
The BLIS Approach to Skinny
Matrix Multiplication

Field G. Van Zee
Science of High Performance Computing

The University of Texas at Austin

September 19, 2019

Science of High Performance
Computing (SHPC) research group

• Led by Robert A. van de Geijn

• Contributes to the science of DLA and instantiates
research results as open source software

• Long history of support from National Science
Foundation

• Website: https://shpc.ices.utexas.edu/

http://shpc.ices.utexas.edu/
http://shpc.ices.utexas.edu/

SHPC Funding (BLIS)

• NSF
– Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra

Software Infrastructure for Sustained Innovation in
Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

– Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

– Award ACI-1550493: SI2-SSI: Sustaining Innovation in the Linear
Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 – June 30, 2018.)

SHPC Funding (BLIS)

• Industry (grants and hardware), 2011 to present:
– Microsoft

– Texas Instruments

– Intel

– AMD

– HP Enterprise

– Oracle

– Huawei

– Facebook

Publications

• “BLIS: A Framework for Rapid Instantiation of BLAS Functionality” (TOMS; in print)

• “The BLIS Framework: Experiments in Portability” (TOMS; in print)

• “Anatomy of Many-Threaded Matrix Multiplication” (IPDPS; in proceedings)

• “Analytical Models for the BLIS Framework” (TOMS; in print)

• “Implementing High-Performance Complex Matrix Multiplication via the 3m and 4m

Methods” (TOMS; in print)

• “Implementing High-Performance Complex Matrix Multiplication via the 1m Method”

(TOMS SISC; submitted)

• “Supporting Mixed-Domain Mixed-Precision Matrix Multiplication within the BLIS

Framework” (TOMS; under revision)

Review

• BLAS: Basic Linear Algebra Subprograms

– Level 1: vector-vector [Lawson et al. 1979]

– Level 2: matrix-vector [Dongarra et al. 1988]

– Level 3: matrix-matrix [Dongarra et al. 1990]

• Why are BLAS important?

– BLAS constitute the “bottom of the food chain” for
most dense linear algebra applications, as well as
other HPC libraries

– LAPACK, libflame, MATLAB, PETSc, numpy, gsl, etc.

Review

• What is BLIS?
– A framework for instantiating BLAS libraries (ie: fully

compatible with BLAS)

• What else is BLIS?
– Provides alternative BLAS-like (C friendly) API that

fixes deficiencies in original BLAS

– Provides an object-based API

– Provides a superset of BLAS functionality

– A productivity multiplier

– A research environment

Motivation

• Consider the classic gemm operation

• Typical HPC problems are “large”: what does
this mean?
– ALL matrix dimensions (m, n, k) are “large”

• BLIS’s Achilles heel: “small” matrix
multiplication: why?
– There isn’t enough computation (flops)

engendered by small matrix multiplication to
justify the overhead in BLIS
• Object management, use of internal packing buffers

Motivation

• What happens if we consider a hybrid situation?
– Instead of ALL matrix dimensions being small, what

happens if ONE matrix dimension is small (and the
other two dimensions are potentially still large-ish)?

– How small is small? Potentially very small: ≈10 or less.

– Example:

+=

Motivation

• Alternatively…
– What happens if TWO matrix dimensions are small

(and the other dimension is potentially still large
or large-ish)?

– Example:

+=

Specification

• Let’s start by specifying what a skinny gemm
implementation should support

Specification

• What should a skinny gemm implementation
support?

– Various problem shape scenarios

Shape Scenarios

• Six problem shape scenarios (mnk):

Shape Scenarios

• Six problem shape scenarios (mnk):

+=

+=

+= +=

+=

+=

SLL: small m

LSL: small n

LLS: small k

SLS: small m, k

LSS: small n, k

SSL: small m, n

Shape Scenarios

• Six problem shape scenarios (mnk):

• Ideally, our solution would work across as
many of these shape scenarios as possible

Specification

• What should a skinny gemm implementation
support?

– Various problem shape scenarios (mnk)

• SLL, LSL, LLS, SSL, SLS, SSL

– Transposition on A and/or B (transA, transB)

• NN, NT, TN, TT

• Complex domain: conjA, conjB

– Row and column storage (CAB)

• RRR, RRC, RCR, RCC, CRR, CRC, CCR, CCC

Specification

• What should a skinny gemm implementation
support?

– Avoid: assumption that A and B are packed

– This makes supporting all eight storage
combinations harder! Why? Two reasons:

• We can’t assume contiguous/unit stride on A and B

• We have to handle edge cases explicitly rather.
(Reminder: BLIS computes edge cases to temporary
storage, then copies appropriate elements back to C.)

