
Notes on the Symmetric QR Algorithm

Robert A. van de Geijn

Department of Computer Science

The University of Texas

Austin, TX 78712

rvdg@cs.utexas.edu

November 4, 2014

The QR algorithm is a standard method for computing all eigenvalues and eigenvectors of a matrix. In
this note, we focus on the real valued symmetric eigenvalue problem (the case where A ∈ Rn×n. For this
case, recall the Spectral Decomposition Theorem:

Theorem 1. If A ∈ Rn×n then there exists unitary matrix Q and diagonal matrix Λ such that A = QΛQT .

We will partition Q =
(
q0 · · · qn−1

)
and assume that Λ = diag(λ0, · · · , λn−1) so that throughout

this note, qi and λi refer to the ith column of Q and the ith diagonal element of Λ, which means that each
tuple (λ, qi) is an eigenpair.

1 Subspace Iteration

We start with a matrix V ∈ Rn×r with normalized columns and iterate something like

V (0) = V

for k = 0, . . . convergence

V (k+1) = AV (k)

Normalize the columns to be of unit length.

end for

The problem with this approach is that all columns will (likely) converge to an eigenvector associated with
the dominant eigenvalue, since the Power Method is being applied to all columns simultaneously. We will
now lead the reader through a succession of insights towards a practical algorithm.

Let us examine what V̂ = AV looks like, for the simple case where V =
(
v0 v1 v2

)
(three columns).

We know that
vj = Q QT vj︸ ︷︷ ︸

yj

.

Hence

v0 =

n−1∑
j=0

ψ0,jqj ,

1

v1 =

n−1∑
j=0

ψ1,jqj , and

v2 =

n−1∑
j=0

ψ2,jqj ,

where ψi,j equals the ith element of yj . Then

AV = A
(
v0 v1 v2

)
= A

(∑n−1
j=0 ψ0,jqj

∑n−1
j=0 ψ1,jqj

∑n−1
j=0 ψ2,jqj

)
=

(∑n−1
j=0 ψ0,jAqj

∑n−1
j=0 ψ1,jAqj

∑n−1
j=0 ψ2,jAqj

)
=

(∑n−1
j=0 ψ0,jλjqj

∑n−1
j=0 ψ1,jλjqj

∑n−1
j=0 ψ2,jλjqj

)
• If we happened to know λ0, λ1, and λ2 then we could divide the columns by these, respectively, and

get new vectors(
v̂0 v̂1 v̂2

)
=
(∑n−1

j=0 ψ0,j

(
λj

λ0

)
qj

∑n−1
j=0 ψ1,j

(
λj

λ1

)
qj

∑n−1
j=0 ψ2,j

(
λj

λ2

)
qj

)

=

 ψ0,0q0+∑n−1
j=1 ψ0,j

(
λj

λ0

)
qj

ψ1,0

(
λ0

λ1

)
q0+

ψ1,1q1+∑n−1
j=2 ψ1,j

(
λj

λ1

)
qj

ψ2,0

(
λ0

λ2

)
q0 + ψ2,1

(
λ1

λ2

)
q1+

ψ2,2q2+∑n−1
j=3 ψ2,j

(
λj

λ2

)
qj

 (1)

• Assume that |λ0| > |λ1| > |λ2| > |λ3| ≤ · · · ≤ |λn−1|. Then, similar as for the power method,

– The first column will see components in the direction of {q1, . . . , qn−1} shrink relative to the
component in the direction of q0.

– The second column will see components in the direction of {q2, . . . , qn−1} shrink relative to the
component in the direction of q1, but the component in the direction of q0 increases, relatively,
since |λ0/λ1| > 1.

– The third column will see components in the direction of {q3, . . . , qn−1} shrink relative to the
component in the direction of q2, but the components in the directions of q0 and q1 increase,
relatively, since |λ0/λ2| > 1 and |λ1/λ2| > 1.

How can we make it so that vj converges to a vector in the direction of qj?

• If we happen to know q0, then we can subtract out the component of

v̂1 = ψ1,0
λ0
λ1
q0 + ψ1,1q1 +

n−1∑
j=2

ψ1,j
λj
λ1
qj

in the direction of q0:

v̂1 − qT0 v̂1q0 = ψ1,1q1 +

n−1∑
j=2

ψ1,j
λj
λ1
qj

so that we are left with the component in the direction of q1 and components in directions of q2, . . . , qn−1

that are suppressed every time through the loop.

• Similarly, if we also know q1, the components of v̂2 in the direction of q0 and q1 can be subtracted from
that vector.

2

• We do not know λ0, λ1, and λ2 but from the discussion about the Power Method we remember that
we can just normalize the so updated v̂0, v̂1, and v̂2 to have unit length.

How can we make these insights practical?

• We do not know q0, q1, and q2, but we can informally argue that if we keep iterating,

– The vector v̂0, normalized in each step, will eventually point in the direction of q0.

– Span(v̂0, v̂1) will eventually equal Span(q0, q1).

– In each iteration, we can subtract the component of v̂1 in the direction of v̂0 from v̂1, and then
normalize v̂1 so that eventually result in a the vector that points in the direction of q1.

– Span(v̂0, v̂1, v̂2) will eventually equal Span(q0, q1, q2).

– In each iteration, we can subtract the component of v̂2 in the directions of v̂0 and v̂1 from v̂2, and
then normalize the result, to make v̂2 eventually point in the direction of q2.

What we recognize is that normalizing v̂0, subtracting out the component of v̂1 in the direction of v̂0, and then
normalizing v̂1, etc., is exactly what the Gram-Schmidt process does. And thus, we can use any convenient
(and stable) QR factorization method. This also shows how the method can be generalized to work with
more than three columns and even all columns simultaneously.

The algorithm now becomes:

V (0) = In×p (In×p represents the first p columns of I)

for k = 0, . . . convergence

AV (k) → V (k+1)R(k+1) (QR factorization with R(k+1) ∈ Rp×p)
end for

Now consider again (1), focusing on the third column:
ψ2,0

(
λ0

λ2

)
q0 + ψ2,1

(
λ1

λ2

)
q1+

ψ2,2q2+∑n−1
j=3 ψj

(
λj

λ2

)
qj

 =


ψ2,0

(
λ0

λ2

)
q0 + ψ2,1

(
λ1

λ2

)
q1+

ψ2,2q2+

ψj

(
λ3

λ2

)
q3 +

∑n−1
j=4 ψ2,j

(
λj

λ2

)
qj

 .

