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PARALLEL MATRIX MULTIPLICATION:
A SYSTEMATIC JOURNEY∗
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Abstract. We expose a systematic approach for developing distributed-memory parallel matrix-
matrix multiplication algorithms. The journey starts with a description of how matrices are dis-
tributed to meshes of nodes (e.g., MPI processes), relates these distributions to scalable parallel
implementation of matrix-vector multiplication and rank-1 update, continues on to reveal a family
of matrix-matrix multiplication algorithms that view the nodes as a two-dimensional (2D) mesh,
and finishes with extending these 2D algorithms to so-called three-dimensional (3D) algorithms that
view the nodes as a 3D mesh. A cost analysis shows that the 3D algorithms can attain the (order of
magnitude) lower bound for the cost of communication. The paper introduces a taxonomy for the
resulting family of algorithms and explains how all algorithms have merit depending on parameters
such as the sizes of the matrices and architecture parameters. The techniques described in this paper
are at the heart of the Elemental distributed-memory linear algebra library. Performance results
from implementation within and with this library are given on a representative distributed-memory
architecture, the IBM Blue Gene/P supercomputer.
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1. Introduction. This paper serves a number of purposes:
• Parallel1 implementation of matrix-matrix multiplication is a standard topic

in a course on parallel high-performance computing. However, rarely is the
student exposed to the algorithms that are used in practical cutting-edge
parallel dense linear algebra (DLA) libraries. This paper exposes a system-
atic path that leads from parallel algorithms for matrix-vector multiplication
and rank-1 update to a practical, scalable family of parallel algorithms for
matrix-matrix multiplication, including the classic result in [2] and those
implemented in the Elemental parallel DLA library [28].
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• This paper introduces a set notation for describing the data distributions
that underlie the Elemental library. The notation is motivated using parallel-
ization of matrix-vector operations and matrix-matrix multiplication as the
driving examples.

• Recently, research on parallel matrix-matrix multiplication algorithms have
revisited so-called three-dimensional (3D) algorithms, which view (process-
ing) nodes as a logical 3D mesh. These algorithms are known to attain the-
oretical (order of magnitude) lower bounds on communication. This paper
exposes a systematic path from algorithms for two-dimensional (2D) meshes
to their extensions for 3D meshes. Among the resulting algorithms are classic
results [1].

• A taxonomy is given for the resulting family of algorithms, all of which are
related to what is often called the scalable universal matrix multiplication
algorithm (SUMMA) [33].

Thus, the paper simultaneously serves a pedagogical role, explains abstractions that
underlie the Elemental library, and advances the state of science for parallel matrix-
matrix multiplication by providing a framework to systematically derive known and
new algorithms for matrix-matrix multiplication when computing on 2D or 3D meshes.
While much of the new innovation presented in this paper concerns the extension of
parallel matrix-matrix multiplication algorithms from 2D to 3D meshes, we believe
that developing the reader’s intuition for algorithms on 2D meshes renders most of
this new innovation a straightforward extension.

2. Background. The parallelization of dense matrix-matrix multiplication is a
well-studied subject. Cannon’s algorithm (sometimes called roll-roll-compute) dates
back to 1969 [9], and Fox’s algorithm (sometimes called broadcast-roll-compute) dates
back to 1988 [15]. Both suffer from a number of shortcomings:

• They assume that p processes are viewed as a d0×d1 grid, with d0 = d1 =
√
p.

Removing this constraint on d0 and d1 is nontrivial for these algorithms.
• They do not deal well with the case where one of the matrix dimensions

becomes relatively small. This is the most commonly encountered case in
libraries such as LAPACK [3] and libflame [35, 36] and their distributed-
memory counterparts ScaLAPACK [11], PLAPACK [34], and Elemental [28].

Attempts to generalize [12, 21, 22] led to implementations that were neither simple
nor effective.

A practical algorithm, which also results from the systematic approach discussed
in this paper, can be described as “allgather-allgather-multiply” [2]. It does not suffer
from the shortcomings of Cannon’s and Fox’s algorithms. It did not gain popularity
in part because libraries such as ScaLAPACK and PLAPACK used a 2D block-cyclic
distribution, rather than the 2D elemental distribution advocated by that paper. The
arrival of the Elemental library, together with what we believe is our more systematic
and extensible explanation, will, we hope, elevate awareness of this result.

SUMMA [33] is another algorithm that overcomes all of the shortcomings of
Cannon’s and Fox’s algorithms. We believe it is a more widely known result, in
part because it can already be explained for a matrix that is distributed with a 2D
blocked (but not cyclic) distribution, and in part because it is easy to support in
the ScaLAPACK and PLAPACK libraries. The original SUMMA paper gives four
algorithms as follows:

• For C := AB + C, SUMMA casts the computation in terms of multiple
rank-k updates. This algorithm is sometimes called the broadcast-broadcast-
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multiply algorithm, a label which, we will see, is somewhat limiting. We also
call this algorithm “stationary C” for reasons that will become clear later. By
design, this algorithm continues to perform well in the case where the width
of A is small relative to the dimensions of C.

• For C := ATB + C, SUMMA casts the computation in terms of multiple
panel of rows times matrix multiplications, so performance is not degraded
in the case where the height of A is small relative to the dimensions of B.
We also call this algorithm “stationary B” for reasons that will become clear
later.

• For C := ABT + C, SUMMA casts the computation in terms of multiple
matrix-panel (of columns) multiplications, and so performance does not de-
teriorate when the width of C is small relative to the dimensions of A. We
call this algorithm “stationary A” for reasons that will become clear later.

• For C := ATBT + C, the paper sketches an algorithm that is actually not
practical.

In [17], it was shown how stationary A, B, and C algorithms can be formulated for
each of the four cases of matrix-matrix multiplication, including C := ATBT+C. This
then yielded a general, practical family of 2D matrix-matrix multiplication algorithms,
all of which were incorporated into PLAPACK and Elemental, and some of which are
supported by ScaLAPACK. Some of the observations about developing 2D algorithms
in the current paper can already be found in [2], but our exposition is much more
systematic, and we use the matrix distribution that underlies Elemental to illustrate
the basic principles. Although the work by Agarwal, Gustavson, and Zubair describes
algorithms for the different matrix-matrix multiplication transpose variants, it does
not describe how to create stationary A and B variants.

In the 1990s, it was observed that for the case where matrices were relatively small
(or, equivalently, a relatively large number of nodes were available), better theoretical
and practical performance resulted from viewing the p nodes as a d0 × d1 × d2 mesh,
yielding a 3D algorithm [1]. More recently, a 3D algorithm for computing the LU
factorization of a matrix was devised by McColl and Tiskin [27] and Solomonik and
Demmel [31]. In addition to the LU factorization algorithm devised in [31], a 3D
algorithm for matrix-matrix multiplication was given for nodes arranged as a d0 ×
d1 × d2 mesh, with d0 = d1 and 0 ≤ d2 < 3

√
p. This was labeled a 2.5D algorithm.

Although the primary contribution of that work was LU related, the 2.5D algorithm
for matrix-matrix multiplication is the portion relevant to this paper. The focus of
that study on 3D algorithms was the simplest case of matrix-matrix multiplication,
C := AB.