– General stride should be supported, even if it’s slow

The BLIS Approach

• Today, let’s consider double-precision real
domain only
– Complex is possible, but more involved due to

conjugation on A and/or B

• Note that transposition on A, B can be
interpreted as changing the effective storage
combination
– Example: An m-by-n row-stored matrix with a

transpose is equivalent to an n-by-m column-stored
matrix (with no transpose)

– This reduces 32 parameter cases (4 transAB x 8
storage) to 8 effective cases

Storage Combinations

+=

+=

+=

+=

CCC

CCR

CRC

CRR

+=

+=

+=

+=

RCC

RCR

RRC

RRR

Storage Combinations

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

Storage Combinations

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

Storage Combinations

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

Storage Combinations

• How do we support all eight effective storage
combinations?

– Remember: we can’t assume A or B is packed

Revisiting the microkernel

• Let’s review the conventional BLIS microkernel

• What do we like about it?

– Achieves a high fraction of peak

– Able to work with m, n dimensions that are small

• What don’t we like about it?

– Inherently has an affinity for large k dimensions

– Depends on contiguous/packed A and B

1

+= 1 nR

mR

Revisiting the microkernel

• Comments

– Can’t do much about affinity for large k

– It’s unclear how important packing really is

• Verdict

– Let’s stick with the same microkernel design

– One big caveat: either A or B (or both) may have
large leading dimensions (row stride for row
storage; column stride for column storage)

• In other words, we can’t assume A or B is packed

Microkernel implementation

• Turns out that the storage of A, B, and C
affects how the microkernel can be practically
implemented

• Let’s look at an example

+= +=

+=

CCC

CCR

CRC

CRR

+=

Microkernel implementation

• Microkernel consists of a loop over k dimension

CCR

+=

Microkernel implementation

• Two implementation options

CCR

+=

Microkernel implementation

• Two implementation options

– Load contiguous vectors of A and broadcast from B

CCR

+=

+=

Microkernel implementation

• Two implementation options

– Load contiguous vectors of A and broadcast from B

– Load contiguous vectors of B and broadcast from A

CCR

+=

+=

Microkernel implementation

• Two implementation options

– Load contiguous vectors of A and broadcast from B

– Load contiguous vectors of B and broadcast from A

• In this case, requires in-register transpose prior to I/O on C

CCR

+=

+=

Microkernel implementation

• There are other implementation strategies

• Two (somewhat orthogonal) properties:
– The orientation of the microtile registers

• And whether in-register transpose is needed for I/O on C

– The instruction types used to load elements of A
and B

• We want to avoid in-register transposition if
possible
– We will see that the latter component affects the

former

Microkernel implementation

• So let’s enumerate the family of kernel
implementation types

Microkernel implementation

• Row-oriented, contiguous axpy (rca)

+=

columns of A bcast;
may be contig. or
non-contig.

rows of B c-loaded;
must be contiguous

optionally
permute to
columns

Microkernel implementation

• Column-oriented, contiguous axpy (cca)

+=

columns of A c-
loaded; must be
contiguous

rows of B bcast; may be
contig. or non-contig.

optionally
permute to
rows

Microkernel implementation

• K-oriented, contiguous dot (kcd)

+=

rows of A c-loaded;
must be contiguous

columns of B c-loaded;
must be contiguous

reduce;
permute to
rows or
columns

Microkernel implementation

• These three implementation types have
bizarro twins that prefer (need?) non-
contiguous access

– Don’t know of any existing hardware that meets
this criteria, but maybe someday?

– Notice that this preference for non-contiguous
access could affect both input of A and B (gather)
and input/output on C (gather/scatter)

Microkernel implementation

• Row-oriented, non-contiguous axpy (rga)

+=

columns of A bcast;
may be contig. or
non-contig.

rows of B gathered;
may (must?) be non-
contig.

optionally
permute to
columns

gather/scatter
to non-contig.
storage?

Microkernel implementation

• Column-oriented, non-contiguous axpy (cga)

+=

columns of A
gathered; may (must?)
be non-contig.

rows of B bcast; may
be contig. or non-
contig.

optionally
permute to
rows

gather/scatter
to non-contig.
storage?

Microkernel implementation

• K-oriented, non-contiguous dot (kgd)

+=

rows of A gathered;
may (must?) be non-
contig.

columns of B gathered;
may (must?) be non-
contig.

reduce;
permute to
rows or
columns

gather/scatter
to non-contig.
storage?

