
1 Applying Dijkstra’s vision
to numerical software
Robert van de Geijn and Maggie Myers

Today a usual technique is to make a program and then to test it. But: program
testing can be a very effective way to show the presence of bugs, but is hope-
lessly inadequate for showing their absence. The only effective way to raise the
confidence level of a program significantly is to give a convincing proof of its cor-
rectness. But one should not first make the program and then prove its correctness,
because then the requirement of providing the proof would only increase the poor
programmer’s burden. On the contrary: the programmer should let correctness
proof and program grow hand in hand. – The Humble Programmer. Edsger W.
Dijkstra (1972)

1.1 Introduction
In Spring 1987, Robert interviewed for a faculty position in computer science at UT-Austin.
Part of his talk focused on a communication system for distributed memory computers and
he made the statement that it simplified debugging. A voice from the audience asserted that
one should not have to debug. Having been trained as an applied mathematician, Robert
did not consider this a serious criticism and hence he ignored it. After the talk, faculty
congratulated him on how well he had handled the comment by Dijkstra. It took another
decade for Dijkstra’s insights to become central to our research.

Despite also being Dutch, and for a while occupying adjacent offices, Dijkstra1 and Robert
did not interact much during their overlapping time at UT. After more than a decade as
colleagues, they went out with a visitor and the discussion turned to the recent winter in
The Netherlands and the traditional “elfstedentocht.” At some point, Dijkstra exclaimed in
surprise something along the lines of “You are Dutch!” He then declared Robert the most
amazing transformation of a Dutchman into an American he had encountered. Robert chose
to interpret this as a compliment.

Starting in the 1990s, Robert was considered an expert on the parallelization of dense
linear algebra (DLA) software. The process went roughly like this: someone decided that

1 We were never close enough with Edsger W. Dijkstra to comfortably use his first name here.

1



2 Chapter 1 Applying Dijkstra’s vision to numerical software

it was important to port some routine from LAPACK [1] to a distributed memory computer.
Sometimes it was straightforward and sometimes it was not. When it was not, some colleagues
in the field might come and visit him. Robert would doodle on a chalkboard for a bit and
propose an alternative algorithm for the same operation that parallelized well. They would
write yet another paper. Rinse and repeat.

The “mistake” we made was that we started to think about what the process was by which
we discovered new algorithms. Because we were teaching “Analysis of Programs” using
Gries’ The Science of Programming [15], we realized that we started from the mathematical
specification and a priori identified multiple loop invariants, from which we would then derive
a family of algorithms. By choosing the algorithm that exhibited parallelism, we would solve
the posed problem. In other words, we employed goal-oriented programming techniques as
advocated by Dijkstra and his contemporaries to derive programs hand in hand with their
proofs of correctness. This was a “mistake” in the sense that it exposed the process to
everyone, transforming it from an art limited to the “high priests of high performance” to
a science that could be mastered by all.

1.2 An example
We will illustrate what we now call the FLAME methodology for deriving algorithms with
a simple example: the inversion of an upper triangular matrix, U , overwriting the original
matrix: U := U−1. Letting Û denote the original contents of U and partitioning this matrix
into quadrants, it can be easily verified that upon completion(

UT L UT R

0 UBR

)
︸ ︷︷ ︸

U

=

(
Û−1

T L −Û−1
T L ÛT RÛ−1

BR

0 Û−1
BR

)
︸ ︷︷ ︸

Û−1

, (1.1)

where TL, TR, etc., should be read as “Top-Left”, “Top-Right”, etc. (Square) submatrices
UT L and UBR are themselves upper triangular matrices [4]. This exposes a recursive definition
of the inverse of an upper triangular matrix, that we call the Partitioned Matrix Expression
(PME), for this operation.

1.2.1 The goal
A standard technique for achieving high performance with a DLA algorithm is to iterate (loop)
through matrices by blocks of rows and/or columns. Such “blocked algorithms” can achieve
high performance on modern processors with complex memory hierarchies by casting most
computation in terms of matrix-matrix multiplications. This means our goal is to transform
the PME into a family of blocked algorithms, from which a member that parallelizes well can
be chosen.