In [25], an early attempt was made to combine multiple algorithms for computing
C = AB into a poly-algorithm, which refers to “the use of two or more algorithms to
solve the same problem with a high level decision-making process determining which
of a set of algorithms performs best in a given situation.” That paper was published
during the same time when SUMMA algorithms first became popular and when it
was not yet completely understood that these SUMMA algorithms are inherently
more practical than Cannon’s and Fox’s algorithms. The “stationary A, B, and C”
algorithms were already being talked about. In [25], an attempt was made to combine
all of these approaches, including SUMMA, targeting general 2D Cartesian data dis-
tributions, which was (and still would be) a very ambitious goal. Our paper benefits
from decades of experience with the more practical SUMMA algorithms and their
variants. It purposely limits the data distribution to simple distributions, namely
elemental distributions. This, we hope, allows the reader to gain a deep under-
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standing in a simpler setting so that even if elemental distribution is not best for a
particular situation, a generalization can be easily derived. The family of presented
2D algorithms is a poly-algorithm implemented in Elemental.

3. Notation. Although the focus of this paper is parallel distributed-memory
matrix-matrix multiplication, the notation used is designed to be extensible to compu-
tation with higher-dimensional objects (tensors) on higher-dimensional grids. Because
of this, the notation used may seem overly complex when restricted to matrix-matrix
multiplication. In this section, we describe the notation used and the reasoning behind
the choice of notation.

Grid dimension: dx. Since we focus on algorithms for distributed-memory archi-
tectures, we must describe information about the grid on which we are computing.
To support arbitrary-dimensional grids, we must express the shape of the grid in an
extensible way. For this reason, we have chosen the subscripted letter d to indicate the
size of a particular dimension of the grid. Thus, dx refers to the number of processes
comprising the xth dimension of the grid. In this paper, the grid is typically d0 × d1.

Process location: sx. In addition to describing the shape of the grid, it is useful
to be able to refer to a particular process’s location within the mesh of processes. For
this, we use the subscripted s letter to refer to a process’s location within some given
dimension of the mesh of processes. Thus, sx refers to a particular process’s location
within the xth dimension of the mesh of processes. In this paper, a typical process is
labeled with (s0, s1).

Distribution: D(x0,x1,...,xk−1). In subsequent sections, we will introduce notation
for describing how data is distributed among processes of the grid. This notation
will require a description of which dimensions of the grid are involved in defining
the distribution. We use the symbol D(x0,x1,...,xk−1) to indicate a distribution which
involves dimensions x0, x1, . . . , xk−1 of the mesh.

For example, when describing a distribution which involves the column and row
dimension of the grid, we refer to this distribution as D(0,1). Later, we will explain
why the symbol D(0,1) describes a different distribution from D(1,0).

4. Of matrix-vector operations and distribution. In this section, we dis-
cuss how matrix and vector distributions can be linked to parallel 2D matrix-vector
multiplication and rank-1 update operations, which then allows us to eventually de-
scribe the stationary C, A, and B 2D algorithms for matrix-matrix multiplication
that are part of the Elemental library.

4.1. Collective communication. Collectives are fundamental to the parallel-
ization of dense matrix operations. Thus, the reader must be (or become) familiar
with the basics of these communications and is encouraged to read Chan et al. [10],
which presents collectives in a systematic way that dovetails with the present paper.

To make this paper self-contained, in Table 4.1 (similar to Figure 1 in [10]) we
summarize the collectives. In Table 4.2 we summarize lower bounds on the cost of
the collective communications, under basic assumptions explained in [10] (see [8] for
an analysis of all-to-all), and the cost expressions that we will use in our analyses.
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Table 4.1
Collective communications considered in this paper.

Operation Before After

Permute
Node 0 Node 1 Node 2 Node 3
x0 x1 x2 x3

Node 0 Node 1 Node 2 Node 3
x1 x0 x3 x2

Broadcast
Node 0 Node 1 Node 2 Node 3

x
Node 0 Node 1 Node 2 Node 3

x x x x

Reduce(-
to-one)

Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)
Node 0 Node 1 Node 2 Node 3∑

j x
(j)

Scatter

Node 0 Node 1 Node 2 Node 3
x0
x1
x2
x3

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Gather

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Node 0 Node 1 Node 2 Node 3
x0
x1
x2
x3

Allgather

Node 0 Node 1 Node 2 Node 3
x0

x1
x2

x3

Node 0 Node 1 Node 2 Node 3
x0 x0 x0 x0
x1 x1 x1 x1
x2 x2 x2 x2
x3 x3 x3 x3

Reduce-
scatter

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3∑
j x

(j)
0 ∑

j x
(j)
1 ∑

j x
(j)
2 ∑

j x
(j)
3

Allreduce
Node 0 Node 1 Node 2 Node 3

x(0) x(1) x(2) x(3)
Node 0 Node 1 Node 2 Node 3∑

j x
(j)

∑
j x

(j)
∑

j x
(j)

∑
j x

(j)

All-to-all

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(1)
0 x

(2)
0 x

(3)
0

x
(0)
1 x

(1)
1 x

(2)
1 x

(3)
1

x
(0)
2 x

(1)
2 x

(2)
2 x

(3)
2

x
(0)
3 x

(1)
3 x

(2)
3 x

(3)
3

Node 0 Node 1 Node 2 Node 3

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(1)
0 x

(1)
1 x

(1)
2 x

(1)
3

x
(2)
0 x

(2)
1 x

(2)
2 x

(2)
3

x
(3)
0 x

(3)
1 x

(3)
2 x

(3)
3

4.2. Motivation: Matrix-vector multiplication. Suppose A∈Rm×n, x∈Rn,
and y ∈ Rm, and label their individual elements so that

A =


α0,0 α0,1 · · · α0,n−1
α1,0 α1,1 · · · α1,n−1

...
...

. . .
...

αm−1,0 αm−1,1 · · · αm−1,n−1

, x =


χ0

χ1

...
χn−1

, and y =


ψ0

ψ1

...
ψm−1

 .
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Table 4.2
Lower bounds for the different components of communication cost. Conditions for the lower

bounds are given in [10] and [8]. The last column gives the cost functions that we use in our analyses.
For architectures with sufficient connectivity, simple algorithms exist with costs that remain within
a small constant factor of all but one of the given formulae. The exception is the all-to-all, for
which there are algorithms that achieve the lower bound for the α and β terms separately, but it is
not clear whether an algorithm that consistently achieves performance within a constant factor of
the given cost function exists.

Communication Latency Bandwidth Computation Cost used for analysis

Permute α nβ – α+ nβ
Broadcast dlog2(p)eα nβ – log2(p)α+ nβ

Reduce(-to-one) dlog2(p)eα nβ p−1
p
nγ log2(p)α+ n(β + γ)

Scatter dlog2(p)eα p−1
p
nβ – log2(p)α+ p−1

p
nβ

Gather dlog2(p)eα p−1
p
nβ – log2(p)α+ p−1

p
nβ

Allgather dlog2(p)eα p−1
p
nβ – log2(p)α+ p−1

p
nβ

Reduce-scatter dlog2(p)eα p−1
p
nβ p−1

p
nγ log2(p)α+ p−1

p
n(β + γ)

Allreduce dlog2(p)eα 2 p−1
p
nβ p−1

p
nγ 2 log2(p)α+ p−1

p
n(2β + γ)

All-to-all dlog2(p)eα p−1
p
nβ – log2(p)α+ p−1

p
nβ

Recalling that y = Ax (matrix-vector multiplication) is computed as

ψ0 = α0,0χ0 + α0,1χ1 + · · ·+ α0,n−1χn−1
ψ1 = α1,0χ0 + α1,1χ1 + · · ·+ α1,n−1χn−1
...

