
s+=dd|s Cast(demote) A, B to single-precision during packing.

d+=ss|s Usespecial update in macrokernel (or virtual pkernel) to
accumulate result to C.

d+=sd|s Cast(demote) B to single during packing. Use special update in
macrokernel (or virtual pkernel) to cast/accumulate result to C.

d+=ds|s Cast(demote) A to single during packing. Use special update in
macrokernel (or virtual pkernel) to cast/accumulate result to C.

d+=dd|s Cast(demote) A, B to single during packing. Use special update in
macrokernel (or virtual pkernel) to cast/accumulate result to C.

Mixed precision: How did we do it?

Mixed Implementation notes
precision

case:
C+=AB|cp

s+=ss|d Cast(promote) A, B to double-precision during packing. Use special
update in macrokernel (or virtual pkernel) to cast/accumulate result to C.

s+=sd|d Cast(promote) A to double-precision during packing. Use special update
in macrokernel (or virtual pkernel) to cast/accumulate result to C.

s+=ds|d Cast(promote) B to double-precision during packing. Use special update
in macrokernel (or virtual pkernel) to cast/accumulate result to C.

s+=dd|d Usespecial update in macrokernel (or virtual pkernel) to cast/accumulate
result to C.

d+=ss|d Cast(promote) A and B to double-precision during packing.
d+=sd|d Cast(promote) A to double-precision during packing.
d+=ds|d Cast(promote) B to double-precision during packing.
d+=dd|d Alreadyimplemented.

Mixed domain: How did we do it?

* So what do we need? The ability to...
— project complex matrices to real domain (in-place)
— pack to 1r format

— accumulate matrix products to C with general
stride

— “spoof” complex blocksizes for partitioning and
then use real blocksizes in macrokernel

— accumulate to C via virtual microkernels

— nearly indispensable: encapsulation via objects

Mixed precision: How did we do it?

* So what do we need? The ability to...
— Track at least three datatypes per object
e storage, target, computation
— Cast (promote or demote) a matrix from its storage
datatype to the target datatype during packing

— Cast (promote or demote) an intermediate matrix
product from the computation datatype to the
storage datatype of C during accumulation

Mixing domain+precision:
How did we do it?

* Implementing full mixed datatype

— Once you’ve implemented mixed domain and
mixed precision separately, this is nearly free!

 Domain and precision are mostly orthogonal

Performance

e Sorry, | didn’t have time.

Performance

* SorryHdidn’thave time:

— Kidding. Of course | have performance results!

* Poster: sequential performance
— https://www.cs.utexas.edu/~field/retreat/2018/mdst.pdf

 Web-only bonus: multithreaded performance
— https://www.cs.utexas.edu/~field/retreat/2018/mdmt.pdf

Performance

 Hardware
— Intel Xeon E3-1271 v3 (Haswell) 3.6GHz (4 cores)

* Software
— Ubuntu 16.04
— GNU gcc 5.4.0
— OpenBLAS 0.2.20 (latest stable release)
— BLIS 0.4.1-15/c03728f1 + mixed-dt extensions

Performance

* Implementations tested

— BLIS: implemented within bli_gemm()
* Mixed domain/precision logic is hidden

— OpenBLAS: implemented within a “dumb wrapper”
around [sdcz]gemm ()
* Mixed domain/precision logic is exposed

* Labeling example: zedsgemm

— Interpretation: cabx
e Cis double complex (z)
e Ais single complex (c)
* Bis double real (d)
e computation is executed in single-precision (s)

Performance

* Results
— X-axis: problem size:m=n=Kk
* Sequential: 40 to 2000 in increments of 40
* Multithreaded: 80 to 4000 in increments of 80
— y-axis: GFLOPS/core

* Top of graph is machine (theoretical) peak

— Each data point is best of three trials

Performance

e General characterization

— mixed-datatype BLIS performs typically 75-95% of
[sdcz]gemm

— mixed-datatype BLIS almost universally
outperforms the “dumb wrapper” alternative

— and BLIS requires less workspace

— and BLIS still provides features and options not
present in the BLAS
* row/column strides; extra support for complex domain,

object APIl, more multithreading options, comprehensive
testsuite, lots of documentation, etc.

What’s next?

 Other operations?

— hemm, symm, herk, syrk, trmm, etc.
* Other precisions?

— bfloat16

— gquad-precision

— double double
e Start from scratch?

— C++

Thank you!