1.2 An example 3

Algorithm: [U ] := UINV BLK VAR1(U)

U →

(
UT L UT R

0 UBR

)
where UT L is 0×0

while m(UT L)< m(U) do
Determine block size b(

UT L UT R

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

where U11 is b×b

U11 :=U−1
11

U01 :=−U00U01U11(
UT L UT R

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22


endwhile

Figure 1.1 Simple blocked algorithm for overwriting U with its inverse.

1.2.2 Notation, notation, notation

How do we convince people that in programming simplicity and clarity —in short:
what mathematicians call “elegance”— are not a dispensable luxury, but a crucial
matter that decides between success and failure? – EWD648

As Dijkstra often advocated, it is important to employ context-appropriate notations. In our
case, this means avoiding intricate indexing and expressing our algorithms in terms of simpler
linear algebra operations so that only one loop is exposed.

Equation (1.1) can easily be translated into the algorithm in Fig. 1.1, which we present with
what we now call the FLAME notation. The thick and thin lines have semantic meaning and
indicate that, in the loop, quadrants of the matrix are repartitioned, submatrices are updated,
and submatrices are added or subtracted to or from the quadrants. The algorithm requires the
inversion of a smaller b×b submatrix, U11, which is typically accomplished via an “unblocked
algorithm” that chooses the block size, b, equal to one so that the inversion of that submatrix
(a scalar in this case) becomes the trivial inversion of a number.

Importantly, this notation allows the algorithm to be annotated with its proof of correctness
as illustrated in Fig. 1.2, where the assertions in the gray boxes capture the state of the
variables. In that figure, Û refers to the original contents of U and the loop invariant is given



4 Chapter 1 Applying Dijkstra’s vision to numerical software

Step Algorithm: [U ] := UINV BLK VAR1(U)

1a {U = Û }

4 U →

(
UT L UT R

0 UBR

)
where UT L is 0×0

2

{(
UT L UT R

0 UBR

)
=

(
Û−1

T L ÛT R

0 ÛBR

) }
3 while m(UT L)< m(U) do

2,3

{ (
UT L UT R

0 UBR

)
=

(
Û−1

T L ÛT R

0 ÛBR

)
∧m(UT L)< m(U)

}

5a

Determine block size b(
UT L UT R

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

where U11 is b×b

6


 U00 U01 U02

0 U11 U12

0 0 U22

=

 Û−1
00 Û01 Û02

0 Û11 Û12

0 0 Û22




8
U11 :=U−1

11
U01 :=−U00U01U11

7


 U00 U01 U02

0 U11 U12

0 0 U22

=

 Û−1
00 −Û−1

00 Û01Û−1
11 Û02

0 Û−1
11 Û12

0 0 Û22




5b

(
UT L UT R

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22


2

{ (
UT L UT R

0 UBR

)
=

(
Û−1

T L ÛT R

0 ÛBR

) }
endwhile

2,3

{(
UT L UT R

0 UBR

)
=

(
Û−1

T L ÛT R

0 ÛBR

)
∧¬(m(UT L)< m(U))

}
1b {U = Û−1 }

Figure 1.2 Simple blocked algorithm for overwriting U with its inverse, annotated with its proof of
correctness.



1.2 An example 5

by (
UT L UT R

0 UBR

)
=

(
Û−1

T L ÛT R

0 ÛBR

)
,

which captures that so far the “Top-Left” quadrant has been inverted. For conciseness, some
information is implicit (e.g., the fact that U is itself upper triangular and that therefore other
submatrices of U have special properties.)

1.2.3 Deriving algorithms
The problem with this simple algorithm, which follows directly from (1.1), is that it casts
most computation in terms of multiplication with the upper triangular matrix U00, which turns
out to make it hard to achieve high performance on a parallel architecture [4]. What is needed
is a mechanism by which to identify multiple algorithms, in the hope of discovering one that
parallelizes well. We do so by systematically identifying multiple loop invariants, from which
algorithms can then be systematically derived.