...
...

...
ψm−1 = αm−1,0χ0 + αm−1,1χ1 + · · ·+ αm−1,n−1χn−1,

we notice that element αi,j multiplies χj and contributes to ψi. Thus we may sum-
marize the interactions of the elements of x, y, and A by

(4.1)

χ0 χ1 · · · χn−1
ψ0 α0,0 α0,1 · · · α0,n−1
ψ1 α1,0 α1,1 · · · α1,n−1
...

...
...

. . .
...

ψm−1 αm−1,0 αm−1,1 · · · αm−1,n−1

,

which is meant to indicate that χj must be multiplied by the elements in the jth
column of A, while the ith row of A contributes to ψi.

4.3. 2D elemental cyclic distribution. It is well established that (weakly)
scalable implementations of DLA operations require nodes to be logically viewed as
a 2D mesh [32, 20].

It is also well established that to achieve load balance for a wide range of matrix
operations, matrices should be cyclically “wrapped” onto this logical mesh. We start
with these insights and examine the simplest of matrix distributions that result: 2D
elemental cyclic distribution [28, 19]. A d0 × d1 mesh must be chosen such that
p = d0d1, where p denotes the number of nodes.

Matrix distribution. The elements of A are assigned using an elemental cyclic
(round-robin) distribution where αi,j is assigned to node (i mod d0, j mod d1). Thus,
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χ0 · · ·

ψ0

.

.

.

α0,0 α0,3 α0,6 · · ·

α2,0 α2,3 α2,6 · · ·

α4,0 α4,3 α4,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 · · ·

ψ2

α0,1 α0,4 α0,7 · · ·

α2,1 α2,4 α2,7 · · ·

α4,1 α4,4 α4,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 · · ·

ψ4

α0,2 α0,5 α0,8 · · ·

α2,2 α2,5 α2,8 · · ·

α4,2 α4,5 α4,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ3

ψ1

.

.

.

α1,0 α1,3 α1,6 · · ·

α3,0 α3,3 α3,6 · · ·

α5,0 α5,3 α5,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ4

ψ3

α1,1 α1,4 α1,7 · · ·

α3,1 α3,4 α3,7 · · ·

α5,1 α5,4 α5,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ5

ψ5

α1,2 α1,5 α1,8 · · ·

α3,2 α3,5 α3,8 · · ·

α5,2 α5,5 α5,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

Fig. 4.1. Distribution of A, x, and y within a 2× 3 mesh. Redistributing a column of A in the
same manner as y requires simultaneous scatters within rows of nodes, while redistributing a row
of A consistently with x requires simultaneous scatters within columns of nodes. In the notation of
section 5, here the distributions of x and y are given by x [(1, 0), ()] and y [(0, 1), ()], respectively,
and that of A is given by A [(0), (1)].

node (s0, s1) stores submatrix

A(s0 :d0 :m−1, s1 :d1 :n−1) =

 αs0,s1 αs0,s1+d1 · · ·
αs0+d0,s1 αs0+d0,s1+d1 · · ·

...
...

. . .

 ,

where the left-hand side of the expression uses the MATLAB convention for express-
ing submatrices, starting indexing from zero instead of one. This is illustrated in
Figure 4.1.

Column-major vector distribution. A column-major vector distribution views the
d0×d1 mesh of nodes as a linear array of p nodes, numbered in column-major order. A
vector is distributed with this distribution if it is assigned to this linear array of nodes
in a round-robin fashion, one element at a time. In other words, consider vector y.
Its element ψi is assigned to node (i mod d0, (i/d0) mod d1), where / denotes integer
division. Or, equivalently, in MATLAB-like notation, node (s0, s1) stores subvector
y(u(s0, s1) : p : m−1), where u(s0, s1) = s0 + s1d0 equals the rank of node (s0, s1)
when the nodes are viewed as a one-dimensional (1D) array, indexed in column-major
order. This distribution of y is illustrated in Figure 4.1.

Row-major vector distribution. Similarly, a row-major vector distribution views
the d0 × d1 mesh of nodes as a linear array of p nodes, numbered in row-major
order. In other words, consider vector x. Its element χj is assigned to node (j mod
d1, (j/d1) mod d0). Or, equivalently, node (s0, s1) stores subvector x(v(s0, s1) :p :n−1),
where v(s0, s1) = s0d1 +s1 equals the rank of node (s0, s1) when the nodes are viewed
as a 1D array, indexed in row-major order. The distribution of x is illustrated in
Figure 4.1.
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χ0 χ3 χ6 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,0 α0,3 α0,6 · · ·

α2,0 α2,3 α2,6 · · ·

α4,0 α4,3 α4,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 χ4 χ7 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,1 α0,4 α0,7 · · ·

α2,1 α2,4 α2,7 · · ·

α4,1 α4,4 α4,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 χ5 χ8 · · ·

ψ0

ψ2

ψ4

.

.

.

α0,2 α0,5 α0,8 · · ·

α2,2 α2,5 α2,8 · · ·

α4,2 α4,5 α4,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ0 χ3 χ6 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,0 α1,3 α1,6 · · ·

α3,0 α3,3 α3,6 · · ·

α5,0 α5,3 α5,6 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ1 χ4 χ7 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,1 α1,4 α1,7 · · ·

α3,1 α3,4 α3,7 · · ·

α5,1 α5,4 α5,7 · · ·

.

.

.
.
.
.

.

.

.
. . .

χ2 χ5 χ8 · · ·

ψ1

ψ3

ψ5

.

.

.

α1,2 α1,5 α1,8 · · ·

α3,2 α3,5 α3,8 · · ·

α5,2 α5,5 α5,8 · · ·

.

.

.
.
.
.

.

.

.
. . .

Fig. 4.2. Vectors x and y, respectively, redistributed as row-projected and column-projected
vectors. The column-projected vector y [(0), ()] here is to be used to compute local results that will
become contributions to a column vector y [(0, 1), ()] , which will result from adding these local contri-
butions within rows of nodes. By comparing and contrasting this figure with Figure 4.1, it becomes
obvious that redistributing x [(1, 0), ()] to x [(1), ()] requires an allgather within columns of nodes,
while y [(0, 1), ()] results from scattering y [(0), ()] within process rows.

4.4. Parallelizing matrix-vector operations. In the following discussion, we
assume that A, x, and y are distributed as discussed above.2 At this point, we suggest
comparing (4.1) with Figure 4.1.

