A Distributed Multilinear Algebra Library for Deep Learning

BLIS Retreat 2024

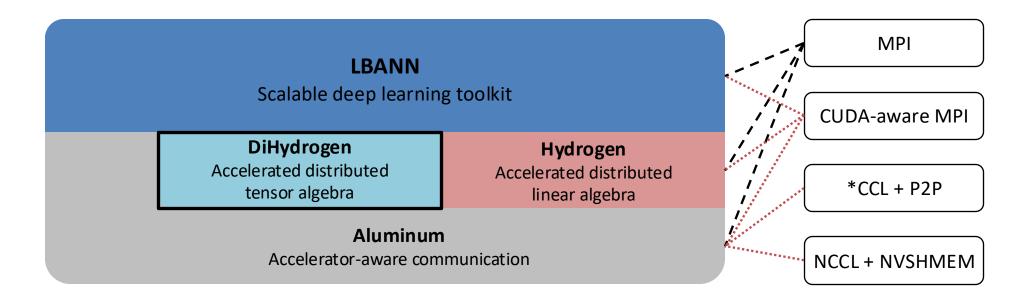
26 September, 2024

LLNL-PRES-869692

Nikoli Dryden on behalf of the Hydrogen, Aluminum, & LBANN teams and many collaborators

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

HAL: LLNL's deep learning stack for leadership-class HPC systems



- Open-source libraries
- C++ / MPI / OpenMP
 - CUDA + cuDNN + NCCL + NVSHMEM
 - ROCm + MIOpen + RCCL
 - OneDNN

- PyTorch interface via Torch Dynamo and Torch Inductor
- Support for model exchange with PyTorch

A brief history of HAL

≤2013: Elemental

2015: LBANN

2017: Hydrogen (fork of Elemental)

2018: Aluminum

2019: Distconv

[Many other things omitted...]

2023: DiHydrogen (in development)

... Today

```
Elemental: A New Framework for Distributed Memory
Dense Matrix Computations
                                                   ACM TOMS 2013
LBANN: Livermore Big Artificial Neural Network HPC
                            Toolkit
                                                       MLHPC 2015
     Aluminum: An Asynchronous, GPU-Aware
Communication Library Optimized for Large-Scale
Training of Deep Neural Networks on HPC Systems
                                                      MLHPC 2018
Improving Strong-Scaling of CNN Training by
       Exploiting Finer-Grained Parallelism
                                                       IPDPS 2019
Channel and Filter Parallelism for Large-Scale CNN Training
                                              Supercomputing 2019
Looking for info on use of Elemental in LBANN #179
 Closed
       rvdg opened this issue on Mar 28 · 1 comment
     rvdq commented on Mar 28
                                                               . . .
     Greetings
     I am trying to get in touch with whoever forked Elemental for use in LBANN and/or has or had involvement in that effort.
     Kindly contact me at rvdg@cs.utexas.edu
     Thanks
     Robert
```


Challenges of large-scale scientific machine learning

Massive data sets (number of samples)

- Challenges: Data parallelism provides limited scaling as learning is impacted by large mini-batch sizes
- Solutions: Tournament learning methods with partitioned data sets

Large sample sizes

- Challenges: Single sample and neural network activations do not fit on single accelerator
- Solutions: Distributed convolutions with halo exchanges

Large models

- Challenges: Model weights do not fit on a single accelerator
- Solutions: Model- and sub-graph parallelism splits model compute graph over multiple accelerators

Complex models

- Challenges: Models are highly interconnected and require irregular communication (graph neural networks)
- Solutions: Communication-efficient dense-scatter algorithms

Complex algorithms

- Challenges: Second-order optimization methods are expensive to compute and have high memory requirements
- Solutions: Sub-graph parallelism splits optimizer state over multiple accelerators

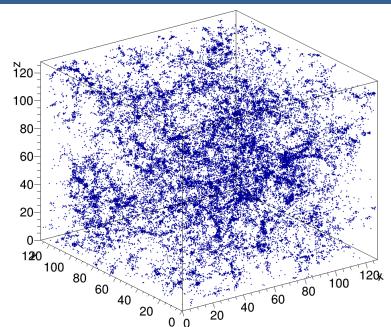
Why another DL framework?

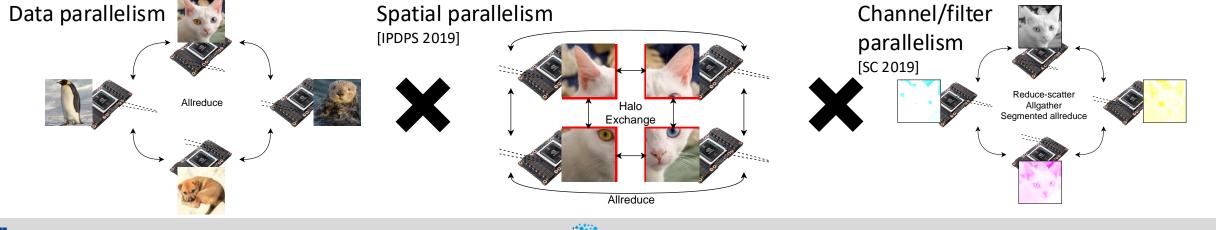
- Existing frameworks did not offer sufficient performance at scale
 - Not easy to conduct surgery to improve them
 - (Becoming less true for LLM workloads: Megatron, DeepSpeed, Torch Titan, etc.)
- Python is a distributed denial-of-service attack on your supercomputer
- Memory and communication inefficiencies
- Support leadership-class systems with unusual hardware
- Enable near-peak performance for critical workloads
- Be a vehicle for DL systems R&D