Microkernel implementation

• To summarize…

• Conventional kernel types

– row/col-oriented, contiguous axpy (rca, cca)

– k-oriented, contiguous dot (kcd)

• Bizarro twins

– row/col-oriented, non-contiguous axpy (rga, cga)

– k-oriented, non-contiguous dot (kgd)

Microkernel application

• Now let’s
revisit the
storage
combination
cube

– idea: inspect
applicability
of each
μkernel type

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

Microkernel application

• Row-oriented
contig. axpy
(rca)

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

rca

Microkernel application

• Row-oriented
contig. axpy
(rca)

• Col-oriented
contig. axpy
(cca)

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

rca

cca

Microkernel application

• Row-oriented
contig. axpy
(rca)

• Col-oriented
contig. axpy
(cca)

• K-oriented
contig. dot
(kcd)

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

rca

cca

kcd

Microkernel application

• How to handle
CRR?

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

???

rca

cca

kcd

Microkernel application

• How to handle
CRR?

– CRR = RRR +
in-register
transpose of
microtile of
matrix C

• What does this
mean?

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

rca

cca

kcd

Microkernel application

• How to handle
CRR?

– CRR = RRR +
in-register
transpose of
microtile of
matrix C

• This means we
can use the rca
kernel

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

rca

cca

kcd

Microkernel application

• How to handle
RCC?

CCC

CCR

CRC

CRR

RCC

RCR

RRC

RRR

???

rca

cca

kcd

RCC

Microkernel application

• How to handle
RCC?

– RCC = CCC +
in-register
transpose of
microtile of
matrix C

• What does this
mean?

CCC

CCR

CRC

CRR

RCR

RRC

RRR

rca

cca

kcd

RCC

Microkernel application

• How to handle
RCC?

– RCC = CCC +
in-register
transpose of
microtile of
matrix C

• This means we
can use the cca
kernel

CCC

CCR

CRC

CRR

RCR

RRC

RRR

rca

cca

kcd

RCC

Microkernel application

• What did we
just do?

– Provided
support for all
combinations
of storage (and
transposition)
with three
kernels: rca,
cca, kcd

CCC

CCR

CRC

CRR

RCR

RRC

RRR

rca

cca

kcd

RCC

Microkernel application

• Exercise for the
audience

– Repeat this
analysis for the
bizarro kernels!

CCC

CCR

CRC

CRR

RCR

RRC

RRR

Edge case handling

• Consider a basic double-precision real gemm
microkernel for Haswell/Zen and newer

– MR = 6 NR = 8

– “Interior” case will be 6x8

– Edge cases will be… smaller

– Let’s consider only variations in MR < 6 for now

– So, how do we handle these edge cases?

Edge case handling

• So, how do we handle edge cases (MR < 6; NR = 8)?

• Option 0: Copy A, B, and C to temporary storage and
then use BLIS’s current edge case strategy

– “You seem to be avoiding your problems. Tell me about
your childhood.”

– This is probably never advantageous, though we haven’t
investigated it yet

• Option 1: Use reference code

– 6x8 may be fast, but all edge cases (5x8, 4x8, 3x8, 2x8, 1x8)
will be very slow

– This largely defeats the purpose of targeting skinny matrices

Edge case handling

• So, how do we handle edge cases (MR < 6; NR = 8)?

• Option 2: Implement/combine kernels for powers of 2

– Implement only 4x8, 2x8, 1x8 and combine as needed.
Much faster than reference, but 5x8 and 3x8 will suffer
from redundant function call, integer typecasting overhead

• Option 3: Implement all edge kernels

– All cases are fast, but requires writing full slate of kernels
(5x8, 4x8, 3x8, 2x8, 1x8)

Edge case handling

• Also, we’ll need to fill in the whole grid of
kernel types (both MR and NR dimensions)

• For example, assuming we choose Option 2:

– 6x8, 6x4, 6x2, 6x1

– 4x8, 4x4, 4x2, 4x1

– 2x8, 2x4, 2x2, 2x1

– 1x8, 1x4, 1x2, 1x1

Edge case handling

• Also, we’ll need to fill in the whole grid of
kernel types (both MR and NR dimensions)

• For example, assuming we choose Option 2:

– 6x8, 6x4, 6x2, 6x1

– 4x8, 4x4, 4x2, 4x1

– 2x8, 2x4, 2x2, 2x1

– 1x8, 1x4, 1x2, 1x1

• We may not need to implement 1xN or 1xM
kernels since they may not vectorize easily

Odds and ends

Optional: “smart” edge blocking

• Consider when m is just a little larger than MR

– Example: 7x8 (assuming a target microtile of 6x8)

– Even if we choose Option 3 and implement all edge
case kernels, 7x8 decomposes into 6x8 + 1x8

• Performance drops sharply because of the 1x8 call

– Turns out 4x8 + 3x8 yields higher aggregate
performance

Optional: “smart” edge blocking

• How do we implement this alternate kernel
decomposition?
– Define a maximum edge case dimension: MEmax = 9