Computing y := Ax. The relation between the distributions of a matrix, column-
major vector, and row-major vector is illustrated by revisiting the most fundamental
of computations in linear algebra, y := Ax, already discussed in section 4.2. An
examination of Figure 4.1 suggests that the elements of x must be gathered within
columns of nodes (allgather within columns) leaving elements of x distributed as
illustrated in Figure 4.2. Next, each node computes the partial contribution to vector
y with its local matrix and copy of x. Thus, in Figure 4.2, ψi in each node becomes
a contribution to the final ψi. These must be added together, which is accomplished
by a summation of contributions to y within rows of nodes. An experienced MPI
programmer will recognize this as a reduce-scatter within each row of nodes.

Under our communication cost model, the cost of this parallel algorithm is given
by

Ty=Ax(m,n, r, c) = 2

⌈
m

d0

⌉⌈
n

d1

⌉
︸ ︷︷ ︸ γ
local mvmult

+ log2(d0)α+
d0 − 1

d0

⌈
n

d1

⌉
β︸ ︷︷ ︸

allgather x

+ log2(d1)α+
d1 − 1

d1

⌈
m

d0

⌉
β +

d1 − 1

d1

⌈
m

d0

⌉
γ︸ ︷︷ ︸

reduce-scatter y

2We suggest the reader print copies of Figures 4.1 and 4.2 for easy referral while reading the rest
of this section.
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≈ 2
mn

p
γ + C0

m

d0
γ + C1

n

d1
γ︸ ︷︷ ︸

load imbalance

+ log2(p)α+
d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ

for some constants C0 and C1. We simplify this further to

(4.2) 2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ︸ ︷︷ ︸

T+
y:=Ax(m,n, d0, d1)

,

since the load imbalance contributes a cost similar to that of the communication.3

Here, T+
y:=Ax(m,n, k/h, d0, d1) is used to refer to the overhead associated with the

above algorithm for the y = Ax operation. In Appendix A we use these estimates to
show that this parallel matrix-vector multiplication is, for practical purposes, weakly
scalable if d0/d1 is kept constant, but it is not if d0 × d1 = p× 1 or d0 × d1 = 1× p.

Computing x := AT y. Let us next discuss an algorithm for computing x := AT y,
where A is an m×n matrix and x and y are distributed as before (x with a row-major
vector distribution and y with a column-major vector distribution).

Recall that x = AT y (transpose matrix-vector multiplication) means

χ0 = α0,0ψ0 + α1,0ψ1 + · · ·+ αn−1,0ψn−1
χ1 = α0,1ψ0 + α1,1ψ1 + · · ·+ αn−1,1ψn−1
...

...
...

...
χm−1 = α0,m−1ψ0 + α1,m−1ψ1 + · · ·+ αn−1,m−1ψn−1

or

(4.3)

χ0 = χ1 = · · · χm−1 =
α0,0ψ0+ α0,1ψ0+ · · · α0,n−1ψ0+
α1,0ψ1+ α1,1ψ1+ · · · α1,n−1ψ1+

...
...

...
αn−1,0ψn−1 αn−1,1ψn−1 · · · αn−1,n−1ψn−1

.

An examination of (4.3) and Figure 4.1 suggests that the elements of y must be gath-
ered within rows of nodes (allgather within rows), leaving elements of y distributed as
illustrated in Figure 4.2. Next, each node computes the partial contribution to vector
x with its local matrix and copy of y. Thus, in Figure 4.2 χj in each node becomes
a contribution to the final χj . These must be added together, which is accomplished
by a summation of contributions to x within columns of nodes. We again recognize
this as a reduce-scatter but this time within each column of nodes.

The cost for this algorithm, approximating as we did when analyzing the algo-
rithm for y = Ax, is

2
mn

p
γ + log2(p)α+

d1 − 1

d1

n

d0
β +

d0 − 1

d0

m

d1
β +

d0 − 1

d0

m

d1
γ︸ ︷︷ ︸

T+
x:=ATy(m,n, d1, d0)

,

where, as before, we ignore overhead due to load imbalance since terms of the same
order appear in the terms that capture communication overhead.

3It is tempting to approximate x−1
x

by 1, but this would yield formulae for the cases where the
mesh is p× 1 (d1 = 1) or 1× p (d0 = 1) that are overly pessimistic.
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Computing y := ATx. What if we wish to compute y := ATx, where A is an m×n
matrix and y is distributed with a column-major vector distribution and x with a row-
major vector distribution? Now x must first be redistributed to a column-major vector
distribution, after which the algorithm that we just discussed can be executed, and
finally the result (in row-major vector distribution) must be redistributed to leave it
as y in column-major vector distribution. This adds to the cost of y := ATx both
the cost of the permutation that redistributes x and the cost of the permutation that
redistributes the result to y.

Other cases. What if when computing y := Ax the vector x is distributed like a
row of matrix A? What if the vector y is distributed like a column of matrix A? We
leave these cases as an exercise for the reader.

Hence, understanding the basic algorithms for multiplying with A and AT allows
one to systematically derive and analyze algorithms when the vectors that are involved
are distributed to the nodes in different ways.

Computing A := yxT +A. A second commonly encountered matrix-vector oper-
ation is the rank-1 update: A := αyxT + A. We will discuss the case where α = 1.
Recall that

A+ yxT =


α0,0 + ψ0χ0 α0,1 + ψ0χ1 · · · α0,n−1 + ψ0χn−1

α1,0 + ψ1χ0 α1,1 + ψ1χ1 · · · α1,n−1 + ψ1χn−1

...
...

. . .
...

αm−1,0 + ψm−1χ0 αm−1,1 + ψm−1χ1 · · · αm−1,n−1 + ψm−1χn−1

 ,

which, when considering Figures 4.1 and 4.2, suggests the following parallel algorithm:
All-gather of y within rows. All-gather of x within columns. Update of the local
matrix on each node.

The cost for this algorithm, approximating as we did when analyzing the algo-
rithm for y = Ax, yields

2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β︸ ︷︷ ︸

T+
A:=yxT+A(m,n, d0, d1)

,

where, as before, we ignore overhead due to load imbalance, since terms of the same
order appear in the terms that capture communication overhead. Notice that the cost
is the same as a parallel matrix-vector multiplication, except for the “γ” term that
results from the reduction within rows.

As before, one can modify this algorithm for the case when the vectors start
with different distributions, building on intuition from matrix-vector multiplication.
A pattern is emerging.

5. Generalizing the theme. The reader should now have an understanding of
how vector and matrix distributions are related to the parallelization of basic matrix-
vector operations. We generalize these insights using sets of indices as “filters” to
indicate what parts of a matrix or vector a given process owns.

The results in this section are similar to those that underlie physically based
matrix distribution [14], which itself also underlies PLAPACK. However, we formalize
the notation beyond that used by PLAPACK. The link between distribution of vectors
and matrices was first observed by Bisseling and McColl [6, 7] and, around the same
time, by Lewis and Van de Geijn [24].
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5.1. Vector distribution. The basic idea is to use two different partitions of
the natural numbers as a means of describing the distribution of the row and column
indices of a matrix.

Definition 5.1 (subvectors and submatrices). Let x ∈ Rn and S ⊂ N. Then
x [S] equals the vector with elements from x, with indices in the set S, in the order
in which they appear in vector x. If A ∈ Rm×n and S, T ⊂ N, then A [S, T ] is the
submatrix formed by keeping only the elements of A, whose row indices are in S and
column indices are in T , in the order in which they appear in matrix A.

We illustrate this idea with simple examples.