This shows that, if the components in the direction of q0 and q1 are subtracted out, it is the component in

the direction of q3 that is deminished in length the most slowly, dictated by the ratio
∣∣∣λ3

λ2

∣∣∣. This, of course,

generalizes: the jth column of V (k), v
(k)
i will have a component in the direction of qj+1, of length |qTj+1v

(k)
j |,

that can be expected to shrink most slowly.
We demonstrate this in Figure 1, which shows the execution of the algorithm with p = n for a 5 × 5

matrix, and shows how |qTj+1v
(k)
j | converge to zero as as function of k.

Next, we observe that if V ∈ Rn×n in the above iteration (which means we are iterating with n vectors
at a time), then AV yields a next-to last column of the form

∑n−3
j=0 γn−2,j

(
λj

λn−2

)
qj+

ψn−2,n−2qn−2+

ψn−2,n−1

(
λn−1

λn−2

)
qn−1

 ,

where ψi,j = qTj vi. Thus, given that the components in the direction of qj , j = 0, . . . , n−2 can be expected in
later iterations to be greatly reduced by the QR factorization that subsequently happens with AV , we notice

that it is
∣∣∣λn−1

λn−2

∣∣∣ that dictates how fast the component in the direction of qn−1 disappears from v
(k)
n−2. This

3

Figure 1: Convergence of the subspace iteration for a 5 × 5 matrix. This graph is mislabeled: x should be
labeled with v. The (linear) convergence of vj to a vector in the direction of qj is dictated by now quickly
the component in the direction qj+1 converges to zero. The line labeled |qTj+1xj | plots the length of the
component in the direction qj+1 as a function of the iteration number.

is a ratio we also saw in the Inverse Power Method and that we noticed we could accelerate in the Rayleigh
Quotient Iteration: At each iteration we should shift the matrix to (A − µkI) where µk ≈ λn−1. Since the

last column of V (k) is supposed to be converging to qn−1, it seems reasonable to use µk = v
(k)T
n−1Av

(k)
n−1 (recall

that v
(k)
n−1 has unit length, so this is the Rayleigh quotient.)

The above discussion motivates the iteration

V (0) := I (V (0) ∈ Rn×n!)

for k := 0, . . . convergence

µk := v
(k)T
n−1Av

(k)
n−1 (Rayleigh quotient)

(A− µkI)V (k) → V (k+1)R(k+1) (QR factorization)

end for

Notice that this does not require one to solve with (A − µkI), unlike in the Rayleigh Quotient Iteration.
However, it does require a QR factorization, which requires more computation than the LU factorization
(approximately 4

3n
3 flops).

We demonstrate the convergence in Figure 2, which shows the execution of the algorithm with a 5 × 5

matrix and illustrates how |qTj v
(k)
n−1| converge to zero as as function of k.

4

0 5 10 15 20 25 30 35 40

10−15

10−10

10−5

100

k

le
ng

th
 o

f c
om

po
ne

nt
 in

 d
ire

ct
io

n
...

| q0

T x4
(k) |

| q1
T x4

(k) |

| q2
T x4

(k) |

| q3
T x4

(k) |

Figure 2: Convergence of the shifted subspace iteration for a 5 × 5 matrix. This graph is mislabeled: x
should be labeled with v. What this graph shows is that the components of v4 in the directions q0 throught
q3 disappear very quickly. The vector v4 quickly points in the direction of the eigenvector associated with the
smallest (in magnitude) eigenvalue. Just like the Rayleigh-quotient iteration is not guaranteed to converge
to the eigenvector associated with the smallest (in magnitude) eigenvalue, the shifted subspace iteration
may home in on a different eigenvector than the one associated with the smallest (in magnitude) eigenvalue.
Something is wrong in this graph: All curves should quickly drop to (near) zero!

2 The QR Algorithm

The QR algorithm is a classic algorithm for computing all eigenvalues and eigenvectors of a matrix. While
we explain it for the symmetric eigenvalue problem, it generalizes to the nonsymmetric eigenvalue problem
as well.

2.1 A basic (unshifted) QR algorithm

We have informally argued that the columns of the orthogonal matrices V (k) ∈ Rn×n generated by the
(unshifted) subspace iteration converge to eigenvectors of matrix A. (The exact conditions under which
this happens have not been fully discussed.) In Figure 3 (left), we restate the subspace iteration. In it,

we denote matrices V (k) and R(k) from the subspace iteration by V̂ (k) and R̂ to distinguish them from
the ones computed by the algorithm on the right. The algorithm on the left also computes the matrix
Â(k) = V (k)TAV (k), a matrix that hopefully converges to Λ, the diagonal matrix with the eigenvalues of A
on its diagonal. To the right is the QR algorithm. The claim is that the two algorithms compute the same
quantities.

Exercise 2. Prove that in Figure 3, V̂ (k) = V (k), and Â(k) = A(k), k = 1,

5

Subspace iteration QR algorithm

Â(0) := A

V̂ (0) := I

for k := 0, . . . until convergence

AV̂ (k) → V̂ (k+1)R̂(k+1) (QR factorization)

Â(k+1) := V̂ (k+1)TAV̂ (k+1)

end for

A(0) := A

V (0) := I

for k := 0, . . . until convergence

A(k) → Q(k+1)R(k+1) (QR factorization)

A(k+1) := R(k+1)Q(k+1)

V (k+1) := V (k)Q(k+1)

end for

Figure 3: Basic subspace iteration and basic QR algorithm.

Subspace iteration QR algorithm

Â(0) := A

V̂ (0) := I

for k := 0, . . . until convergence

µ̂k := v
(k)T
n−1 Av

(k)
n−1

(A− µ̂I)V̂ (k) → V̂ (k+1)R̂(k+1) (QR factorization)

Â(k+1) := V̂ (k+1)TAV̂ (k+1)

end for

A(0) := A

V (0) := I

for k := 0, . . . until convergence

µk = α
(k)
n−1,n−1

A(k) − µkI → Q(k+1)R(k+1) (QR factorization)

A(k+1) := R(k+1)Q(k+1) + µkI

V (k+1) := V (k)Q(k+1)

end for

Figure 4: Basic shifted subspace iteration and basic shifted QR algorithm.