– Allow smaller edge cases to be absorbed into the
last full “interior” kernel invocation

– This means the merged problem can be more
favorably decomposed into two smaller kernel calls

– Examples:
• 9x8: Executed as 5x8 + 4x8 (instead of 6x8 + 3x8)

• 8x8: Executed as 4x8 + 4x8 (instead of 6x8 + 2x8)

• 7x8: Executed as 4x8 + 3x8 (instead of 6x8 + 1x8)

Optional: millikernels

• Conventional
design

– microkernel
contained within
the IR loop

• Conventional
design

– microkernel
contained within
the IR loop

IR loop

microkernel

• Conventional
design

– microkernel
contained within
the IR loop

– assembly code
highlighted in
pink

IR loop

microkernel

• Conventional
design

– microkernel
contained within
the IR loop

– problem? function
call + integer
casting overhead
per μkernel call

IR loop

microkernel

• Conventional
design

– microkernel
contained within
the IR loop

– solution?
millikernels!

IR loop

millikernel

• Conventional
design

– microkernel
contained within
the IR loop

– solution?
millikernels!

– Reduces function
call, integer
casting overhead
by factor of
m/MR (or
n/MR… yes, I
mean MR)

Algorithmic loop structure

• What higher level loops do we use around
these kernels?

• We use classic
block-panel
algorithm

• We use classic
block-panel
algorithm

• And its
block-panel
counterpart!

• We use classic
block-panel
algorithm

• And its
block-panel
counterpart!

– Recycles the same
MRxNR μkernel,
which may or may
not be called with
an induced
transposition
(NRxMR)

Thresholds & Handlers

• When do we switch between “skinny” and
“large” code paths?
– MT, NT, KT thresholds per datatype. If any dimension

(m, n, k) is less than than its respective threshold
(MT, NT, KT), skinny implementation is called

– However, the skinny implementation “handler” can
perform further heuristics and reject the problem
• If rejected, execution returns to the “large” code path

– Handler can be thought of as the high-level entry
point for the skinny code path

– Thresholds and handlers set per subconfiguration

Skinny implementation status

• Introduced on April 27, 2019
– Core changes: b9c9f035

• Currently implemented for double-precision
real gemm only
– Intel: Haswell, Broadwell, Skylake, Kaby Lake, Coffee

Lake, etc. (AVX2 + FMA)

– AMD: Zen1, Zen1+, Zen2

• Currently single-threaded only
– Multithreaded is possible, but not yet implemented

Performance

• Added PerformanceSmall.md document to
‘docs’ directory

– Skinny performance results currently shown for:

• Haswell

• Kaby Lake

• Zen1 (Epyc)

– Results shown for

• Four transA/B cases: NN, NT, TN, TT

• Two storage combinations: RRR and CCC
– CBLAS API allows RRR or CCC, but no mixing of formats

• Seven shape scenarios: SLL, LSL, LLS, SSL, SLS, SSL, LLL

https://github.com/flame/blis/blob/master/docs/PerformanceSmall.md

Performance

• Following results were gathered on
– 3.8GHz Intel Kaby Lake (i5-7500)

• Implementations:
– BLIS “sup”(skinny kernels; no packing)

– BLIS “conv” (conventional kernels; with packing)

– OpenBLAS

– Eigen

– MKL

– BLASFEO

– libxsmm

• So how did we do?

Performance: row storage

Performance: column storage

Conclusion

• Skinny gemm is definitely more complex than large
gemm
– But those complexities can be managed using BLIS’s

“principles” of DLA design and code management

• And what about the “dumb” benchmark (ie: all
dimensions relatively small and square)?
– Turns out to work pretty well here, too!

• Is the “BLIS approach” optimal? No.
– Do we care? Not really.

– Why? We’re happy to give up the last 5% in the name of
productivity

Conclusion

• Bottom line

– BLIS now provides a unified BLAS-like framework for
(typically) achieving 90-95% of attainable peak
performance for both small and large problem
domains across a wide swath of storage and
transposition scenarios

– No other open source project provides this :)

Acknowledgements

• This work made possible thanks to
collaborative partnership with AMD

– Kiran Varaganti

Further Information

• Website:

– http://github.com/flame/blis/

• Discussion:

– http://groups.google.com/group/blis-devel

– http://groups.google.com/group/blis-discuss

• Contact:

– field@cs.utexas.edu

 82

http://code.google.com/p/blis/
http://code.google.com/p/blis/
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-discuss
http://groups.google.com/group/blis-discuss
http://groups.google.com/group/blis-discuss
http://groups.google.com/group/blis-discuss
mailto:field@cs.utexas.edu

Thank you!