Example 1. Let

x =


χ0

χ1

χ2

χ3


and

A =


α0,0 α0,1 α0,2 α0,3 α0,4

α1,0 α1,1 α1,2 α1,3 α1,4

α2,0 α2,1 α2,2 α2,3 α2,4

α3,0 α3,1 α3,2 α3,3 α3,4

α4,0 α4,1 α4,2 α4,3 α4,4

 .

If S = {0, 2, 4, . . .} and T = {1, 3, 5, . . .}, then

x [S] =

(
χ0

χ2

)
and A [S, T ] =

 α0,1 α0,3

α2,1 α2,3

α4,1 α4,3

 .

We now introduce two fundamental ways to distribute vectors relative to a logical
d0 × d1 process grid.

Definition 5.2 (column-major vector distribution). Suppose that p ∈ N pro-
cesses are available, and define

Vσp (q) = {N ∈ N : N ≡ q + σ (mod p)}, q ∈ {0, 1, . . . , p− 1},

where σ ∈ {0, 1, . . . , p − 1} is an arbitrary alignment parameter. When p is implied
from the context and σ is not important in the discussion, we will simply denote the
above set by V(q).

If the p processes have been configured into a logical d0 × d1 grid, a vector x
is said to be in a column-major vector distribution if process (s0, s1), where s0 ∈
{0, . . . , d0 − 1} and s1 ∈ {0, . . . , d1 − 1}, is assigned the subvector x(Vσp (s0 + s1d0)).
This distribution is represented via the d0 × d1 array of indices

D(0,1)(s0, s1) ≡ V(s0 + s1d0), (s0, s1) ∈ {0, . . . , d0 − 1} × {0, . . . , d1 − 1},

and the shorthand x[(0, 1)] will refer to the vector x distributed such that process
(s0, s1) stores x(D(0,1)(s0, s1)).

Definition 5.3 (row-major vector distribution). Similarly, the d0 × d1 array

D(1,0) ≡ V(s1 + s0d1), (s0, s1) ∈ {0, . . . , d0 − 1} × {0, . . . , d1 − 1}

is said to define a row-major vector distribution. The shorthand y[(1, 0)] will refer to
the vector y distributed such that process (s0, s1) stores y(D(1,0)(s0, s1)).
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Fig. 5.1. Summary of the communication patterns for redistributing a vector x. For instance,
a method for redistributing x from a matrix column to a matrix row is found by tracing from the
bottom-left to the bottom-right of the diagram.

The members of any column-major vector distribution, D(0,1), or row-major vector
distribution, D(1,0), form a partition of N. The names column-major vector distribu-
tion and row-major vector distribution are derived from the fact that the mappings
(s0, s1) 7→ s0 + s1d0 and (s0, s1) 7→ s1 + s0d1, respectively, label the d0× d1 grid with
a column-major and row-major ordering.

As row-major and column-major distributions differ only by which dimension of
the grid is considered first when assigning an order to the processes in the grid, we
can give one general definition for a vector distribution with 2D grids. We give this
definition now.

Definition 5.4 (vector distribution). We call the d0 × d1 array D(i,j) a vec-
tor distribution if i, j ∈ {0, 1}, i 6= j, and there exists some alignment parameter
σ ∈ {0, . . . , p − 1} such that, for every grid position (s0, s1) ∈ {0, . . . , d0 − 1} ×
{0, . . . , d1 − 1},

(5.1) D(i,j)(s0, s1) = Vσp (si + sjdi).

The shorthand y [(i, j)] will refer to the vector y distributed such that process (s0, s1)
stores y(D(i,j)(s0, s1)).

Figure 4.1 illustrates that to redistribute y [(0, 1)] to y [(1, 0)] , and vice versa, re-
quires a permutation communication (simultaneous point-to-point communication).
The effect of this redistribution can be seen in Figure 5.1. Via a permutation commu-
nication, the vector y distributed as y [(0, 1)] can be redistributed as y [(1, 0)] , which
is the same distribution as the vector x.

In the preceding discussions, our definitions of D(0,1) and D(1,0) allowed for arbi-
trary alignment parameters. In the rest of the paper, we will treat only the case where
all alignments are zero; i.e., the top-left entry of every (global) matrix and the top
entry of every (global) vector are owned by the process in the top-left of the process
grid.
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Table 5.1
The relationships between distribution symbols found in the Elemental library implementation

and those introduced here. For instance, the distribution A[MC ,MR] found in the Elemental library
implementation corresponds to the distribution A [(0), (1)].

Elemental symbol Introduced symbol
MC (0)
MR (1)
VC (0, 1)
VR (1, 0)
∗ ()

5.2. Induced matrix distribution. We are now ready to discuss how matrix
distributions are induced by the vector distributions. For this, it pays to again consider
Figure 4.1. The element αi,j of matrix A is assigned to the row of processes in which
ψi exists and to the column of processes in which χj exists. This means that in
y = Ax, elements of x need only be communicated within columns of processes, and
local contributions to y need only be summed within rows of processes. This induces
a Cartesian matrix distribution: Column j of A is assigned to the same column of
processes as χj . Row i of A is assigned to the same row of processes as ψi. We now
answer the following two related questions: (1) What is the set D(0)(s0) of matrix
row indices assigned to process row s0? (2) What is the set D(1)(s1) of matrix column
indices assigned to process column s1?

Definition 5.5. Let

D(0)(s0) =

d1−1⋃
s1=0

D(0,1)(s0, s1) and D(1)(s1) =

d0−1⋃
s1=0

D(1,0)(s0, s1).

Given matrix A, A
[
D(0)(s0),D(1)(s1)

]
denotes the submatrix of A with row indices

in the set D(0)(s0) and column indices in D(1)(s1). Finally, A [(0), (1)] denotes the

distribution of A that assigns A
[
D(0)(s0),D(1)(s1)

]
to process (s0, s1).

We say that D(0) and D(1) are induced, respectively, by D(0,1) and D(1,0) because
the process to which αi,j is assigned is determined by the row of processes, s0, to which
yi is assigned, and the column of processes, s1, to which xj is assigned, so that it is
ensured that in the matrix-vector multiplication y = Ax communication need only be
within rows and columns of processes. Notice in Figure 5.1 that to redistribute indices
of the vector y as the matrix column indices in A requires a communication within
rows of processes. Similarly, to redistribute indices of the vector x as matrix row
indices requires a communication within columns of processes. The above definition
lies at the heart of our communication scheme.

5.3. Vector duplication. Two vector distributions, encountered in section 4.4
and illustrated in Figure 4.2, still need to be specified with our notation. The vector
x, duplicated as needed for the matrix-vector multiplication y = Ax, can be specified
as x [(0)] or, viewing x as an n × 1 matrix, as x [(0), ()]. The vector y, duplicated so
as to store local contributions for y = Ax, can be specified as y [(1)] or, viewing y as
an n × 1 matrix, as y [(1), ()]. Here the () should be interpreted as “all indices.” In
other words, D() ≡ N.

