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SHPC Funding (BLIS) 

• NSF 
– Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra 

Software Infrastructure for Sustained Innovation in 
Computational Chemistry and other Sciences. (Funded June 1, 
2012 - May 31, 2015.) 

– Award CCF-1320112: SHF: Small: From Matrix Computations to 
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.) 

– Award ACI-1550493: SI2-SSI: Sustaining Innovation in the Linear 
Algebra Software Stack for Computational Chemistry and other 
Sciences. (Funded July 15, 2016 – June 30, 2018.) 

 



SHPC Funding (BLIS) 

• Industry (grants and hardware), 2011 to present: 
– Microsoft 

– Texas Instruments 

– Intel  

– AMD 

– HP Enterprise 
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– Huawei 
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Publications 

• “BLIS: A Framework for Rapid Instantiation of BLAS Functionality” (TOMS; in print) 

• “The BLIS Framework: Experiments in Portability” (TOMS; in print) 

• “Anatomy of Many-Threaded Matrix Multiplication” (IPDPS; in proceedings) 

• “Analytical Models for the BLIS Framework” (TOMS; in print) 

• “Implementing High-Performance Complex Matrix Multiplication via the 3m and 4m 

Methods” (TOMS; in print) 

• “Implementing High-Performance Complex Matrix Multiplication via the 1m Method” 

(TOMS SISC; submitted) 

• “Supporting Mixed-Domain Mixed-Precision Matrix Multiplication within the BLIS 

Framework” (TOMS; under revision) 
 



Review 

• BLAS: Basic Linear Algebra Subprograms 

– Level 1: vector-vector [Lawson et al. 1979] 

– Level 2: matrix-vector [Dongarra et al. 1988] 

– Level 3: matrix-matrix [Dongarra et al. 1990] 

• Why are BLAS important? 

– BLAS constitute the “bottom of the food chain” for 
most dense linear algebra applications, as well as 
other HPC libraries 

– LAPACK, libflame, MATLAB, PETSc, numpy, gsl, etc. 

 



Review 

• What is BLIS? 
– A framework for instantiating BLAS libraries (ie: fully 

compatible with BLAS) 

• What else is BLIS? 
– Provides alternative BLAS-like (C friendly) API that 

fixes deficiencies in original BLAS 

– Provides an object-based API 

– Provides a superset of BLAS functionality 

– A productivity multiplier 

– A research environment 



Motivation 

• Consider the classic gemm operation 

• Typical HPC problems are “large”: what does 
this mean?  
– ALL matrix dimensions (m, n, k) are “large” 

• BLIS’s Achilles heel: “small” matrix 
multiplication: why? 
– There isn’t enough computation (flops) 

engendered by small matrix multiplication to 
justify the overhead in BLIS 
• Object management, use of internal packing buffers 



Motivation 

• What happens if we consider a hybrid situation? 
– Instead of ALL matrix dimensions being small, what 

happens if ONE matrix dimension is small (and the 
other two dimensions are potentially still large-ish)? 

– How small is small? Potentially very small: ≈10 or less. 

– Example:  

 

+= 



Motivation 

• Alternatively… 
– What happens if TWO matrix dimensions are small 

(and the other dimension is potentially still large 
or large-ish)? 

– Example:  

 

+= 



Specification 

• Let’s start by specifying what a skinny gemm 
implementation should support 



Specification 

• What should a skinny gemm implementation 
support? 

– Various problem shape scenarios 



Shape Scenarios 

• Six problem shape scenarios (mnk): 



Shape Scenarios 

• Six problem shape scenarios (mnk): 
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SLL: small m 

LSL: small n 

LLS: small k 

SLS: small m, k 

LSS: small n, k 

SSL: small m, n 



Shape Scenarios 

• Six problem shape scenarios (mnk): 

• Ideally, our solution would work across as 
many of these shape scenarios as possible 



Specification 

• What should a skinny gemm implementation 
support? 

– Various problem shape scenarios (mnk) 

• SLL, LSL, LLS, SSL, SLS, SSL 

– Transposition on A and/or B (transA, transB) 

• NN, NT, TN, TT 

• Complex domain: conjA, conjB 

– Row and column storage (CAB) 

• RRR, RRC, RCR, RCC, CRR, CRC, CCR, CCC 



Specification 

• What should a skinny gemm implementation 
support? 

– Avoid: assumption that A and B are packed 

– This makes supporting all eight storage 
combinations harder! Why? Two reasons: 

• We can’t assume contiguous/unit stride on A and B 

• We have to handle edge cases explicitly rather. 
(Reminder: BLIS computes edge cases to temporary 
storage, then copies appropriate elements back to C.) 