We conclude that if V̂ (k) converges to the matrix of orthonormal eigenvectors when the subspace iteration
is applied to V (0) = I, then A(k) converges to the diagonal matrix with eigenvalues along the diagonal.

2.2 A basic shifted QR algorithm

In Figure 4 (left), we restate the subspace iteration with shifting. In it, we denote matrices V (k) and R(k)

from the subspace iteration by V̂ (k) and R̂ to distinguish them from the ones computed by the algorithm on
the right. The algorithm on the left also computes the matrix Â(k) = V (k)TAV (k), a matrix that hopefully
converges to Λ, the diagonal matrix with the eigenvalues of A on its diagonal. To the right is the shifted QR
algorithm. The claim is that the two algorithms compute the same quantities.

Exercise 3. Prove that in Figure 4, V̂ (k) = V (k), and Â(k) = A(k), k = 1,

We conclude that if V̂ (k) converges to the matrix of orthonormal eigenvectors when the shifted subspace
iteration is applied to V (0) = I, then A(k) converges to the diagonal matrix with eigenvalues along the
diagonal.

The convergence of the basic shifted QR algorithm is illustrated below. Pay particular attention to the
convergence of the last row and column.

6

A(0) =

2.01131953448 0.05992695085 0.14820940917

0.05992695085 2.30708673171 0.93623515213

0.14820940917 0.93623515213 1.68159373379

 A(1) =

2.21466116574 0.34213192482 0.31816754245

0.34213192482 2.54202325042 0.57052186467

0.31816754245 0.57052186467 1.24331558383


A(2) =

2.63492207667 0.47798481637 0.07654607908

0.47798481637 2.35970859985 0.06905042811

0.07654607908 0.06905042811 1.00536932347

 A(3) =

2.87588550968 0.32971207176 0.00024210487

0.32971207176 2.12411444949 0.00014361630

0.00024210487 0.00014361630 1.00000004082


A(4) =

2.96578660126 0.18177690194 0.00000000000

0.18177690194 2.03421339873 0.00000000000

0.00000000000 0.00000000000 1.00000000000

 A(5) =

2.9912213907 0.093282073553 0.00000000000

0.0932820735 2.008778609226 0.00000000000

0.0000000000 0.000000000000 1.00000000000


Once the off-diagonal elements of the last row and column have converged (are sufficiently small), the problem
can be deflated by applying the following theorem:

Theorem 4. Let

A =


A0,0 A01 · · · A0N−1

0 A1,1 · · · A1,N−1

...
...

. . . A00

0 0 · · · AN−1,N−1

 ,

where Ak,k are all square. Then λ(A) = ∪N−1
k=0 λ(Ak,k).

Exercise 5. Prove the above theorem.

In other words, once the last row and column have converged, the algorithm can continue with the submatrix
that consists of the first n− 1 rows and columns.

The problem with the QR algorithm, as stated, is that each iteration requires O(n3) operations, which
is too expensive given that many iterations are required to find all eigenvalues and eigenvectors.

3 Reduction to Tridiagonal Form

In the next section, we will see that if A(0) is a tridiagonal matrix, then so are all A(k). This reduces the
cost of each iteration from O(n3) to O(n). We first show how unitary similarity transformations can be used
to reduce a matrix to tridiagonal form.

3.1 Householder transformations (reflectors)

We briefly review the main tool employed to reduce a matrix to tridiagonal form: the Householder transform,
also known as a reflector. Full details were given in “Notes on Householder QR Factorization”.

Definition 6. Let u ∈ Rn, τ ∈ R. Then H = H(u) = I − uuT /τ , where τ = 1
2u

Tu, is said to be a reflector or
Householder transformation.

We observe:

• Let z be any vector that is perpendicular to u. Applying a Householder transform H(u) to z leaves
the vector unchanged: H(u)z = z.

• Let any vector x be written as x = z+uTxu, where z is perpendicular to u and uTxu is the component
of x in the direction of u. Then H(u)x = z − uTxu.

7

http://www.cs.utexas.edu/users/flame/Notes/NotesOnHouseholderQR

This can be interpreted as follows: The space perpendicular to u acts as a “mirror”: any vector in that
space (along the mirror) is not reflected, while any other vector has the component that is orthogonal to the
space (the component outside and orthogonal to the mirror) reversed in direction. Notice that a reflection
preserves the length of the vector. Also, it is easy to verify that:

1. HH = I (reflecting the reflection of a vector results in the original vector);

2. H = HT , and so HTH = HHT = I (a reflection is an orthogonal matrix and thus preserves the norm);
and

3. if H0, · · · , Hk−1 are Householder transformations and Q = H0H1 · · ·Hk−1, then QTQ = QQT = I (an
accumulation of reflectors is an orthogonal matrix).

As part of the reduction to condensed form operations, given a vector x we will wish to find a Householder
transformation, H(u), such that H(u)x equals a vector with zeroes below the first element: H(u)x = ∓‖x‖2e0
where e0 equals the first column of the identity matrix. It can be easily checked that choosing u = x±‖x‖2e0
yields the desired H(u). Notice that any nonzero scaling of u has the same property, and the convention
is to scale u so that the first element equals one. Let us define [u, τ, h] = Hous(x) to be the function that
returns u with first element equal to one, τ = 1

2u
Tu, and h = H(u)x.

3.2 Algorithm

The first step towards computing the eigenvalue decomposition of a symmetric matrix is to reduce the matrix
to tridiagonal form.

The basic algorithm for reducing a symmetric matrix to tridiagonal form, overwriting the original matrix
with the result, can be explained as follows. We assume that symmetric A is stored only in the lower
triangular part of the matrix and that only the diagonal and subdiagonal of the symmetric tridiagonal
matrix is computed, overwriting those parts of A. Finally, the Householder vectors used to zero out parts of
A overwrite the entries that they annihilate (set to zero).