5.4. Notation in the Elemental library. Readers familiar with the Elemen-
tal library will notice that the distribution symbols defined within that library’s
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implementation follow a different convention than that used for distribution sym-
bols introduced in the previous subsections. This is due to the fact that the notation
used in this paper was devised after the implementation of the Elemental library,
and we wanted the notation to be extensible to higher-dimensional objects (tensors).
However, for every symbol utilized in the Elemental library implementation, there ex-
ists a unique symbol in the notation introduced here. In Table 5.1, the relationships
between distribution symbols utilized in the Elemental library implementation and
the symbols used in this paper are defined.

5.5. Of vectors, columns, and rows. A matrix-vector multiplication or rank-
1 update may take as its input/output vectors (x and y) the rows and/or columns of
matrices, as we will see in section 6. This motivates us to briefly discuss the different
communications needed to redistribute vectors to and from columns and rows. For
our discussion, the reader may find it helpful to refer back to Figures 4.1 and 4.2.

Column to/from column-major vector. Consider Figure 4.1 and let aj be a typical
column in A. It exists within one single process column. Redistributing aj [(0), (1)] to
y [(0, 1), ()] requires simultaneous scatters within process rows. Inversely, redistribut-
ing y [(0, 1), ()] to aj [(0), (1)] requires simultaneous gathers within process rows.

Column to/from row-major vector. Redistributing aj [(0), (1)] to x [(1, 0), ()] can
be accomplished by first redistributing to y [(0, 1), ()] (simultaneous scatters within
rows) followed by a redistribution of y [(0, 1), ()] to x [(1, 0), ()] (a permutation). Re-
distributing x [(1, 0)] to aj [(0), (1)] reverses these communications.

Column to/from column projected vector. Redistributing aj [(0), (1)] to aj [(0), ()]
(duplicated y in Figure 4.2) can be accomplished by first redistributing to y [(0, 1), ()]
(simultaneous scatters within rows) followed by a redistribution of y [(0, 1), ()] to
y [(0), ()] (simultaneous allgathers within rows). However, recognize that a scatter
followed by an allgather is equivalent to a broadcast. Thus, redistributing aj [(0), (1)]
to aj [(0), ()] can be more directly accomplished by broadcasting within rows. Sim-
ilarly, summing duplicated vectors y [(0), ()] that leaves the result as aj [(0), (1)] (a
column in A) can be accomplished by first summing them into y [(0, 1), ()] (reduce-
scatters within rows) followed by a redistribution to aj [(0), (1)] (gather within rows).
But a reduce-scatter followed by a gather is equivalent to a reduce(-to-one) collective
communication.

All communication patterns with vectors, rows, and columns. In Figure 5.1 we
summarize all the communication patterns that will be encountered when performing
various matrix-vector multiplications or rank-1 updates, with vectors, columns, or
rows as input.

5.6. Parallelizing matrix-vector operations (revisited). We now show how
the notation discussed in the previous subsection pays off when describing algorithms
for matrix-vector operations.

Assume that A, x, and y are, respectively, distributed as A [(0), (1)], x [(1, 0), ()],
and y [(0, 1), ()]. Algorithms for computing y := Ax and A := A + xyT are given in
Tables 5.2 and 5.3.

The discussion in section 5.5 provides insight into generalizing these parallel
matrix-vector operations to the cases where the vectors are rows and/or columns
of matrices. For example, in Table 5.4 we show how to compute a column of matrix
C, ĉi as the product of a matrix A times the column of a matrix B, bj . Certain steps
in Tables 5.2–5.4 have superscripts associated with outputs of local computations.
These superscripts indicate that contributions rather than final results are computed

by the operation. Further, the subscript to
∑̂

indicates along which dimension of the
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Table 5.2
Parallel algorithm for computing y := Ax.

Algorithm: y := Ax (gemv) Comments

x [(1), ()]← x [(1, 0), ()] Redistribute x (allgather in columns)

y(1) [(0), ()] := A [(0), (1)] x [(1), ()] Local matrix-vector multiply

y [(0, 1), ()] :=
∑̂

1y
(1) [(0), ()] Sum contributions (reduce-scatter in rows)

Table 5.3
Parallel algorithm for computing A := A+ xyT .

Algorithm A := A+ xyT (ger) Comments

x [(0, 1), ()]← x [(1, 0), ()] Redistribute x as a column-major vector (permu-
tation)

x [(0), ()]← x [(0, 1), ()] Redistribute x (allgather in rows)

y [(1, 0), ()]← y [(0, 1), ()] Redistribute y as a row-major vector (permutation)

y((1), ())← y((1, 0), ()) Redistribute y (allgather in columns)

A [(0), (1)] := x [(0), ()] [y [(1), ()]]T Local rank-1 update

Table 5.4
Parallel algorithm for computing ĉi := Abj , where ĉi is a row of a matrix C and bj is a column

of a matrix B.

Algorithm: ĉi := Abj (gemv) Comments

x [(1), ()]← bj [(0), (1)] Redistribute bj :

x [(0, 1), ()]← bj [(0), (1)] (scatter in rows)

x [(1, 0), ()]← x [(0, 1), ()] (permutation)

x [(1), ()]← x [(1, 0), ()] (allgather in columns)

y(1) [(0), ()] := A [(0), (1)] x [(1), ()] Local matrix-vector multiply

ĉi [(0), (1)] :=
∑̂

1y
(1) [(0), ()] Sum contributions:

y [(0, 1), ()] :=
∑̂

ty
(1) [(0), ()]

(reduce-scatter in rows)

y [(1, 0), ()]← y [(0, 1), ()] (permutation)

ĉi((0), (1))← y((1, 0), ()) (gather in rows)

processing grid a reduction of contributions must occur.

5.7. Similar operations. What we have described is a general method. We
leave it as an exercise for the reader to derive parallel algorithms for x := AT y and
A := yxT +A, starting with vectors that are distributed in various ways.

6. Elemental SUMMA: 2D algorithms (eSUMMA2D). We have now ar-
rived at the point where we can discuss parallel matrix-matrix multiplication on a
d0 × d1 mesh, with p = d0d1. In our discussion, we will assume an elemental distri-
bution, but the ideas clearly generalize to other Cartesian distributions.

This section exposes a systematic path from the parallel rank-1 update and
matrix-vector multiplication algorithms to highly efficient 2D parallel matrix-matrix
multiplication algorithms. The strategy is to first recognize that a matrix-matrix
multiplication can be performed by a series of rank-1 updates or matrix-vector multi-
plications. This gives us parallel algorithms that are inefficient. By then recognizing
that the order of operations can be changed so that communication and computation
can be separated and consolidated, these inefficient algorithms are transformed into
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Fig. 6.1. Summary of the communication patterns for redistributing a matrix A.

efficient algorithms. While explained only for some of the cases of matrix multiplica-
tion, we believe the exposition is such that the reader can derive algorithms for the
remaining cases by applying the ideas in a straightforward manner.

To fully understand how to attain high performance on a single processor, the
reader should become familiar with, for example, the techniques in [16].

6.1. Elemental stationary C algorithms (eSUMMA2D-C). We first dis-
cuss the case where C := C + AB, where A and B have k columns each, with k
relatively small.4 We call this a rank-k update or panel-panel multiplication [16].
We will assume the distributions C [(0), (1)], A [(0), (1)], and B [(0), (1)]. Partition

4There is an algorithmic block size, balg, for which a local rank-k update achieves peak perfor-
mance [16]. Think of k as being that algorithmic block size for now.
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A =
(
a0 a1 · · · ak−1

)
and

B =


b̂T0
b̂T1
...

b̂Tk−1


so that

C := ((· · · ((C + a0b̂
T
0 ) + a1b̂

T
1 ) + · · · ) + ak−1b̂

T
k−1).