– General stride should be supported, even if it’s slow 



The BLIS Approach 

• Today, let’s consider double-precision real 
domain only 
– Complex is possible, but more involved due to 

conjugation on A and/or B 

• Note that transposition on A, B can be 
interpreted as changing the effective storage 
combination 
– Example: An m-by-n row-stored matrix with a 

transpose is equivalent to an n-by-m column-stored 
matrix (with no transpose) 

– This reduces 32 parameter cases (4 transAB x 8 
storage) to 8 effective cases 



Storage Combinations 
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Storage Combinations 

• How do we support all eight effective storage 
combinations? 

– Remember: we can’t assume A or B is packed 



Revisiting the microkernel 

• Let’s review the conventional BLIS microkernel 

• What do we like about it? 

– Achieves a high fraction of peak 

– Able to work with m, n dimensions that are small 

• What don’t we like about it? 

– Inherently has an affinity for large k dimensions 

– Depends on contiguous/packed A and B 

1 

+= 1 nR  

mR  



Revisiting the microkernel 

• Comments 

– Can’t do much about affinity for large k 

– It’s unclear how important packing really is 

• Verdict 

– Let’s stick with the same microkernel design 

– One big caveat: either A or B (or both) may have 
large leading dimensions (row stride for row 
storage; column stride for column storage) 

• In other words, we can’t assume A or B is packed 



Microkernel implementation 

• Turns out that the storage of A, B, and C 
affects how the microkernel can be practically 
implemented 

• Let’s look at an example 
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Microkernel implementation 

• Microkernel consists of a loop over k dimension 

CCR 

+= 



Microkernel implementation 

• Two implementation options 

CCR 
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Microkernel implementation 

• Two implementation options 

– Load contiguous vectors of A and broadcast from B 

CCR 

+= 

+= 



Microkernel implementation 

• Two implementation options 

– Load contiguous vectors of A and broadcast from B 

– Load contiguous vectors of B and broadcast from A 
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Microkernel implementation 

• Two implementation options 

– Load contiguous vectors of A and broadcast from B 

– Load contiguous vectors of B and broadcast from A 

• In this case, requires in-register transpose prior to I/O on C 

CCR 

+= 

+= 



Microkernel implementation 

• There are other implementation strategies 

• Two (somewhat orthogonal) properties: 
– The orientation of the microtile registers 

• And whether in-register transpose is needed for I/O on C 

– The instruction types used to load elements of A 
and B 

• We want to avoid in-register transposition if 
possible 
– We will see that the latter component affects the 

former 



Microkernel implementation 

• So let’s enumerate the family of kernel 
implementation types 



Microkernel implementation 

• Row-oriented, contiguous axpy (rca) 

+= 

columns of A bcast; 
may be contig. or 
non-contig. 

rows of B c-loaded; 
must be contiguous 

optionally 
permute to 
columns 



Microkernel implementation 

• Column-oriented, contiguous axpy (cca) 

+= 

columns of A c-
loaded; must be 
contiguous 

rows of B bcast; may be 
contig. or non-contig. 

optionally 
permute to 
rows 



Microkernel implementation 

• K-oriented, contiguous dot (kcd) 

+= 

rows of A c-loaded; 
must be contiguous 

columns of B c-loaded; 
must be contiguous 

reduce; 
permute to 
rows or 
columns 



Microkernel implementation 

• These three implementation types have 
bizarro twins that prefer (need?) non-
contiguous access 

– Don’t know of any existing hardware that meets 
this criteria, but maybe someday? 

– Notice that this preference for non-contiguous 
access could affect both input of A and B (gather) 
and input/output on C (gather/scatter) 



Microkernel implementation 

• Row-oriented, non-contiguous axpy (rga) 

+= 

columns of A bcast; 
may be contig. or 
non-contig. 

rows of B gathered; 
may (must?) be non-
contig. 

optionally 
permute to 
columns 

gather/scatter 
to non-contig. 
storage? 



Microkernel implementation 

• Column-oriented, non-contiguous axpy (cga) 

+= 

columns of A 
gathered; may (must?) 
be non-contig. 

rows of B bcast; may 
be contig. or non-
contig. 

optionally 
permute to 
rows 

gather/scatter 
to non-contig. 
storage? 



Microkernel implementation 

• K-oriented, non-contiguous dot (kgd) 

+= 

rows of A gathered; 
may (must?) be non-
contig. 

columns of B gathered; 
may (must?) be non-
contig. 

reduce; 
permute to 
rows or 
columns 

gather/scatter 
to non-contig. 
storage? 