We start with the PME given in (1.1):(
UT L UT R

0 UBR

)
=

(
Û−1

T L −Û−1
T L ÛT RÛ−1

BR

0 Û−1
BR

)
.

While a loop has not completed, only part of the final result has been computed. Hence, viable
loop invariants can be constructed by examining partial results exposed in the PME:

Invariant 1 Invariant 2 Invariant 3(
Û−1

T L ÛT R

0 ÛBR

) (
Û−1

T L −Û−1
T L ÛT RÛ−1

BR

0 ÛBR

) (
Û−1

T L −Û−1
T L ÛT R

0 ÛBR

)

Invariant 4 Invariant 5 Invariant 6(
ÛT L ÛT R

0 Û−1
BR

) (
ÛT L −Û−1

T L ÛT RÛ−1
BR

0 Û−1
BR

) (
ÛT L −ÛT RÛ−1

BR

0 Û−1
BR

)
.

.

Crucial to Dijkstra’s vision of deriving correct algorithms is determining the loop invariants a
priori.

The annotated algorithm in Fig. 1.2 now becomes a “worksheet,” to be filled out in the
order indicated by the numbers in the column labeled “Step.” First, we enter the precondition
and postcondition (Steps 1a and 1b). Then, we derive the PME and corresponding loop
invariants, entering a chosen invariant in the worksheet where it must hold true (Step 2,
in four places). By examining the loop invariant and postcondition, a loop guard (Step 3)
is prescribed. The precondition and the loop invariant prescribe the initialization (Step 4).
Because progress towards completion must be made, how to repartition (Steps 5a and 5b) is
prescribed. Determining the state of the exposed submatrices after repartitioning is a matter



6 Chapter 1 Applying Dijkstra’s vision to numerical software

Algorithm: [U ] := UINV BLK VAR1(U)

U →

(
UT L UT R

0 UBR

)
where UT L is 0×0

while m(UT L)< m(U) do
Determine block size b(

UT L UT R

0 UBR

)
→

 U00 U01 U02

0 U11 U12

0 0 U22

where U11 is b×b

Variant 1 Variant 2 Variant 3
U01 :=−U00U01

U12 :=−U−1
11 U12 U12 :=−U−1

11 U12

U02 :=U02 +U01U12

U01 :=U01U−1
11 U01 :=U01U−1

11
U12 :=U12U22

U11 :=U−1
11 U11 :=U−1

11 U11 :=U−1
11(

UT L UT R

0 UBR

)
←

 U00 U01 U02

0 U11 U12

0 0 U22


endwhile

Figure 1.3 Three algorithmic variants corresponding to Invariants 1–3. Computations such as U12 :=
−U−1

11 U12 are actually implemented by solving U11X =−U12, overwriting U12 with X , since
this is numerically more stable than first computing U11 := U−1

11 and then multiplying with
the result [4].

of textual substitution and the application of linear algebra rules (Step 6). Knowing that the
loop invariant must again hold at the bottom of the loop tells us what new state the exposed
submatrices must take on (Step 7), which the reader may recognize as computing the weakest
precondition. Comparing Steps 6 and 7 prescribes the updates that must happen (Step 8). Thus,
we derive the algorithm hand in hand with its proof of correctness, as Dijkstra advocated.

We give the algorithmic variants that result from applying this process to Invariants 1–3 in
Fig. 1.3. Invariants 4-6 give rise to algorithms that sweep through the matrix in the opposite
direction [4].

The question we are left with is which algorithmic variant to choose. Variant 2 casts most
of its computation in terms of the matrix-matrix multiplication U02 := U02 +U01U12. If U
is n× n and UT L is k× k then U02 is (n− k− b)× (n− k− b), U01 is (n− k− b)× b, and
U12 is b× (n− k− b). This is a shape of matrix-matrix multiplication that can attain high



1.3 Decades of research, development, and impact 7

performance on a single core, multiple cores, and distributed memory architectures (provided
n is large enough) [4].