The following loop computes C := AB + C:

for p = 0, . . . , k − 1
ap [(0), ()]← ap [(0), (1)] (broadcasts within rows)

bTp [(), (1)]← b̂Tp [(0), (1)] (broadcasts within cols)

C [(0), (1)] := C [(0), (1)] + ap [(0), ()] b̂Tp [(), (1)] (local rank-1 updates)
endfor

While section 5.6 gives a parallel algorithm for ger, the problem with this algorithm is
that (1) it creates a lot of messages and (2) the local computation is a rank-1 update,
which inherently does not achieve high performance since it is memory bandwidth
bound. The algorithm can be rewritten as

for p = 0, . . . , k − 1
ap [(0), ()]← ap [(0), (1)] (broadcasts within rows)

endfor
for p = 0, . . . , k − 1

bTp [(), (1)]← b̂Tp [(0), (1)] (broadcasts within cols)
endfor
for p = 0, . . . , k − 1

C [(0), (1)] := C [(0), (1)] + ap [(0), ()] b̂Tp [(), (1)] (local rank-1 updates)
endfor

and finally, equivalently, as

A [(0), ()]← A [(0), (1)] (allgather within rows)
B [(), (1)]← B [(0), (1)] (allgather within cols)
C [(0), (1)] := C [(0), (1)] +A [(0), ()] B [(), (1)] (local rank-k update)

Now the local computation is cast in terms of a local matrix-matrix multiplication
(rank-k update), which can achieve high performance. Here (given that we assume
elemental distribution) A [(0), ()]← A [(0), (1)] within each row broadcasts k columns
of A from different roots: an allgather if elemental distribution is assumed! Similarly,
B [(), (1)] ← B [(0), (1)] within each column broadcasts k rows of B from different
roots: another allgather if elemental distribution is assumed!

Based on this observation, the SUMMA-like algorithm can be expressed as a
loop around such rank-k updates, as given in Table 6.1 (left).5 The purpose of the
loop is to reduce workspace required to store duplicated data. Notice that if an

5We use FLAME notation to express the algorithm, which we have used in our papers for more
than a decade [18].
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Table 6.1
Algorithms for computing C := AB + C. Left: Stationary C. Right: Stationary A.

Algorithm: C := Gemm C(C,A,B)

Partition A→
(
AL AR

)
, B →

(
BT

BB

)
where AL has 0 columns, BT has 0 rows

while n(AL) < n(A) do
Determine block size b
Repartition(

AL AR

)
→
(
A0 A1 A2

)
,(

BT

BB

)
→

 B0

B1

B2


where A1 has b columns, B1 has b rows

A1 [(0), ()]← A1 [(0), (1)]
B1 [(), (1)]← B1 [(0), (1)]
C [(0), (1)] := C [(0), (1)]

+A1 [(0), ()] B1 [(), (1)]

Continue with(
AL AR

)
←
(
A0 A1 A2

)
,(

BT

BB

)
←

 B0

B1

B2


endwhile

Algorithm: C := Gemm A(C,A,B)

Partition
C →

(
CL CR

)
, B →

(
BL BR

)
where CL and BL have 0 columns

while n(CL) < n(C) do
Determine block size b
Repartition(

CL CR

)
→
(
C0 C1 C2

)
,(

BL BR

)
→
(
B0 B1 B2

)
where C1 and B1 have b columns

B1 [(1), ()]← B1 [(0), (1)]

C
(1)
1 [(0), ()] := A [(0), (1)]B1 [(1), ()]

C1 [(0), (1)] :=
∑̂

1C
(1)
1 [(0), ()]

Continue with(
CL CR

)
←
(
C0 C1 C2

)
,(

BL BR

)
←
(
B0 B1 B2

)
endwhile

elemental distribution is assumed, the SUMMA-like algorithm should not be called a
broadcast-broadcast-compute algorithm. Instead, it becomes an allgather-allgather-
compute algorithm. We will also call it a stationary C algorithm, since C is not
communicated (and hence “owner computes” is determined by what processor owns
what element of C). The primary benefit from having a loop around rank-k updates
is that it reduces the required local workspace at the expense of an increase only in
the α term of the communication cost.

We label this algorithm eSUMMA2D-C, an elemental SUMMA-like algorithm tar-
geting a 2D mesh of nodes, stationary C variant. It is not hard to extend the insights
to nonelemental distributions (for example, as used by ScaLAPACK or PLAPACK).

An approximate cost for the described algorithm is given by

TeSUMMA2D-C(m,n, k, d0, d1)

=
2mnk

p
γ +

k

balg
log2(d1)α+

d1 − 1

d1

mk

d0
β +

k

balg
log2(d0)α+

d0 − 1

d0

nk

d1
β

=
2mnk

p
γ +

k

balg
log2(p)α+

(d1 − 1)mk

p
β +

(d0 − 1)nk

p
β.︸ ︷︷ ︸

T+
eSUMMA2D-C(m,n, k, d0, d1)

This estimate ignores load imbalance (which leads to a γ term of the same order as
the β terms) and the fact that the allgathers may be unbalanced if balg is not an
integer multiple of both d0 and d1. As before, and throughout this paper, T+ refers
to the communication overhead of the proposed algorithm (e.g., T+

eSUMMA2D-C refers
to the communication overhead of the eSUMMA2D-C algorithm).
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It is not hard to see that for practical purposes,6 the weak scalability of the
eSUMMA2D-C algorithm mirrors that of the parallel matrix-vector multiplication
algorithm analyzed in Appendix A: it is weakly scalable when m = n and d0 = d1,
for arbitrary k.

At this point it is important to mention that this resulting algorithm may seem
similar to an approach described in prior work [2]. Indeed, this allgather-allgather-
compute approach to parallel matrix-matrix multiplication is described in that paper
for the matrix-matrix multiplication variants C = AB, C = ABT , C = ATB, and
C = ATBT under the assumption that all matrices are approximately the same
size; this is a surmountable limitation. As we have argued previously, the allgather-
allgather-compute approach is particularly well suited for situations where we wish not
to communicate the matrix C. In the next section, we describe how to systematically
derive algorithms for situations where we wish to avoid communicating the matrix A.