Microkernel implementation 

• To summarize… 

• Conventional kernel types 

– row/col-oriented, contiguous axpy (rca, cca) 

– k-oriented, contiguous dot (kcd) 

• Bizarro twins 

– row/col-oriented, non-contiguous axpy (rga, cga) 

– k-oriented, non-contiguous dot (kgd) 

 



Microkernel application 

• Now let’s 
revisit the 
storage 
combination 
cube 

– idea: inspect 
applicability 
of each 
μkernel type 
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Microkernel application 

• Row-oriented 
contig. axpy 
(rca) 
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Microkernel application 

• Row-oriented 
contig. axpy 
(rca) 

• Col-oriented 
contig. axpy 
(cca) 
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Microkernel application 

• Row-oriented 
contig. axpy 
(rca) 

• Col-oriented 
contig. axpy 
(cca) 

• K-oriented 
contig. dot 
(kcd) 
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Microkernel application 

• How to handle 
CRR? 
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Microkernel application 

• How to handle 
CRR? 

– CRR = RRR + 
in-register 
transpose of 
microtile of 
matrix C 

• What does this 
mean? 
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Microkernel application 

• How to handle 
CRR? 

– CRR = RRR + 
in-register 
transpose of 
microtile of 
matrix C 

• This means we 
can use the rca 
kernel 
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Microkernel application 

• How to handle 
RCC? 
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RCC 

Microkernel application 

• How to handle 
RCC? 

– RCC = CCC + 
in-register 
transpose of 
microtile of 
matrix C 

• What does this 
mean? 
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RCC 

Microkernel application 

• How to handle 
RCC? 

– RCC = CCC + 
in-register 
transpose of 
microtile of 
matrix C 

• This means we 
can use the cca 
kernel 

CCC 
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RCC 

Microkernel application 

• What did we 
just do? 

– Provided 
support for all 
combinations 
of storage (and 
transposition) 
with three 
kernels: rca, 
cca, kcd 

CCC 

CCR 

CRC 

CRR 

RCR 

RRC 

RRR 

rca 

cca 

kcd 



RCC 

Microkernel application 

• Exercise for the 
audience 

– Repeat this 
analysis for the 
bizarro kernels! 
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RRR 



Edge case handling 

• Consider a basic double-precision real gemm 
microkernel for Haswell/Zen and newer 

– MR = 6  NR = 8 

– “Interior” case will be 6x8 

– Edge cases will be… smaller 

– Let’s consider only variations in MR < 6 for now 

– So, how do we handle these edge cases? 



Edge case handling 

• So, how do we handle edge cases (MR < 6; NR = 8)? 

• Option 0: Copy A, B, and C to temporary storage and 
then use BLIS’s current edge case strategy 

– “You seem to be avoiding your problems. Tell me about 
your childhood.” 

– This is probably never advantageous, though we haven’t 
investigated it yet 

• Option 1: Use reference code 

– 6x8 may be fast, but all edge cases (5x8, 4x8, 3x8, 2x8, 1x8) 
will be very slow 

– This largely defeats the purpose of targeting skinny matrices 



Edge case handling 

• So, how do we handle edge cases (MR < 6; NR = 8)? 

• Option 2: Implement/combine kernels for powers of 2 

– Implement only 4x8, 2x8, 1x8 and combine as needed. 
Much faster than reference, but 5x8 and 3x8 will suffer 
from redundant function call, integer typecasting overhead 

• Option 3: Implement all edge kernels 

– All cases are fast, but requires writing full slate of kernels 
(5x8, 4x8, 3x8, 2x8, 1x8) 



Edge case handling 

• Also, we’ll need to fill in the whole grid of 
kernel types (both MR and NR dimensions) 

• For example, assuming we choose Option 2: 

– 6x8, 6x4, 6x2, 6x1 

– 4x8, 4x4, 4x2, 4x1 

– 2x8, 2x4, 2x2, 2x1 

– 1x8, 1x4, 1x2, 1x1 



Edge case handling 

• Also, we’ll need to fill in the whole grid of 
kernel types (both MR and NR dimensions) 

• For example, assuming we choose Option 2: 

– 6x8, 6x4, 6x2, 6x1 

– 4x8, 4x4, 4x2, 4x1 

– 2x8, 2x4, 2x2, 2x1 

– 1x8, 1x4, 1x2, 1x1 

• We may not need to implement 1xN or 1xM 
kernels since they may not vectorize easily 



Odds and ends 

 



Optional: “smart” edge blocking 

• Consider when m is just a little larger than MR 

– Example: 7x8 (assuming a target microtile of 6x8)  

– Even if we choose Option 3 and implement all edge 
case kernels, 7x8 decomposes into 6x8 + 1x8 