While an unblocked version of Variant 2 (discovered through alternative means) was in-
cluded in LINPACK [10] , this variant originally did not appear in its successors, LAPACK [1]
and ScaLAPACK [7], which strived for high performance. Thus, the described methodology
yielded an important new blocked algorithm for inverting a triangular matrix, as it did for
many other linear algebra operations.

1.2.4 Representing algorithms in code
We have shared the FLAME notation for representing DLA algorithms and the FLAME
methodology for deriving them. When translating these derived-to-be-correct algorithms into
code, we use Application Programming Interfaces (APIs) that allow the implementation to
closely mirror the algorithm, so that correctness transfers [17, 5].

1.3 Decades of research, development, and impact
The illustrated techniques build on the pioneering work of Dijkstra and his contemporaries in
the 1960s and early 1970s. We now discuss how this has impacted numerical algorithms and
the architecture of related software libraries.

1.3.1 Parallel computing: Driving a desperate need for simplicity

[] as long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem, and now we
have gigantic computers, programming has become an equally gigantic problem.
– The Humble Programmer. Edsger W. Dijkstra (1972)

The need for hiding intricate indexing in software for DLA became particularly urgent with
the advent of distributed memory architectures. Not only did a program need to track with
what parts of a matrix to compute, but also on what node of the parallel computer what part
of a matrix resided. This necessitated APIs for the C programming language that somewhat
resembled the FLAME notation, as part of the PLAPACK DLA library [22] in the mid 1990s.

1.3.2 Notation, again
The first journal paper that used the FLAME notation presented a parallel variant on the
Gauss-Jordan algorithm with pivoting for inverting a matrix [21]. Although FLAME was not
discussed in that paper and was not yet formalized as a method, the algorithm was derived by
taking the classical approach that proceeds in three stages (LU decomposition with pivoting
followed by inversion of U followed by solving LX =U−1), deriving multiple algorithms for
each stage, and merging the loops for appropriate algorithms into one that sweeps through
the matrix only once. Interestingly, a request from a referee to discuss the numerical stability



8 Chapter 1 Applying Dijkstra’s vision to numerical software

of the resulting algorithm was satisfied by arguing that the new algorithm merely merged the
three stages of the traditional approach and hence inherited the numerical properties. Thus,
this work prefigured future development.

1.3.3 FLAME
First, one can remark that I have not done much more than to make explicit
what the sure and competent programmer has already done for years, be it
mostly intuitively and unconsciously. I admit so, but without any shame: making
his behaviour conscious and explicit seems a relevant step in the process of
transforming the Art of Programming into the Science of Programming. My point
is that this reasoning can and should be done explicitly. – A constructive approach
to the problem of program correctness. Edsger W. Dijkstra (1968) [8]

The science behind our discovery of algorithms, which we dubbed the Formal Linear Alge-
bra Methods Environment (FLAME), was first presented in a talk at the IFIP TC2/WG2.5
Working Conference on the Architecture of Scientific Software in 2000 [18], subsequently
appeared in the ACM Transactions on Mathematical Software (TOMS) in 2001 [17], and was
part of a first dissertation related to FLAME by John Gunnels [16]. This work gave an early
overview of the notation for presenting algorithms, the methodology for deriving them, and
the APIs for representing them in code.

1.3.4 Turning knowledge into a system

If one first asks oneself what the structure of a convincing proof would be and,
having found this, then constructs a program satisfying this proof’s requirements,
then these correctness concerns turn out to be a very effective heuristic guidance.
By definition this approach is only applicable when we restrict ourselves to
intellectually manageable programs, but it provides us with effective means for
finding a satisfactory one among these. – The Humble Programmer. Edsger W.
Dijkstra (1972)

The FLAME methodology captured how to turn a specification of a DLA operation (the
PME) into loop invariants and a loop invariant into a loop. Further progress came from
formulating these steps as the “worksheet,” illustrated in Figure 1.2, which made the process
more explicitly systematic [3]. We used this to teach the methodology to undergraduates with
limited linear algebra background. To their delight, deriving algorithms and translating them
into code with the FLAME APIs yielded implementations that often gave the right answer the
first time, despite the fact that the student often didn’t fully grasp what was being computed.