• Partition A→

(
α11 aT21
a21 A22

)
.

• Let [u21, τ, a21] := Hous(a21).1

• Update (
α11 aT21
a21 A22

)
:=

(
1 0

0 H

)(
α11 aT21
a21 A22

)(
1 0

0 H

)
=

(
α11 aT21H

Ha21 HA22H

)

where H = H(u21). Note that a21 := Ha21 need not be executed since this update was performed
by the instance of Hous above.2 Also, aT12 is not stored nor updated due to symmetry. Finally, only
the lower triangular part of HA22H is computed, overwriting A22. The update of A22 warrants closer
scrutiny:

A22 := (I − 1

τ
u21u

T
21)A22(I − 1

τ
u21u

T
21)

= (A22 −
1

τ
u21 uT21A22︸ ︷︷ ︸

yT21

)(I − 1

τ
u21u

T
21)

1 Note that the semantics here indicate that a21 is overwritten by Ha21.
2 In practice, the zeros below the first element of Ha21 are not actually written. Instead, the implementation overwrites

these elements with the corresponding elements of the vector u21.

8

Algorithm: [A] := TriRed unb(b, A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ATR

ABL ABR

)
→

 A00 a01 A02

aT10 α11 aT12
A20 a21 A22


where α11 is a scalar

[u21, τ, a21] := Hous(a21)

y21 := A22u21

β := uT21y21/2

w21 := (y21 − βu21/τ)/τ

A22 := A22 − tril(u21w
T
21 + w21u

T
21) (symmetric rank-2 update)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 a01 A02

aT10 α11 aT12

A20 a21 A22


endwhile

Figure 5: Basic algorithm for reduction of a symmetric matrix to tridiagonal form.

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

−→

× × 0 0 0

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

−→

× × 0 0 0

× × × 0 0

0 × × × ×
0 0 × × ×
0 0 × × ×

−→

Original matrix First iteration Second iteration

× × 0 0 0

× × × 0 0

0 × × × 0

0 0 × × ×
0 0 0 × ×

−→

× × 0 0 0

× × × 0 0

0 × × × 0

0 0 × × ×
0 0 0 × ×

−→

Third iteration

Figure 6: Illustration of reduction of a symmetric matrix to tridiagonal form. The ×s denote nonzero
elements in the matrix. The gray entries above the diagonal are not actually updated.

9

= A22 −
1

τ
u21y

T
21 −

1

τ
Au21︸ ︷︷ ︸
y21

uT21 +
1

τ2
u21 yT21u21︸ ︷︷ ︸

2β

uT21

= A22 −
(

1

τ
u21y

T
21 +

β

τ2
u21u

T
21

)
−
(

1

τ
y21u

T
21 +

β

τ2
u21u

T
21

)
= A22 − u21

1

τ

(
yT21 +

β

τ
uT21

)
︸ ︷︷ ︸

wT21

− 1

τ

(
y21 +

β

τ
u21

)
︸ ︷︷ ︸

w21

uT21

= A22 − u21wT21 − w21u
T
21.︸ ︷︷ ︸

symmetric

rank-2 update

• Continue this process with the updated A22.

This is captured in the algorithm in Figure 5. It is also illustrated in Figure 6.
The total cost for reducing A ∈ Rn×n is approximately

n−1∑
k=0

(
4(n− k − 1)2

)
flops ≈ 4

3
n3 flops.

This equals, approximately, the cost of one QR factorization of matrix A.

4 The QR algorithm with a Tridiagonal Matrix

We are now ready to describe an algorithm for the QR algorithm with a tridiagonal matrix.

4.1 Givens’ rotations

First, we introduce another important class of unitary matrices known as Givens’ rotations. Given a vector

x =

(
χ1

χ2

)
∈ R2, there exists an orthogonal matrix G such that GTx =

(
±‖x‖2

0

)
. The Householder

transformation is one example of such a matrix G. An alternative is the Givens’ rotation: G =

(
γ −σ
σ γ

)
where γ2 + σ2 = 1. (Notice that γ and σ can be thought of as the cosine and sine of an angle.) Then

GTG =

(
γ −σ
σ γ

)T (
γ −σ
σ γ

)
=

(
γ σ

−σ γ

)(
γ −σ
σ γ

)

=

(
γ2 + σ2 −γσ + γσ

γσ − γσ γ2 + σ2

)
=

(
1 0

0 1

)
,

which means that a Givens’ rotation is a unitary matrix.
Now, if γ = χ1/‖x‖2 and σ = χ2/‖x‖2, then γ2 + σ2 = (χ2

1 + χ2
2)/‖x‖22 = 1 and(

γ −σ
σ γ

)T (
χ1

χ2

)
=

(
γ σ

−σ γ

)(
χ1

χ2

)
=

(
(χ2

1 + χ2
2)/‖x‖2

(χ1χ2 − χ1χ2)/‖x‖2

)
=

(
‖x‖2

0

)
.

10

5 QR Factorization of a Tridiagonal Matrix

Now, consider the 4× 4 tridiagonal matrix
α0,0 α0,1 0 0

α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3


From

(
α0,0

α1,0

)
one can compute γ1,0 and σ1,0 so that

(
γ1,0 −σ1,0
σ1,0 γ1,0

)T (
α0,0

α1,0

)
=

(
α̂0,0

0

)
.

Then 
α̂0,0 α̂0,1 α̂0,2 0

0 α̂1,1 α̂1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3

 =


γ1,0 σ1,0 0 0

−σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1




α0,0 α0,1 0 0

α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3


Next, from

(
α̂1,1

α2,1

)
one can compute γ2,1 and σ2,1 so that

(
γ2,1 −σ2,1
σ2,1 γ2,1

)T (
α̂1,1

α2,1

)
=

(̂̂α1,1

0

)
.

Then 
α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1
̂̂α1,2

̂̂α1,3

0 0 α̂2,2 α̂2,3

0 0 α3,2 α3,3

 =


1 0 0 0

0 γ2,1 σ2,1 0

0 −σ2,1 γ2,1 0

0 0 0 1




α̂0,0 α̂0,1 α̂0,2 0

0 α̂1,1 α̂1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3


Finally, from

(
α̂2,2

α3,2

)
one can compute γ3,2 and σ3,2 so that

(
γ3,2 −σ3,2
σ3,2 γ3,2

)T (
α̂2,2

α3,2

)
=

(̂̂α2,2

0

)
.