• Performance drops sharply because of the 1x8 call 

– Turns out 4x8 + 3x8 yields higher aggregate 
performance 



Optional: “smart” edge blocking 

• How do we implement this alternate kernel 
decomposition? 
– Define a maximum edge case dimension: MEmax = 9 

– Allow smaller edge cases to be absorbed into the 
last full “interior” kernel invocation 

– This means the merged problem can be more 
favorably decomposed into two smaller kernel calls 

– Examples: 
• 9x8: Executed as 5x8 + 4x8 (instead of 6x8 + 3x8) 

• 8x8: Executed as 4x8 + 4x8 (instead of 6x8 + 2x8) 

• 7x8: Executed as 4x8 + 3x8 (instead of 6x8 + 1x8) 



Optional: millikernels 

 



• Conventional 
design 

– microkernel 
contained within 
the IR loop 
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• Conventional 
design 

– microkernel 
contained within 
the IR loop 

– assembly code 
highlighted in 
pink 

IR loop 
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• Conventional 
design 

– microkernel 
contained within 
the IR loop 

– problem? function 
call + integer 
casting overhead 
per μkernel call 

IR loop 

microkernel 



• Conventional 
design 

– microkernel 
contained within 
the IR loop 

– solution? 
millikernels! 
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• Conventional 
design 

– microkernel 
contained within 
the IR loop 

– solution? 
millikernels! 

– Reduces function 
call, integer 
casting overhead 
by factor of 
m/MR (or 
n/MR… yes, I 
mean MR) 



Algorithmic loop structure 

• What higher level loops do we use around 
these kernels? 



• We use classic 
block-panel 
algorithm 



• We use classic 
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• And its  
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counterpart! 

 



• We use classic 
block-panel 
algorithm 

• And its  
block-panel 
counterpart! 

– Recycles the same 
MRxNR μkernel, 
which may or may 
not be called with 
an induced 
transposition 
(NRxMR) 

 



Thresholds & Handlers 

• When do we switch between “skinny” and 
“large” code paths? 
– MT, NT, KT thresholds per datatype. If any dimension 

(m, n, k) is less than than its respective threshold 
(MT, NT, KT), skinny implementation is called 

– However, the skinny implementation “handler” can 
perform further heuristics and reject the problem  
• If rejected, execution returns to the “large” code path 

– Handler can be thought of as the high-level entry 
point for the skinny code path 

– Thresholds and handlers set per subconfiguration 



Skinny implementation status 

• Introduced on April 27, 2019 
– Core changes: b9c9f035 

• Currently implemented for double-precision 
real gemm only 
– Intel: Haswell, Broadwell, Skylake, Kaby Lake, Coffee 

Lake, etc. (AVX2 + FMA) 

– AMD: Zen1, Zen1+, Zen2 

• Currently single-threaded only 
– Multithreaded is possible, but not yet implemented 



Performance 

• Added PerformanceSmall.md document to 
‘docs’ directory 

– Skinny performance results currently shown for: 

• Haswell 

• Kaby Lake 

• Zen1 (Epyc) 

– Results shown for 

• Four transA/B cases: NN, NT, TN, TT 

• Two storage combinations: RRR and CCC 
– CBLAS API allows RRR or CCC, but no mixing of formats 

• Seven shape scenarios: SLL, LSL, LLS, SSL, SLS, SSL, LLL 

https://github.com/flame/blis/blob/master/docs/PerformanceSmall.md


Performance 

• Following results were gathered on 
– 3.8GHz Intel Kaby Lake (i5-7500) 

• Implementations: 
– BLIS “sup”(skinny kernels; no packing) 

– BLIS “conv” (conventional kernels; with packing) 

– OpenBLAS 

– Eigen 

– MKL 

– BLASFEO 

– libxsmm 

• So how did we do? 



Performance: row storage 



Performance: column storage 



Conclusion 

• Skinny gemm is definitely more complex than large 
gemm 
– But those complexities can be managed using BLIS’s 

“principles” of DLA design and code management 

• And what about the “dumb” benchmark (ie: all 
dimensions relatively small and square)? 
– Turns out to work pretty well here, too! 

• Is the “BLIS approach” optimal? No. 
– Do we care? Not really. 

– Why? We’re happy to give up the last 5% in the name of 
productivity 

 



Conclusion 

• Bottom line 

– BLIS now provides a unified BLAS-like framework for 
(typically) achieving 90-95% of attainable peak 
performance for both small and large problem 
domains across a wide swath of storage and 
transposition scenarios 

– No other open source project provides this :) 
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Further Information 

• Website: 

– http://github.com/flame/blis/ 

• Discussion: 

– http://groups.google.com/group/blis-devel 

– http://groups.google.com/group/blis-discuss 

• Contact: 

– field@cs.utexas.edu 
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Thank you! 