1.3 Decades of research, development, and impact 9

1.3.5 Making a system mechanical
Once the methodology became a worksheet, it became obvious that the derivation of algo-
rithms itself could be made mechanical. As part of his Ph.D. dissertation [2], Paolo Bientinesi
demonstrated this with a Mathematica implementation that took loop invariants as input and
generated worksheets for algorithms, typeset similar to the algorithm in Fig. 1.2. His research
group subsequently perfected these techniques into a tool, Cl1ck, that starts with the specifi-
cation of what is to be computed, produces one or more PMEs, derives loop invariants, and
eventually outputs code in a choice of languages [14, 13, 12].

1.3.6 Correctness in the presence of round-off error
Correctness of a program takes on a different meaning when floating point arithmetic is
employed. Generally, a numerical program is said to be correct (numerically stable) if it
computes in floating point arithmetic the exact solution of a nearby problem. The idea is
that the introduced error is indistinguishable from what results from a small error in the input
data. This is known as the backward error and the analysis that bounds this error is known as
a backward error analysis.

We have shown that backward error analyses for the algorithms that result from the
FLAME process can themselves be derived via a goal-oriented approach [2, 6].

1.3.7 Sidestepping the phase ordering problem
Given that the process generates a family of algorithms, a question becomes how to decide
what algorithm to use when. In Tze Meng Low’s dissertation [19], it is shown how a desirable
property of an algorithm can be recognized from the relationship between the loop invariant
and the PME from which it was obtained. For example, it can be determined whether a loop
can be reversed, whether it can be easily checkpointed for fault tolerance, whether the update
in the loop body parallelizes well, or whether multiple loops can be merged [20]. This, in
some sense, sidesteps the phase-ordering problem encountered in compiler optimization.

In that dissertation, the relation between the FLAME methodology and primitive recursive
functions is also explored.

1.3.8 Beyond Dense Linear Algebra
Had someone predicted twenty years ago that formal derivation would revolutionize the
development of high-performance DLA software, we would have been skeptical. Now that
we have demonstrated just that, the question becomes to what other important domains the
insights apply.

With our colleagues Victor Eijkhout and Paolo Bientinesi, we have successfully applied
the methodology to the derivation of so-called Krylov subspace methods for solving linear
systems involving sparse matrices [11]. Key is the insight pioneered by Alsten Householder



10 Chapter 1 Applying Dijkstra’s vision to numerical software

to assemble vectors from different iterations into the columns of matrices. This transforms the
problem into the DLA domain.

Tze Meng Low and collaborators have similarly recognized that many graph operations
can be expressed with matrices. This has allowed them to systematically discover high-
performance algorithms for that domain [].

1.3.9 Turning theory into practice: libflame

If you want more effective programmers, you will discover that they should not
waste their time debugging, they should not introduce the bugs to start with. – The
Humble Programmer. Edsger W. Dijkstra (1972)

Our basic thesis was that the FLAME methodology, in conjunction with the FLAME APIs,
fundamentally provided a better way for developing DLA software libraries. To test this, we
develop a new DLA library, libflame [23], with functionality that overlapped significantly
with LAPACK, reported to consist of millions of lines of code. For many of the most-used
operations, families of algorithms were derived and implemented so that the best member for
a given situation could be employed. In order to focus on the fundamental research, our motto
was “zero users, zero complaints,” which captures that if the world embraced the resulting
software too early, this could get in the way of scientific progress.

Over years of development, mostly by the primary developer of libflame (Field Van Zee),
hundreds of algorithms were derived and implemented. Notably, no test suite was created until
around five years into the project when a disruptive change to the underpinnings of the library
made this a prudent investment. The first time the test suite was run, ??? tests yielded a mere
handful of errors, exactly in the underpinnings that had changed. These were easily fixed.