Then 
α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1
̂̂α1,2

̂̂α1,3

0 0 ̂̂α2,2
̂̂α2,3

0 0 0 α̂3,3

 =


1 0 0 0

0 1 0 0

1 0 γ3,2 σ3,2

0 1 −σ3,2 γ3,2




α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1
̂̂α1,2

̂̂α1,3

0 0 α̂2,2 α̂2,3

0 0 α3,2 α3,3


The matrix Q is the orthogonal matrix that results from multiplying the different Givens’ rotations together:

Q =


γ1,0 −σ1,0 0 0

σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 γ2,1 −σ2,1 0

0 σ2,1 γ2,1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 γ3,2 −σ3,2
0 0 σ3,2 γ3,2

 . (2)

11

However, it is typically not explicitly formed.
The next question is how to compute RQ given the QR factorization of the tridiagonal matrix:
α̂0,0 α̂0,1 α̂0,2 0

0 ̂̂α1,1
̂̂α1,2

̂̂α1,3

0 0 ̂̂α2,2
̂̂α2,3

0 0 0 α̂3,3




γ1,0 −σ1,0 0 0

σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸


1 0 0 0

0 γ2,1 −σ2,1 0

0 σ2,1 γ2,1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 γ3,2 −σ3,2
0 0 σ3,2 γ3,2




α̃0,0 α̃0,1 α̂0,2 0

α̃1,0
˜̂α1,1

̂̂α1,2
̂̂α1,3

0 0 ̂̂α2,2
̂̂α2,3

0 0 0 α̂3,3


︸ ︷︷ ︸

α̃0,0
˜̃α0,1 α̃0,2 0

α̃1,0
˜̃α1,1 α̃1,2

̂̂α1,3

0 α̃2,1 α̃2,2
̂̂α2,3

0 0 0 α̂3,3


︸ ︷︷ ︸

α̃0,0
˜̃α0,1 α̃0,2 0

α̃1,0
˜̃α1,1

˜̃α1,2 α̃1,3

0 α̃2,1
˜̃α2,2 α̃2,3

0 0 α̃3,2 α̃3,3

 .

A symmetry argument can be used to motivate that α̃0,2 = α̃1,3 = 0.

6 The Implictly Shifted QR Algorithm

6.1 Upper Hessenberg matrix

Definition 7. A matrix is said to be upper Hessenberg if all entries below its first subdiagonal equal zero.

In other words, if matrix A ∈ Rn×n is upper Hessenberg, it looks like

A =



α0,0 α0,1 α0,2 · · · α0,n−1 α0,n−1

α1,0 α1,1 α1,2 · · · α1,n−1 α1,n−1

0 α2,1 α2,2 · · · α2,n−1 α2,n−1

...
. . .

. . .
. . .

...
...

0 0 0
. . . αn−2,n−2 αn−2,n−2

0 0 0 · · · αn−1,n−2 αn−1,n−2


.

Obviously, a tridiagonal matrix is a special case of an upper Hessenberg matrix.

6.2 The Implicit Q Theorem

The following theorem sets up one of the most remarkable algorithms in numerical linear algebra, which
allows us to greatly simplify the implementation of the shifted QR algorithm when A is tridiagonal.

12

Theorem 8 (Implicit Q Theorem). Let A,B ∈ Rn×n where B is upper Hessenberg and has only positive elements
on its first subdiagonal and assume there exists an orthogonal matrix Q such that QTAQ = B. Then Q and
B are uniquely determined by A and the first column of Q.

Proof: Notice that AQ = QB. Let Q =
(
q0 q1 Q2

)
and B =

 ψ00 ? ?

ψ10 ψ11 ?

0 ψ21e0 B22

 and focus on

the first column of both sides of AQ = QB: Aq0 =
(
q0 q1

)(ψ00

ψ10

)
= ψ00q0 +ψ10q0. By orthogonality

of q0 and q1 we find that ψ00 = qT0 Aq0 and ψ10q1 = q̂1 = Aq0 − ψ00q0. Since ψ10 > 0 we deduce that
q̂1 6= 0. Since ‖q1‖2 = 1 we conclude that ψ10 = ‖q̂1‖2 and q1 = q̂1/ψ10. The point is that ψ00 and ψ10 are
prescribed, as is q1. An inductive proof can be constructed to similarly show that the rest of the elements
of B and Q are uniquely determined.
�

Notice the similarity between the above proof and the proof of the existence and uniqueness of the QR
factorization!

Exercise 9. Complete the above proof.

6.3 The Francis QR Step

The Francis QR Step combines the steps (A(k−1) − µkI) → Q(k)R(k) and A(k+1) := R(k)Q(k) + µkI into a
single step.

Now, consider the 4× 4 tridiagonal matrix
α0,0 α0,1 0 0

α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3

− µI

The first Givens’ rotation is computed from

(
α0,0 − µ
α1,0

)
, yielding γ1,0 and σ1,0 so that

(
γ1,0 −σ1,0
σ1,0 γ1,0

)T (
α0,0 − µI
α1,0

)
has a zero second entry. Now, to preserve eigenvalues, any orthogonal matrix that is applied from the left
must also have its transpose applied from the right. Let us compute

α̃0,0 α̂1,0 α̂2,0 0

α̂1,0 α̂1,1 α̂1,2 0

α̂2,0 α̂2,1 α2,2 α2,3

0 0 α3,2 α3,3

 =


γ1,0 σ1,0 0 0

−σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1




α0,0 α0,1 0 0

α1,0 α1,1 α1,2 0

0 α2,1 α2,2 α2,3

0 0 α3,2 α3,3




γ1,0 −σ1,0 0 0

σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1

 .

Next, from

(
α̂1,0

α̂2,0

)
one can compute γ2,0 and σ2,0 so that

(
γ2,0 −σ2,0
σ2,0 γ2,0

)T (
α̂1,0

α̂2,0

)
=

(
α̃1,0

0

)
.

