
1

NVPL BLAS Overview
Evarist Fomenko | BLIS Retreat. Sep 26-27, 2024

2

• Overview

• Library Architecture

• Optimizations

GEMM u-kernel

Synchronization Overheads

Framework Overheads

• Conclusions

Agenda

3

Overview

• Part of Nvidia Performance Libraries

• Initial release NVPL 23.11 (Nov’23)

• Latest release NVPL 24.7 (Jul’24)

• API

• Standard Netlib API: F77 and C

• Extra: batch GEMM, threading control, verbosity, ...

• Interface

• LP64 and ILP64 interfaces

• Switched with -DNVPL_ILP64 compiler flag

• Different thread runtime: sequential and OpenMP (any vendor)

• Implementation

• Runtime dispatching based on CPU architecture

• Inspiration: BLIS, Intel MKL, ArmPL

NVPL BLAS

CBLAS F77 BLAS MiscAPI

Modified BLIS
In-house

implsCore

ASIMD SVE SVE2ISA

HW

LP64 (32bit) ILP64 (64bit)
Int

Type

Threading

Runtime

In
te

rf
a

c
e

Sequential OpenMP

Neoverse

V2

Neoverse

V1

Generic

SBSA
…

https://developer.nvidia.com/nvpl
https://developer.nvidia.com/nvpl-downloads

4

Library Architecture

Name: libnvpl_blas_{,i}lp64_{seq,gomp}.so

Symbol mangling: nvpl_blas_* (except for BLAS)

Responsibilities:

• Int32 / Int64 APIs
• Switched with -DNVPL_ILP64

• Threading RT

• Verbose

Depends: core, threading rt

Core

F77-like BLASIface-agnostic API

nvpl_blas_core_foo(thrImpl, int64_t, ...)

CPU Dispatcher

Memory Manager

cpu1: implementations
cpu2: implementations

cpuX: implementations

nvpl_blas_core_bar(...)

Interface

GetThrImpl()

CvtToInt64()

Verbose

F77 BLAS CBLAS
Threading

Control

Iface-agnostic

API

Threading

implementation
nvpl_blas_bar(...)

Name: libnvpl_blas_core.so

Symbol mangling: nvpl_blas_core_*

Responsibilities:

• Actual BLAS implementations (all int64)

• CPU dispatcher

• Memory manager

• Other service functionality

Depends: libc, lpthread, lm

5

Optimizations
Grace μ-kernel

• Very similar to a typical Armv8-A kernel, e.g. Cortex A57

• μ-kernels are written in assembler

• Statically generated using Python to easily adjust blocking, data types, and other factors

• Most gains come from proper memory prefetches

• Upside is around 5-10%

MR = 8 (alternative: 6)
NR = 6 (alternative: 8)
KC = 512
μdgemm_MRxNRxKC():
 VC(0:6,0:4) = 0

 .L_loop_k
 for uk = 0 .. 4:
 LD1 {VA(0).2d - VA(3).2d}, [ptrA], #64
 LD1 {VB(0).2d - VB(2).2d}, [ptrB], #48

 for n = 0 .. 6: # NR
 for m = 0 .. 4: # MR/2
 FMLA VC(n, m).2d, VA(m).2d, VB(n / 2).d[n % 2]

 SUB xk, xk, 4
 JNZ xk, .L_loop_k

 Cr[:, :] = alpha × VC(:, :) + beta × Cr[:, :]

4+3

loads

24

FMAs

A

B

24

regs

6

Optimizations
Grace μ-kernel

7

Optimizations
Reducing Synchronization Overheads

• Asynchronous creation of thread info (thrinfo_t) tree

• Faster broadcast

• Avoid 1 of 2 barriers by altering the shared space for sent object

• Replace 1 barrier for N*M threads with N independent barriers for M threads

• At matrix B packing, as there will be M barriers for N threads at matrix A packing

• Replace BLIS allocator with glibc malloc

• Consider improving/reimplementing the allocator or using something like tcmalloc/jemalloc/etc.

• Some implementation rework to avoid redundant barriers

Execution
l3_int() → gemm_blk_var2() →
l3_int() → gemm_blk_var3() →
l3_int() → [barrier()] → l3_pack_b() → [barrier()] →
l3_int() → gemm_blk_var1() →
l3_int() → [barrier()] → l3_pack_a() → [barrier()] →
l3_int() → gemm_ker_var2() →
→

μgemm()

8

Optimizations
Reducing Synchronization Overheads

9

Optimizations
Reducing Framework Overheads

Replace BLIS abstraction for computing
BLAS Level 3 operations for GEMM with a
direct implementation

• This gives the best performance.

• Driver is only 500 lines of code.

• Tried to optimize the abstractions.

• No luck up until now.

• Might need to do the same for the
remaining BLAS Level 3 ops.

Before After

643

1 thr

86.8%, 33.6 Gflop 97.4%, 38.5 GFlops

5123

1 thr

99.4%, 46.6 GFlop 99.8%, 47.0 GFlops

5123

16 thr

92.9%, 689 GFlop 95.6%, 713 GFlops

10

Optimizations
Reducing Framework Overheads

Nvidia Grace CPU Superchip AWS Graviton 3

1

th
re

a
d

8

th
re

a
d

s

7
2

 (
6

4
)

th
re

a
d

s

11

Conclusion and Next Steps

• NVPL BLAS is based on BLIS with few library architecture extensions to suite binary distribution model

• BLIS is a very powerful and flexible framework with amazing code reuse

• Abstractions and flexibility don’t come for free

• Nvidia Grace CPU doesn’t require complicated low-level programming

NVPL BLAS next steps

• Extend the functionality

• Continue performance optimizations

• Small shaped GEMMs

• Non-GEMM BLAS Level 3

• Improving thread decomposition

• Direct complex GEMM implementation

• BLAS Level 1 and 2

12

	Slide 1: NVPL BLAS Overview
	Slide 2
	Slide 3: Overview
	Slide 4: Library Architecture
	Slide 5: Optimizations
	Slide 6: Optimizations
	Slide 7: Optimizations
	Slide 8: Optimizations
	Slide 9: Optimizations
	Slide 10: Optimizations
	Slide 11: Conclusion and Next Steps
	Slide 12