Around 2008, a gift from Microsoft encouraged us to take libflame to the next level,
where it might actually attract users. This was subsequently further funded by grants from
NSF’s Software Infrastructure for Sustained Innovation (SI2) program. The resulting library
is now distributed under an open source license, is part of the AMD Optimizing CPU Libraries
(AOCL)2, and is being embraced by Oracle in an effort to provide a high-performance solution
for Java targeting machine learning applications. Despite now having a very large user base,
bug reports (which Dijkstra would call errors) have been extremely rare.

1.4 Educating the masses
Teaching to unsuspecting youngsters the effective use of formal methods is one of
the joys of life because it is so extremely rewarding. – On the Cruelty of Really
Teaching Computer Science. Edsger W. Dijkstra (1989)

2 https://developer.amd.com/amd-aocl/.



1.5 Conclusion 11

In the late 1990s, we started offering an undergraduate special topics course in which students
learned how to systematically derive algorithms using the FLAME methodology and the
discussed worksheet. Participants were amazed to find out that they could easily discover
new algorithms from the specification of a nontrivial linear algebra operation. Typically, their
implementation computed the correct answer the first time they ran it. Years later, many
recalled this as a transformative experience in their computer science education.

To share the practical importance of our use of formal methods for programming with
the world, we have developed a Massive Open Online Course (MOOC) titled “LAFF-On
Programming for Correctness,” offered on the edX platform3. This course consists of two
parts: The first part reviews the basics of logic needed to reason about programs, including
Hoare logic and how to identify, a priori, loop invariants. This culminates in a worksheet
similar to that given in Figure 1.2, but without the FLAME notation so that indices are
still explicitly exposed. Only after the learners haves mastered these tools do they finally
derive and implement their first program. The second part introduces the FLAME notation
so that the power of abstraction, and deriving algorithms hand in hand with their proofs
of correctness, is fully experienced. A straight forward translation into code then yields a
correct implementation that requires no testing. Thus, learners master and apply some of the
mathematics that underlies the discipline of programming.

1.5 Conclusion
I mean, if 10 years from now, when you are doing something quick and dirty,
you suddenly visualize that I am looking over your shoulders and say to yourself
“Dijkstra would not have liked this”, well, that would be enough immortality for
me. – EWD 1213

In view of the well-known advice ”Prevention is better than cure” not a surprising
conclusion; yet it was a conclusion with considerable effects. – Programming
methodologies, their objectives and their nature. EWD 469 [9]

It is not that we set out to make some of Dijkstra’s vision a reality in our area of expertise when
we embarked on our journey two decades ago. Instead, as we analyzed how we discovered
algorithms, we recognized we were, initially implicitly and eventually explicitly, applying and
refining techniques from formal methods. Dijkstra and his contemporaries were right; with
appropriate abstraction and notation, programming can be a constructive endeavor that yields
a proven-correct implementation. We would like to think that our work demonstrates this
convincingly, in part because in our field there are a clear measure of goodness: readability,
robustness, portability, and the ultimate (parallel) performance of the resulting software. We
believe that Dijkstra would have approved.

3 https://www.edx.org/course/laff-on-programming-for-correctness



12 Chapter 1 Applying Dijkstra’s vision to numerical software

Acknowledgments
The efforts described in this paper involved a large number of collaborators, including
members of the FLAME group (now called the Science of High-Performance Computing
group) at UT-Austin and elsewhere, most of whom are coauthors of the cited papers. We
additionally thank Dr. Tim Mattson of Intel and Dr. Laurent Visconti from Microsoft for being
patrons of this work at critical moments.

This work was supported in part by a number of National Science Foundation grants, in-
cluding Awards ACI-0305163, CCF-0342369, CCF-0850750, CCF-0917096, ACI-1148125,
and ACI-1550493. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Additional support came from various industrial sources, most notably Intel, MathWorks,
Microsoft, and NEC.



