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Motivation
• Many new BLAS implementations

• Use of low-precision accelerators
• Including integer arithmetic accelerators

• [1]  “DGEMM on Integer Matrix Multiplication Unit”, Ootomo, Ozaki, Yokota, 2024 
• Yesterday’s talk by Devangi Parikh and Greg Henry

• Use of Strassen-like algorithms

• What can/should a BLAS implementation guarantee?
• Can we design tests that cannot be “gamed”, even if tests are 

public but BLAS source code is not (proprietary)?
• Approach: “Reverse engineer” the underlying algorithm



Possible Grades for GEMM: 
For data in “some range,” GEMM satisfies:

• Bound 1 (norm-wise): Grade = “C”
• ∥ 𝑓𝑙 𝐴 ∗ 𝐵 − 𝐴 ∗ 𝐵 ∥ ≤ 𝑓 𝑛 𝜀 ∥ 𝐴 ∥ ∥ 𝐵 ∥

• Can be satisfied by Strassen-like algorithms, enough for many backward error 
analyses (D., Dumitriu, Holtz, [2,3], Ballard et al [6], D., Higham [7])

• Bound 2 (component-wise): Grade = “A” 
• ∀𝑖, 𝑗: 𝑓𝑙 𝐴 ∗ 𝐵 𝑖, 𝑗 − 𝐴 ∗ 𝐵 𝑖, 𝑗 ≤ 𝑓 𝑛 𝜀( 𝐴 ∗ 𝐵 )(𝑖, 𝑗)

• Must do O(𝑛3) flops, so only classical matmul, not Strassen-like (Miller [4])
• Invariant under diagonal scaling 𝐴 → 𝐷1 ∗ A ∗ 𝐷3 ,  𝐵 → 𝐷3

−1 ∗ 𝐵 ∗ 𝐷2

• Bound 3 (mixed) : Grade = “B”
• ∀𝑖, 𝑗: 𝑓𝑙 𝐴 ∗ 𝐵 𝑖, 𝑗 − 𝐴 ∗ 𝐵 𝑖, 𝑗 ≤ 𝑓 𝑛 𝜀 ∥ 𝐴 𝑖, : ∥ ∥ 𝐵 : , 𝑗 ∥

• “Between” Bounds 1 and 2; invariant under diagonal scaling with 𝐷1 and 𝐷2, not 𝐷3
• Ideally, any BLAS implementation should publish what bounds it satisfies



Test 1: Strassen vs classical

• Test 1a - Gamable
• 𝐴 = randn(𝑛, 𝑛), 𝐵 = randn(𝑛, 𝑛), set a few randomly chosen rows of 𝐴 and 

columns of 𝐵 to zero, so corresponding rows and columns of 𝐴 ∗ 𝐵 are zero
• Strassen will not compute these as zero (w.h.p.)
• But easy to game by scaling with 𝐷1,𝐷2 so ∥ 𝐷1𝐴 𝑖, : ∥ = ∥ 𝐵𝐷2 : , 𝑗 ∥ = 1 to 

attain Bound 3 for Strassen, can detect and fix zero rows and columns of  𝐴 ∗ 𝐵
• Test 1b – Not Gamable

• Pick some random rows of 𝐴, make ~50% randomly sparse, pick equally many 
random columns of 𝐵, make complementarily sparse to a sparse row of A, so 
corresponding random entries of 𝐴 ∗ 𝐵 are exactly sums of zeros

• Strassen will not compute all these entries of 𝐴 ∗ 𝐵 as zero (w.h.p), not gamable.
• Can determine size of base case 𝑛0 for Strassen, when switch to 𝑂(𝑛0

3) algorithm



Test 2: Given 𝑂(𝑛3) matmul, distinguish     
standard floating point from arithmetic as in [1]
• Problem with [1]: zeros out tiny entries, even if these would be multiplied 

by large entries in other matrix
• Creates error in 𝑖-th row of A proportional to 𝜀 ∥ 𝐴 𝑖, : ∥, ditto for 𝑗-th col of 𝐵
• Can only satisfy Bound 3, unless slower for matrices with big number ranges

• Test 2a - Gamable
• Scale 𝐴 → 𝐴 ∗ 𝐷3, 𝐵 → 𝐷3

−1 ∗ 𝐵 where 𝐷3 has large range of diagonal values
• Either much slower, or less accurate than floating point result
• Gamable, by prescaling each 𝐴 : , 𝑖 and 𝐵 𝑖, : with 𝐷3 to have nearly equal norms

• Test 2b – Not Gamable
• Take scaled 𝐴 and 𝐵, circularly shift 𝑖-th row of 𝐴 (col of 𝐵) right (down) by 𝑖
• Each row and col of 𝐴 and 𝐵 has same norm so diagonal scaling pointless
• All diagonal entries of 𝐴 ∗ 𝐵 should be accurate in standard floating point, not [1]



Test 3: Given Strassen-like matmul, distinguish 
standard floating point from arithmetic as in [1]

• Much trickier: so far
• Depends on “Strassen-like” algorithm (we know how to do classical Strassen)
• Depends on base case size 𝑛0: when recurrence shifts to 𝑂(𝑛0

3) algorithm

• Test3a – Gamable
• Choose 𝑛 = 2𝑘, scale 𝐴, 𝐵 with 𝐷3 𝑖, 𝑖 = 2(2(𝑖 𝑚𝑜𝑑 2) −1)𝑚 = 2±𝑚, 𝑚 large
• Strassen will maintain scaling pattern on each recursive call (not down to 1)
• Accurate (Bound 2) if floating point used, not [1]

• Test 3b – Not Gamable
• Various tricks needed, eg modify last row (col) of 𝐴 𝐵 to avoid being able to 

unscale with 𝐷3



What about 𝑓(𝑛)?