Then
α̃0,0 α̃1,0 0 0

α̃1,0 α̃1,1
̂̂α2,1 α̂3,1

0 ̂̂α2,1 α̂2,2 α̂2,3

0 α̂3,1 α̂3,2 α3,3

 =


1 0 0 0

0 γ2,0 σ2,0 0

0 −σ2,0 γ2,0 0

0 0 0 1




α̃0,0 α̂1,0 α̂2,0 0

α̂1,0 α̂1,1 α̂1,2 0

α̂2,0 α̂2,1 α2,2 α2,3

0 0 α3,2 α3,3




1 0 0 0

0 γ2,0 −σ2,0 0

0 σ2,0 γ2,0 0

0 0 0 1



13

From: Gene H Golub <golub@stanford.edu>

Date: Sun, 19 Aug 2007 13:54:47 -0700 (PDT)

Subject: John Francis, Co-Inventor of QR

Dear Colleagues,

For many years, I have been interested in meeting J G F Francis, one of

the co-inventors of the QR algorithm for computing eigenvalues of general

matrices. Through a lead provided by the late Erin Brent and with the aid

of Google, I finally made contact with him.

John Francis was born in 1934 in London and currently lives in Hove, near

Brighton. His residence is about a quarter mile from the sea; he is a

widower. In 1954, he worked at the National Research Development Corp

(NRDC) and attended some lectures given by Christopher Strachey.

In 1955,’56 he was a student at Cambridge but did not complete a degree.

He then went back to NRDC as an assistant to Strachey where he got

involved in flutter computations and this led to his work on QR.

After leaving NRDC in 1961, he worked at the Ferranti Corp and then at the

University of Sussex. Subsequently, he had positions with various

industrial organizations and consultancies. He is now retired. His

interests were quite general and included Artificial Intelligence,

computer languages, systems engineering. He has not returned to numerical

computation.

He was surprised to learn there are many references to his work and

that the QR method is considered one of the ten most important

algorithms of the 20th century. He was unaware of such developments as

TeX and Math Lab. Currently he is working on a degree at the Open

University.

John Francis did remarkable work and we are all in his debt. Along with

the conjugate gradient method, it provided us with one of the basic tools

of numerical analysis.

Gene Golub

Figure 7: Posting by the late Gene Golub in NA Digest Sunday, August 19, 2007 Volume 07 : Issue 34. An
article on the ten most important algorithms of the 20th century, published in SIAM News, can be found at
http://www.uta.edu/faculty/rcli/TopTen/topten.pdf.

14

again preserves eigenvalues. Finally, from

(
α̂2,1

α̂3,1

)
one can compute γ3,1 and σ3,1 so that

(
γ3,1 −σ3,1
σ3,1 γ3,1

)T (
α̂2,1

α̂3,1

)
=

(
α̃2,1

0

)
.

Then
α̃0,0 α̃1,0 0 0

α̃1,0 α̃1,1 α̃2,1 0

0 α̃2,1 α̃2,2 α̃2,3

0 0 α̃3,2 α̃3,3

 =


1 0 0 0

0 1 0 0

1 0 γ3,2 σ3,2

0 1 −σ3,2 γ3,2




α̃0,0 α̃1,0 0 0

α̃1,0 α̃1,1
̂̂α2,1 α̂3,1

0 ̂̂α2,1 α̂2,2 α̂2,3

0 α̂3,1 α̂3,2 α3,3




1 0 0 0

0 1 0 0

1 0 γ3,1 −σ3,1
0 1 σ3,1 γ3,1


The matrix Q is the orthogonal matrix that results from multiplying the different Givens’ rotations together:

Q =


γ1,0 −σ1,0 0 0

σ1,0 γ1,0 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 γ2,0 −σ2,0 0

0 σ2,0 γ2,0 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 γ3,1 −σ3,1
0 0 σ3,1 γ3,1

 .

It is important to note that the first columns of Q is given by


γ1,0

σ1,0

0

0

, which is exactly the same first

column had Q been computed as in Section 5 (Equation 2). Thus, by the Implicit Q Theorem, the tridiagonal
matrix that results from this approach is equal to the tridiagonal matrix that would be computed by applying
the QR factorization from Section 5 with A−µI, A−µI → QR followed by the formation of RQ+µI using
the algorithm for computing RQ in Section 5.

The successive elimination of elements α̂i+1,i is often referred to as chasing the bulge while the entire
process that introduces the bulge and then chases it is known as a Francis Implicit QR Step. Obviously, the
method generalizes to matrices of arbitrary size, as illustrated in Figure 8. An algorithm for the chasing of
the bulge is given in Figure 9. (Note that in those figures T is used for A, something that needs to be made
consistent in these notes, eventually.) In practice, the tridiagonal matrix is not stored as a matrix. Instead,
its diagonal and subdiagonal are stored as vectors.

6.4 A complete algorithm

This last section shows how one iteration of the QR algorithm can be performed on a tridiagonal matrix by
implicitly shifting and then “chasing the bulge”. All that is left to complete the algorithm is to note that

• The shift µk can be chosen to equal αn−1,n−1 (the last element on the diagonal, which tends to converge
to the eigenvalue smallest in magnitude). In practice, choosing the shift to be an eigenvalue of the
bottom-right 2× 2 matrix works better. This is known as the Wilkinson Shift.

• If an element of the subdiagonal (and corresponding element on the superdiagonal) becomes small
enough, it can be considered to be zero and the problem deflates (decouples) into two smaller tridiagonal
matrices. Small is often taken to means that |αi+1,i| ≤ ε(|αi,i| + |αi+1,i+1|) where ε is some quantity
close to the machine epsilon (unit roundoff).