Bibliography
[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.

McKenney, S. Ostrouchov, and D. Sorensen. LAPACK users’ guide. SIAM, Philadelphia, 1992.

[2] Paolo Bientinesi. Mechanical derivation and systematic analysis of correct linear algebra algo-
rithms. PhD thesis, Department of Computer Sciences, The University of Texas, 2006. Technical
Report TR-06-46. September 2006.

[3] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and Robert A.
van de Geijn. The science of deriving dense linear algebra algorithms. ACM Transactions on
Mathematical Software, 31(1):1–26, March 2005.

[4] Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. Families of algorithms related to the
inversion of a symmetric positive definite matrix. ACM Trans. Math. Softw., 35(1), July 2008.

[5] Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear
algebra algorithms in code: the FLAME application program interfaces. ACM Trans. Math. Softw.,
31(1):27–59, March 2005.

[6] Paolo Bientinesi and Robert A. van de Geijn. Goal-oriented and modular stability analysis. SIAM
J. Matrix Anal. Appl., 32(1):286–308, March 2011.

[7] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library
for distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the
Frontiers of Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[8] Edsger W. Dijkstra. A constructive approach to the problem of program correctness. (8):174–186,
1968. EWD209.

[9] Edsger W. Dijkstra. Programming methodologies: their objectives and their nature. In D. Bates,
editor, Structured Programming, pages 203–216. Infotech International, 1976. EWD469.

[10] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK users’ guide. SIAM,
Philadelphia, 1979.

[11] Victor Eijkhout, Paolo Bientinesi, and Robert van de Geijn. Towards mechanical derivation of
Krylov solver libraries. Procedia Computer Science, 1(1):1805 – 1813, 2010. ICCS 2010.

[12] Diego Fabregat-Traver. Knowledge-based automatic generation of linear algebra algorithms and
code. PhD thesis, RWTH Aachen, April 2014.

[13] Diego Fabregat-Traver and Paolo Bientinesi. Automatic generation of loop-invariants for matrix
operations. In Computational Science and its Applications, International Conference, pages 82–
92, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[14] Diego Fabregat-Traver and Paolo Bientinesi. Knowledge-based automatic generation of par-
titioned matrix expressions. In Vladimir Gerdt, Wolfram Koepf, Ernst Mayr, and Evgenii

13



14 Bibliography

Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 6885 of Lecture Notes in
Computer Science, pages 144–157, Heidelberg, 2011. Springer.

[15] David Gries. The science of programming. Springer-Verlag, 1981.

[16] John A. Gunnels. A systematic approach to the design and analysis of parallel dense linear algebra
algorithms. PhD thesis, Department of Computer Sciences, The University of Texas, December
2001.

[17] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal Linear Algebra Methods Environment. ACM Transactions on Mathematical Software,
27(4):422–455, 2001.

[18] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance linear algebra
libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Architecture of Scientific
Software: IFIP TC2/WG2.5 Working Conference on the Architecture of Scientific Software October
2–4, 2000, Ottawa, Canada, pages 193–210. Springer US, Boston, MA, 2001.

[19] Tze Meng Low. A calculus of loop invariants for dense linear algebra optimization. PhD thesis,
The University of Texas at Austin, Department of Computer Science, December 2013.

[20] Tze Meng Low, Robert A. van de Geijn, and Field G. Van Zee. Extracting SMP parallelism for
dense linear algebra algorithms from high-level specifications. In Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, PPoPP ’05, pages 153–
163, New York, NY, USA, 2005. ACM.

[21] Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on parallel
matrix inversion. SIAM J. Sci. Comput., 22(5):1762–1771, 2001.

[22] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

[23] Field G. Van Zee, Ernie Chan, Robert A. van de Geijn, Enrique S. Quintana-Ortı́, and Gregorio
Quintana-Ortı́. The libflame library for dense matrix computations. Computing in Science
Engineering, 11(6):56–63, 2009.