• Actually 𝑓(𝑚, 𝑛, 𝑘), where 𝐴𝑚 𝑥 𝑛 and 𝐵𝑛 𝑥 𝑘

• Depends on algorithm and choice of norm
• Non-Strassen, floating point, 𝑚 = 𝑘 = 1 (dot products)

• Worst case: depends on summation order and input values
• From 𝑂(𝑙𝑜𝑔2𝑛) (binary tree) to 𝑂(𝑛) (linear)

• Average case (e.g. random input values)
• Expect 𝑂(𝑛) to drop to 𝑂( 𝑛)

• 𝑓(𝑛) graded separately from Bounds 1, 2 and 3



Future work and open questions

• Test for possible uses of different algorithm/arithmetic depending 
on problem sizes?

• Should we test for use of higher internal precision than used for 
inputs and outputs? Ex: TPUs, talk by Parikh/Henry

• Other BLAS3
• TRSM might be trickier: Is T = [I, T12; 0, I] enough, i.e. reduction to matmul?

• BLAS2 and BLAS1
• Easier: no Strassen

• Correct propagation of Infs and NaNs …



Update on Exception Handling for BLAS + LAPACK

• Presented in BLIS Retreat 2021, progress since then
• [5] “Proposed Consistent Exception Handling for the BLAS and 

LAPACK”, J. Demmel, J. Dongarra,  M. Gates, G. Henry,   J. Langou,        
X. S. Li, P. Luszczek, W. Pereira, J. Riedy, C. Rubio-Gonzalez, 
(CORRECTNESS’22), Nov 2022                                                                      
(longer version at arxiv.org/abs/2207.09281, ~90 pages)

• NSF/DOE proposal submitted to Correctness call
• Plan to form working group of stakeholders (both users and providers)                 

to advise on next steps

• Exception handling under active discussion in 754 and P3109 floating 
point standards committees



“Consistent” Exception Handling Goals 
for BLAS and LAPACK

• If NaNs or Infs are inputs, or created while running
1. The program will still terminate

• Undecidable in general, we refer to constructs that can fail if a NaN appears, but are 
assumed to terminate otherwise, like 

repeat … until (error < tolerance)
2. Either 

• NaNs and Infs propagate to the output in some way (either in a floating point output, or 
“flag”) so they are not “lost,” or 

• They are dealt with explicitly by the programmer, or
• There are some simple, well-documented, “user-approved” cases where they do not 

propagate (ex: C = 0*A*B +0*C)
3. For LAPACK, provide reporting (using INFO and more)

• No changes to BLAS interfaces
• Satisfy user and DOE requests for LAPACK

10



Inconsistent BLAS Exception Handling (1/3):
ISAMAX:  return index i of largest |A(i)|

• Code:
isamax = 1,  smax = abs(A(1))
for i = 2:n
    if (abs(A(i)) .gt. smax)  isamax = i, smax = abs(A(i))

• Inconsistency:
• isamax([0, NaN, 2]) = 3  
• isamax([NaN, 0, 2]) = 1

• How to make consistent:
• Point to NaN, if one exists, or (first) largest number?
• We recommend NaN 

• ICAMAX: even worse
• ICAMAX([OV + i*OV, Inf + i*0]) = 1
• Can get wrong answer with all finite inputs

• Challenge: this (inconsistent) behavior is a standard!
11



Inconsistent BLAS Exception Handling (2/3):
TRSV:  Solve T*x = b, T triangular

• T can be upper (U) or lower (L), general or “unit” (T(i,i)=1)
• Inconsistency:

• U1 = [1, NaN; 0, NaN], b1 = [1;0] ⇒ x1 = [1;0]; 
• NaNs do not propagate;  TRSV checks for trailing 0s in b, ignores cols of U

• U2 = [1, NaN, 1; 0, 1, 1; 0, 0, 1], b2 = [2;1;1] ⇒ x2 = [1; 0; 1]
• NaNs do not propagate; TRSV checks for 0s in x, does not multiply by them

• L = U1^T, b = b1; solve L^T*x=b (same as 1st example) ⇒ x = [NaN; NaN]
• TRSV does not check for zeros in this case

• How to make consistent: Depends on what NaN means
• If NaN means some finite number, 0*NaN = 0 is ok
• If NaN means “anything”, 0 * NaN = NaN  (IEEE 754 rules)
• We choose latter

• Challenge: this (inconsistent) behavior is a standard!
• And potentially much faster, O(n) vs O(n^2), sometimes
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What about the Sparse BLAS? (3/3)

• Similar issues, and more
• SPMV: y = A*x 

• If x(i) = Inf or NaN, and A(j,i) = 0 not stored, then ignore A(j,i)*x(i)
• But what if register blocking introduces an explicit zero (eg an 

optimization in OSKI)?
• Possible way forward: have a “paranoid” version that handles exceptions 

consistently, and a “reckless” version that is just as fast as possible
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