• If A = QTQT reduced A to the tridiagonal matrix T before the QR algorithm commensed, then the
Givens’ rotations encountered as part of the implicitly shifted QR algorithm can be applied from the

15

××
×××
×××
×××
×××
×××
×××
××

+

+

Beginning of iteration

TTL TT
ML

TML TMM TT
BM

TBM TBR

↓ ↓

× ×
×××
×××
×××
×××
×××
×××
××

+

+

Repartition

T00 t10

TT
10

τ11 tT21

t21 T22 t32

tT32 τ33 tT43

t43 T44

↓ ↓

× ×
×××
×××
×××
×××
×××
×××
××

+

+
Update

T00 t10

tT10 τ11 tT21

t21 T22 t32

tT32 τ33 tT43

t43 T44

↓ ↓

× ×
×××
×××
×××
×××
×××
×××
××

+

+
End of iteration

TTL TT
ML

TML TMM TT
BM

TBM TBR

Figure 8: One step of “chasing the bulge” in the implicitly shifted symmetric QR algorithm.

right to the appropriate columns of Q so that upon completion Q is overwritten with the eigenvectors
of A. Notice that applying a Givens’ rotation to a pair of columns of Q requires O(n) computation per
Givens rotation. For each Francis implicit QR step O(n) Givens’ rotations are computed, making the
application of Givens’ rotations to Q of cost O(n2) per iteration of the implicitly shifted QR algorithm.
Typically a few (2-3) iterations are needed per eigenvalue that is uncovered (by deflation) meaning that
O(n) iterations are needed. Thus, the QR algorithm is roughly of cost O(n3) if the eigenvalues are
accumulated (in addition to the cost of forming the Q from the reduction to tridiagonal form, which
takes another O(n3) operations.)

16

Algorithm: T := ChaseBulge(T)

Partition T →

 TTL ? ?

TML TMM ?

0 TBM TBR


where TTL is 0× 0 and TMM is 3× 3

while m(TBR) > 0 do

Repartition

 TTL ? 0

TML TMM ?

0 TBM TBR

→


T00 ? 0 0 0

tT10 τ11 ? 0 0

0 t21 T22 ? 0

0 0 tT32 τ33 ?

0 0 0 t43 T44


where τ11 and τ33 are scalars
(during final step, τ33 is 0× 0)

Compute (γ, σ) s.t. GTγ,σt21 =

(
τ21

0

)
, and assign t21 =

(
τ21

0

)
T22 = GTγ,σT22Gγ,σ

tT32 = tT32Gγ,σ (not performed during final step)

Continue with TTL ? 0

TML TMM ?

0 TBM TBR

←


T00 ? 0 0 0

tT10 τ11 ? 0 0

0 t21 T22 ? 0

0 0 tT32 τ33 ?

0 0 0 t43 T44


endwhile

Figure 9: Chasing the bulge.

• If an element on the subdiagonal becomes zero (or very small), and hence the corresponding element
of the superdiagonal, then the problem can be deflated: If

T =

(
T00 0

0 T11

)
× ×
× × ×
× × ×
× × ×
× × 0

× ×0

× × ×
× ×

then

– The computation can continue separately with T00 and T11.

– One can pick the shift from the bottom-right of T00 as one continues finding the eigenvalues of
T00, thus accelerating the computation.

– One can pick the shift from the bottom-right of T11 as one continues finding the eigenvalues of
T11, thus accelerating the computation.

17

– One must continue to accumulate the eigenvectors by applying the rotations to the appropriate
columns of Q.

Because of the connection between the QR algorithm and the Inverse Power Method, subdiagonal
entries near the bottom-right of T are more likely to converge to a zero, so most deflation will happen
there.

7 Further Reading

7.1 More on reduction to tridiagonal form

The reduction to tridiagonal form can only be partially cast in terms of matrix-matrix multiplication [5].
This is a severe hindrance to high performance for that first step towards computing all eigenvalues and
eigenvector of a symmetric matrix. Worse, a considerable fraction of the total cost of the computation is in
that first step.

For a detailed discussion on the blocked algorithm that uses FLAME notation, we recommend [8]

Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ort, G. Joseph Elizondo.
Families of Algorithms for Reducing a Matrix to Condensed Form.
ACM Transactions on Mathematical Software (TOMS) , Vol. 39, No. 1, 2012

(Reduction to tridiagonal form is one case of what is more generally referred to as “condensed form”.)

7.2 Optimizing the tridiagonal QR algorithm

As the Givens’ rotations are applied to the tridiagonal matrix, they are also applied to a matrix in which
eigenvectors are accumulated. While one Implicit Francis Step requires O(n) computation, this accumulation
of the eigenvectors requires O(n2) computation with O(n2) data. We have learned before that this means
the cost of accessing data dominates on current architectures.

In a recent paper, we showed how accumulating the Givens’ rotations for several Francis Steps allows
one to attain performance similar to that attained by a matrix-matrix multiplication. Details can be found
in [7]:

Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ort́ı.
Restructuring the Tridiagonal and Bidiagonal QR Algorithms for Performance.

ACM Transactions on Mathematical Software (TOMS, Vol. 40, No. 3, 2014.

8 Other Algorithms

8.1 Jacobi’s method for the symmetric eigenvalue problem

(Not to be mistaken for the Jacobi iteration for solving linear systems.)
The oldest algorithm for computing the eigenvalues and eigenvectors of a matrix is due to Jacobi and

dates back to 1846 [6]. This is a method that keeps resurfacing, since it parallelizes easily.
The idea is as follows: Given a symmetric 2× 2 matrix

A31 =

(
α11 α31

α31 αj,j

)
There exists a rotation (which is of course unitary)

J31 =

(
γ11 −σ31
σ31 α33

)

18

http://www.cs.utexas.edu/users/flame/web/FLAMEPublications.html
http://www.cs.utexas.edu/users/flame/web/FLAMEPublications.html

Sweep 1

× 0 × ×
0 × × ×
× × × ×
× × × ×

→

× × 0 ×
× × × ×
0 × × ×
× × × ×

→

× × × 0

× × × ×
× × × ×
0 × × ×

→

× × × 0

× × 0 ×
× 0 × ×
0 × × ×

→

× × × ×
× × × 0

× × × ×
× 0 × ×

→

× × × ×
× × × ×
× × × 0

× × 0 ×

→

Sweep 2

× 0 × ×
0 × × ×
× × × 0

× × 0 ×

→

× × 0 ×
× × × ×
0 × × ×
× × × ×

→

× × × 0

× × × ×
× × × ×
0 × × ×

→

× × × 0

× × 0 ×
× 0 × ×
0 × × ×

→

× × × ×
× × × 0

× × × ×
× 0 × ×

→

× × × ×
× × × ×
× × × 0

× × 0 ×

→

Figure 10: Column-cyclic Jacobi algorithm.

such that

J31A31J
T
31 =

(
γ11 −σ31
σ31 γ33

)(
α11 α31

α31 α33

)(
γ11 −σ31
σ31 γ33

)T
=

(
α̂11 0

0 α̂33

)
.