LBANN is a training deployment framework for LLNL's bespoke application needs

Distributed convolutions for very large data samples

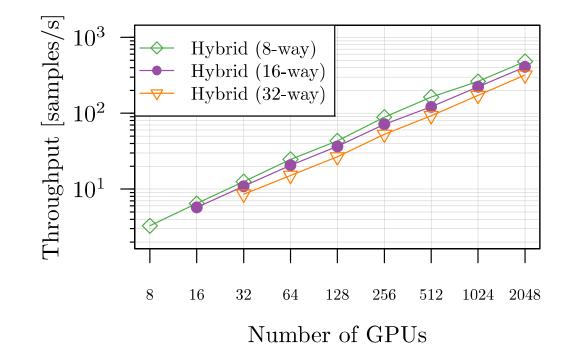
- Surrogate models for simulations require very large input data volumes
- CosmoFlow: 512³, 4 channels, 2 bytes/element
 - MLPerf-HPC uses a smaller version (128³)
 - 1 GiB per sample
 - Regression model does not fit into most accelerator's memory
 - Tensor strides need 64-bit integers





Spatial parallelism enables new scales for CNNs

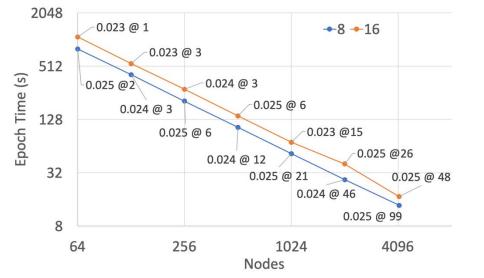
- CosmoFlow network with 512³ samples
- Lassen (4x V100 / node)
- Network requires ~53 GiB / sample
- Standard data parallelism is not possible

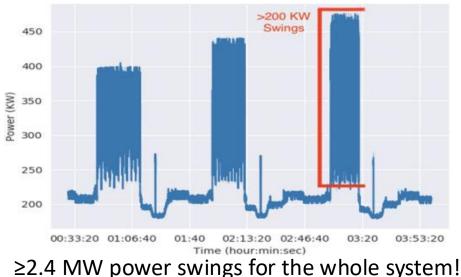


Oyama et al., "The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism." IEEE TPDS 2020

Tournament voting algorithms for extreme-scale training

- Many trainers with partitioned datasets
- Periodically exchange models with random peers and run local tournament
- Enables scaling to full Sierra (4160 nodes)
- 2020 Gordon Bell COVID-19 Special Prize finalist





What does a deep learning need from a multilinear algebra library?

Not a lot

- (But if you give us more toys, we'll find a way to (ab)use them.)
- (Distributed) (Batched) Matrix-matrix multiply + BLAS1
 More generally: Einstein summation support
- Convolutions
- A handful of sparse operations for GNNs
- Block distributions of multi-dimensional arrays
- Communication operations
- Low & mixed precision computations (FP16, BF16, FP8, int8, ...)
- Really high performance on accelerators

BERT _{LARGE}		
Operator class	% flop	% runtime
Tensor contraction	99.8	61.0
Statistical normalization	0.17	25.5
Element-wise	0.03	13.5
	0.2%	% 39 %

Limitations of Elemental/Hydrogen: We need tensors

- CNNs and transformers need 3d–5d tensors
 - Batch x Channels x Height x Width x Depth or Batch x Sequence x Embedding
- Block distributions
 - Elemental distributions are less useful
- Multi-dimensional permutations are critical
 - Convolution prefers channels-last
 - Multi-head attention shifts sequence and embedding
- Data partitioning and redistribution needs this semantic information
- Matrices (order-2 tensors) are not sufficient
- More complicated partitioning schemes are needed

Future needs for large-scale deep learning training (non-exhaustive)

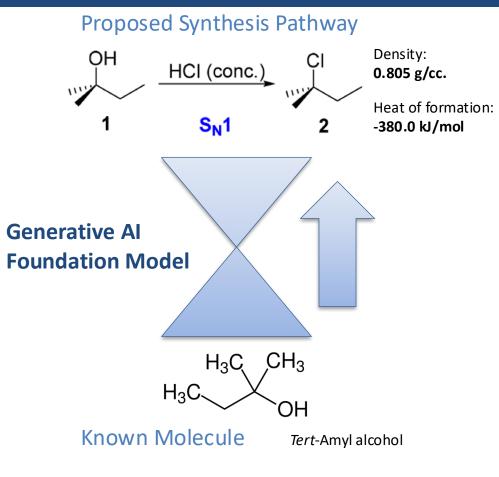
- Enable performance on emerging architectures:
 - El Capitan supercomputer at LLNL
 - MI300A APUs & Grace-Hopper superchips provide unified memory
 - Multi-node NVLink (NVL72) provide large cliques of high-bandwidth connectivity
- Fault tolerance and elasticity for long runs (weeks to months)
- Composition of many parallelism modes while maintaining efficiency
- High performance for our workloads: Being 10% faster matters!

FLASK: Foundation Learning AI for Synthesis Knowledge

Supply chain issues and new threats require rapid discovery and manufacture of materials

FLASK is creating a foundation model for molecular design and synthesis pathway prediction:

- 1. Predict novel molecules with specified properties
- 2. Enable lead molecule design generate candidate molecules with similar structure and properties
- Predict synthesis pathways for known and novel compounds
- 4. Enable pathway optimization based on SME inputs



Supports LBANN as a high-performance training deployment framework for our apps

