
LPGEMM Enhancements

in AOCL BLAS

Bhaskar Nallani

Mithun Mohan

Meghana Vankadari

2 |

[Public]

Agenda

Introduction to AOCL-BLAS and LPGEMM Addon

LPGEMM API: Signature, Supported APIs and Usage

Fusing Post-Ops with GEMM

Standalone API for Elementwise Ops

JIT based BF16 Kernel Generation

Performance and Feature Improvements

Q&A

3 |

[Public]

Introduction to AOCL-BLAS and LPGEMM Addon

• AOCL (AMD optimizing CPU Libraries) is AMD’s CPU Math Library tuned for AMD processors.

• AOCL-BLAS is a fork of BLIS library optimized as part of AOCL.

• AMD LPGEMM GitHub: https://github.com/amd/blis/tree/aocl-lpgemm

• AMD Toolchain Support: toolchainsupport@amd.com

• Low Precision GEMM (LPGEMM) was added as an addon named aocl_gemm in AOCL-BLAS 4.0.

• Need for an efficient Low Precision GEMM has increased significantly in recent times in Deep Learning Inferences.

• Uses reduced-precision data types like INT8, BF16, or even lower (e.g., INT4) instead of the standard FP32 or FP64.

• While using LPGEMM APIs user should consider to use weights as B matrix and activations as A matrix, where B matrix data is expected

reordered to use kernels with advanced instructions like AVX512_VNNI and AVX512_BF16.

• Optimized for efficiency in terms of both computation and memory usage. Lower precision allows for faster computations and reduced memory

bandwidth.

• Often involves techniques like row-wise quantization and outlier-aware quantization to minimize accuracy loss while maintaining efficiency which

needs mixed precision APIs and post-operations immediately after or before GEMM.

https://github.com/amd/blis/tree/aocl-lpgemm
mailto:toolchainsupport@amd.com

4 |

[Public]

LPGEMM APIs: Signature and Support

• API Naming Conventions

• Supported API’s

API Name Data Type ISA

aocl_gemm_<s8|u8>s8s32o<s32|s8>() INT8 AVX512_VNNI

aocl_gemm_<s8|u8>s8s16o<s16|s8|u8>() INT8 AVX2

aocl_gemm_bf16bf16f32o<f32|bf16>() BF16 AVX512_BF16

aocl_gemm_f32f32f32of32() Float AVX2/AVX512

aocl_gemm_bf16s4f32o<bf16|f32>()
Mixed

Precision
AVX512_BF16

aocl_gemm_s8s8s32os32(. . .)

a matrix

b/weight matrix

acc Type

output matrixaddon name

5 |

[Public]

LPGEMM APIs: Usage

• Example usage of int8 aocl_gemm API along with reorder

 dim_t size = aocl_gemm_get_reorder_size_s8s8s32os32(order, trans, mat_type, k, n);

 char * b_reorder = (char *) aligned_malloc(size);

 aocl_gemm_reorder_s8s8s32os32(order, trans, mat_type, *b, *b_reorder, n, k, ldb);

 aocl_gemm_s8s8s32os32(order, transa, transb,

 m, n, k, alpha,

 *a, lda, mem_tag_a,

 *b_reorder, ldb, mem_tag_b,

 beta, c, ldc,

 *post_op);

6 |

[Public]

Fusing Post-Ops with GEMM

• Fusing post-ops with GEMM at register level avoids multiple stores and loads to memory.

• Efficient post-ops dispatch with computed goto as illustrated in below diagram.

7 |

[Public]

Fusing Post-Ops with GEMM Cont.

Eltwise ops Description

BIAS
C (m x n) = [Beta*C + alpha*A*B] + bias_vector (1 x n)

Adding bias per channel

ReLU
Rectified Linear Unit

ReLU(x) = max(0,x)

PReLU
Parametric Rectified Linear Unit

f(x) = (alpha*x) when x < 0 and x when x > 0

GeLU Tanh
Gaussian Error Linear Unit with approximation method as Tanh

f(x) = 0.5* x * (1 + tanh (0.797884 * (x + (0.044715 * x^3))))

GeLU Erf
Gaussian Error Linear Unit

f(x) = 0.5* x * (1 + erf (x * 0.707107))

Mat Add
C := (beta * C + alpha * A * B) + D

Elementwise Addition

Mat Mul
C := (beta * C + alpha * A * B) x D x -

Elementwise Multiplication

Scale Scaling Supports Per Tensor/Channel

SWISH
Sigmoid Weighted Linear Unit when beta=1

swish(x) = x*sigmoid(beta*x)

CLIP Clip the output to a given min and max values

• Wide range of Post-ops are supported.

• Framework is enhanced to support applying

same post-op multiple times with different ops

data.
• For example, scaling before activation and scaling as part of

downscaling (before storing) with different scale factors.

• Supporting a max of 8 post-ops in fusing with all

GEMM APIs.

• Post-ops are optimized for AVX2 and AVX512.

8 |

[Public]

Standalone API for Elementwise Ops

aocl_gemm_eltwise_ops_bf16o<bf16|f32>(order, transa, transb,

 m , n,

 a, lda,

 b, ldb,

 postops_struct)

input matrix type

output matrix typeaddon name

9 |

[Public]

JIT based BF16 Kernel Generation
• GCC10.3 and below versions don’t support BF16 instructions, but Zen4 does support.

• Implemented BF16 kernels using JIT to provide support across variety of compilers/OS on Zen4.

• LPGEMM uses Xbyak (https://github.com/herumi/xbyak) to generate kernels Just-In-Time.

JIT

Generated

Init time

https://github.com/herumi/xbyak

10 |

[Public]

Performance Optimizations

• Downscale APIs where accumulation size is lesser than output size need an intermediate buffer to store.

• BLIS_BUFFER_FOR_A_BLOCK was used in AOCL-BLAS4.2 which has a lock.

• Multithread performance improved when changing the allocated buffer to BLIS_BUFFER_FOR_GEN_USE type

• Suboptimal code was generated by GCC from intrinsics for int8 fringe kernels where m<=4

• Introduced some dummy instructions such that GCC generates the best code.

• Performance improved by 15% for those individual kernels in the best case.

• Following optimizations done when n == 1 (LPGEMV) in all LPGEMM APIs

• Extended MR from 6 to 16 to increase register usage.

• Optimal parallelization is done only in m dimension

• Avoided reorder of B matrix to eliminate NC, NR loops.

• Added support for Transpose and Column Major for all applicable LPGEM API’s

• When B matrix is reordered and post-ops are enabled column major is not supported!

11 |

[Public]

Questions

12 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are

for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

13 |

[Public]

	Slide 1: LPGEMM Enhancements in AOCL BLAS
	Slide 2: Agenda
	Slide 3: Introduction to AOCL-BLAS and LPGEMM Addon
	Slide 4: LPGEMM APIs: Signature and Support
	Slide 5: LPGEMM APIs: Usage
	Slide 6: Fusing Post-Ops with GEMM
	Slide 7: Fusing Post-Ops with GEMM Cont.
	Slide 8: Standalone API for Elementwise Ops
	Slide 9: JIT based BF16 Kernel Generation
	Slide 10: Performance Optimizations
	Slide 11: Questions
	Slide 12: COPYRIGHT AND DISCLAIMER
	Slide 13