We know this exists since the Spectral Decomposition of the 2 × 2 matrix exists. Such a rotation is called
a Jacobi rotation. (Notice that it is different from a Givens’ rotation because it diagonalizes a 2× 2 matrix
when used as a unitary similarity transformation. By contrast, a Givens’ rotation zeroes an element when
applied from one side of a matrix.)

Exercise 10. In the above discussion, show that α2
11 + 2α2

31 + α2
31 = α̂2

11 + α̂2
33.

19

Jacobi rotation rotations can be used to selectively zero off-diagonal elements by observing the following:

JAJT =


I 0 0 0 0

0 γ11 0 −σ31 0

0 0 I 0 0

0 σ31 0 γ33 0

0 0 0 0 I




A00 a10 AT20 a30 AT40
aT10 α11 aT21 α31 aT41
A20 a21 A22 a32 AT42
aT30 α31 aT32 α33 aT43
A40 a41 A42 a43 A44




I 0 0 0 0

0 γ11 0 −σ13 0

0 0 I 0 0

0 σ31 0 γ33 0

0 0 0 0 I



T

=


A00 â10 AT20 â30 AT40
âT10 α̂11 âT21 0 âT41
A20 â21 A22 â32 AT42
âT30 0 âT32 α̂33 âT43
A40 â41 A42 â43 A44

 = Â,

where (
γ11 −σ31
σ31 γ33

)(
aT10 aT21 aT41
aT30 aT32 aT43

)
=

(
âT10 âT21 âT41
âT30 âT32 âT43

)
.

Importantly,

aT10a10 + aT30a30 = âT10â10 + âT30â30

aT21a21 + aT32a32 = âT21â21 + âT32â32

aT41a41 + aT43a43 = âT41â41 + âT43â43.

What this means is that if one defines off(A) as the square of the Frobenius norm of the off-diagonal elements
of A,

off(A) = ‖A‖2F − ‖diag(A)‖2F ,

then off(Â) = off(A)− 2α2
31.

• The good news: every time a Jacobi rotation is used to zero an off-diagonal element, off(A) decreases
by twice the square of that element.

• The bad news: a previously introduced zero may become nonzero in the process.

The original algorithm developed by Jacobi searched for the largest (in absolute value) off-diagonal
element and zeroed it, repeating this processess until all off-diagonal elements were small. The algorithm
was applied by hand by one of his students, Seidel (of Gauss-Seidel fame). The problem with this is that
searching for the largest off-diagonal element requires O(n2) comparisons. Computing and applying one
Jacobi rotation as a similarity transformation requires O(n) flops. Thus, for large n this is not practical.
Instead, it can be shown that zeroing the off-diagonal elements by columns (or rows) also converges to a
diagonal matrix. This is known as the column-cyclic Jacobi algorithm. We illustrate this in Figure 10.

8.2 The Method of Multiple Relatively Robust Representations (MRRR)

Even once the problem has been reduced to tridiagonal form, the computation of the eigenvalues and eigen-
vectors via the QR algorithm requires O(n3) computations. A method that reduces this to O(n2) time
(which can be argued to achieve the lower bound for computation, within a constant, because the n vectors
must be at least written) is achieved by the Method of Multiple Relatively Robust Representations (MRRR)
by Dhillon and Partlett [2, 1, 3, 4]. The details of that method go beyond the scope of this note.

20

References

[1] I. S. Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Prob-
lem. PhD thesis, Computer Science Division, University of California, Berkeley, California, May 1997.
Available as UC Berkeley Technical Report No. UCB//CSD-97-971.

[2] I. S. Dhillon. Reliable computation of the condition number of a tridiagonal matrix in O(n) time. SIAM
J. Matrix Anal. Appl., 19(3):776–796, July 1998.

[3] I. S. Dhillon and B. N. Parlett. Multiple representations to compute orthogonal eigenvectors of symmetric
tridiagonal matrices. Lin. Alg. Appl., 387:1–28, August 2004.

[4] Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vömel. The design and implementation of the
MRRR algorithm. ACM Transactions on Mathematical Software, 32(4):533–560, December 2006.

[5] Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen. Block reduction of matrices to condensed
forms for eigenvalue computations. Journal of Computational and Applied Mathematics, 27, 1989.

[6] C. G. J. Jacobi. Über ein leichtes Verfahren, die in der Theorie der Säkular-störungen vorkommenden
Gleichungen numerisch aufzulösen. Crelle’s Journal, 30:51–94, 1846.

[7] Field G. Van Zee, Robert A. van de Geijn, and Gregorio Quintana-Ort́ı. Restructuring the tridiagonal
and bidiagonal qr algorithms for performance. ACM Transactions on Mathematical Software, 40(3):18:1–
18:34, April 2014.

[8] Field G. Van Zee, Robert A. van de Geijn, Gregorio Quintana-Ort́ı, and G. Joseph Elizondo. Families
of algorithms for reducing a matrix to condensed form. ACM Trans. Math. Soft., 39(1), 2012.

21

	Subspace Iteration
	The QR Algorithm
	A basic (unshifted) QR algorithm
	A basic shifted QR algorithm

	Reduction to Tridiagonal Form
	Householder transformations (reflectors)
	Algorithm

	The QR algorithm with a Tridiagonal Matrix
	Givens' rotations

	QR Factorization of a Tridiagonal Matrix
	The Implictly Shifted QR Algorithm
	Upper Hessenberg matrix
	The Implicit Q Theorem
	The Francis QR Step
	A complete algorithm

	Further Reading
	More on reduction to tridiagonal form
	Optimizing the tridiagonal QR algorithm

	Other Algorithms
	Jacobi's method for the symmetric eigenvalue problem
	The Method of Multiple Relatively Robust Representations (MRRR)