6.2. Elemental stationary A algorithms (eSUMMA2D-A). Next, we dis-
cuss the case where C := C + AB, where C and B have n columns each, with n
relatively small. For simplicity, we also call that parameter balg. We call this a
matrix-panel multiplication [16]. We again assume that the matrices are distributed
as C [(0), (1)], A [(0), (1)], and B [(0), (1)]. Partition

C =
(
c0 c1 · · · cn−1

)
and B =

(
b0 b1 · · · bn−1

)

so that cj = Abj + cj . The following loop will compute C = AB + C:

for j = 0, . . . , n− 1
bj [(0, 1), ()]← bj [(0), (1)] (scatters within rows)
bj [(1, 0), ()]← bj [(0, 1), ()] (permutation)
bj [(1), ()]← bj [(1, 0), ()] (allgathers within cols)
cj [(0), ()] := A [(0), (1)] bj [(1), ()] (local matvec mult)

cj [(0), (1)]←
∑̂

1cj [(0), ()] (reduce-to-one within rows)
endfor

While section 5.6 gives a parallel algorithm for gemv, the problem again is that (1)
it creates a lot of messages and (2) the local computation is a matrix-vector multiply,
which inherently does not achieve high performance since it is memory bandwidth
bound. This can be restructured as

6The very slow growing factor logp(p) prevents weak scalability unless it is treated as a constant.
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for j = 0, . . . , n− 1
bj [(0, 1), ()]← bj [(0), (1)] (scatters within rows)

endfor
for j = 0, . . . , n− 1

bj [(1, 0), ()]← bj [(0, 1), ()] (permutation)
endfor
for j = 0, . . . , n− 1

bj [(1), ()]← bj [(1, 0), ()] (allgathers within cols)
endfor
for j = 0, . . . , n− 1

cj [(0), ()] := A [(0), (1)] bj [(1), ()] (local matvec mult)
endfor
for j = 0, . . . , n− 1

cj [(0), (1)]←
∑̂

1cj [(0), ()] (simultaneous reduce-to-one
endfor within rows)

and finally, equivalently, as

B [(1), ()]← B [(0), (1)] (all-to-all within rows, permu-
tation, allgather within cols)

C [(0), ()] := A [(0), (1)]B [(1), ()] + C [(0), ()] (simultaneous local matrix
multiplications)

C [(0), (1)]←
∑̂
C [(0), ()] (reduce-scatter within rows)

Now the local computation is cast in terms of a local matrix-matrix multiplication
(matrix-panel multiply), which can achieve high performance. A stationary A algo-
rithm for arbitrary n can now be expressed as a loop around such parallel matrix-panel
multiplies, given in Table 6.1 (right).

An approximate cost for the described algorithm is given by

TeSUMMA2D-A(m,n, k, d0, d1) =
n
balg

log2(d1)α+ d1−1
d1

nk
d0
β (all-to-all within rows)

+ n
balg

α+ n
d1

k
d0
β (permutation)

+ n
balg

log2(d0)α+ d0−1
d0

nk
d1
β (allgather within cols)

+ 2mnk
p γ (simultaneous local matrix-panel mult)

+ n
balg

log2(d1)α+ d1−1
d1

mn
d0
β + d1−1

d1
mn
d0
γ (reduce-scatter within rows).

As we discussed earlier, the cost function for the all-to-all operation is somewhat
suspect. Still, if an algorithm that attains the lower bound for the α term is employed,
the β term must increase by at most a factor of log2(d1) [8], meaning that it is not
the dominant communication cost. The estimate ignores load imbalance (which leads
to a γ term of the same order as the β terms) and the fact that various collective
communications may be unbalanced if balg is not an integer multiple of both d0 and d1.

While the overhead is clearly greater than that of the eSUMMA2D-C algorithm
when m = n = k, the overhead is comparable to that of the eSUMMA2D-C algorithm,
so the weak scalability results are, asymptotically, the same. Also, it is not hard to see
that if m and k are large while n is small, this algorithm achieves better parallelism,
since less communication is required: The stationary matrix, A, is then the largest
matrix, and not communicating it is beneficial. Similarly, if m and n are large while k
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is small, then the eSUMMA2D-C algorithm does not communicate the largest matrix,
C, which is beneficial.

6.3. Communicating submatrices. In Figure 6.1 we illustrate the collective
communications required to redistribute submatrices from one distribution to another
and the collective communications required to implement them.

6.4. Other cases. We leave it as an exercise for the reader to propose and
analyze the remaining stationary A, B, and C algorithms for the other cases of matrix-
matrix multiplication: C := ATB + C, C := ABT + C, and C := ATBT + C.

Hence, we have presented a systematic framework for deriving a family of parallel
matrix-matrix multiplication algorithms.

7. Elemental SUMMA: 3D algorithms (eSUMMA3D). We now view the
p processors as forming a d0 × d1 × h mesh, which one should visualize as h stacked
layers, where each layer consists of a d0 × d1 mesh. The extra dimension is used to
gain an extra level of parallelism, which reduces the overhead of the 2D SUMMA
algorithms within each layer at the expense of communications between the layers.

The approach used to generalize Elemental SUMMA 2D algorithms to Elemental
SUMMA 3D algorithms can be easily modified to use Cannon’s or Fox’s algorithm
(with the constraints and complications that come from using those algorithms) or
any other distribution for which SUMMA can be used (pretty much any Cartesian
distribution).

7.1. 3D stationary C algorithms (eSUMMA3D-C). Partition A and B so
that A =

(
A0 · · · Ah−1

)
and

B =

 B0

...
Bh−1

 ,

where Ap and Bp have approximately k/h columns and rows, respectively. Then

C +AB = (C +A0B0)︸ ︷︷ ︸
by layer 0

+ (0 +A1B1)︸ ︷︷ ︸
by layer 1

+ · · ·+ (0 +Ah−1Bh−1).︸ ︷︷ ︸
by layer h-1

This suggests the following 3D algorithm:
• Duplicate C to each of the layers, initializing the duplicates assigned to layers

1 through h− 1 to zero. This requires no communication. We will ignore the
cost of setting the duplicates to zero.

• Scatter A and B so that layer H receives AH and BH . This means that
all processors (I, J, 0) simultaneously scatter approximately (m+ n)k/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

(7.1) log2(h)α+
h− 1

h

(m+ n)k

d0d1
β = log2(h)α+

(h− 1)(m+ n)k

p
β.

• Compute C := C +AKBK simultaneously on all layers. If eSUMMA2D-C is
used for this in each layer, the cost is approximated by
(7.2)

2
mnk

p
γ +

k

hbalg
(log2(p)− log2(h))α+

(d1 − 1)mk

p
β +

(d0 − 1)nk

p
β.︸ ︷︷ ︸

T+
eSUMMA2D-C(m,n, k/h, d0, d1)
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• Perform reduce operations to sum the contributions from the different layers
to the copy of C in layer 0. This means that contributions from processors
(I, J, 0) through (I, J,K) are reduced to processor (I, J, 0). An estimate for
this reduce-to-one is

(7.3) log2(h)α+
mn

d0d1
β +

mn

d0d1
γ = log2(h)α+

mnh

p
β +

mnh

p
γ.

Thus, an estimate for the total cost of this eSUMMA3D-C algorithm for this case of
gemm results from adding (7.1)–(7.3).

Let us analyze in detail the case where m = n = k and d0 = d1 =
√
p/h. The

cost becomes

CeSUMMA3D-C(n, n, n, d0, d0, h)

= 2
n3

p
γ +

n

hbalg
(log2(p)− log2(h))α+ 2

(d0 − 1)n2

p
β + log2(h)α+ 2

(h− 1)n2

p
β

+ log2(h)α+
n2h

p
β +

n2h

p
γ

=2
n3

p
γ+

[
n

hbalg
(log2(p)−log2(h))+2 log2(h)

]
α+

[
2

(√
p
√
h
− 1

)
+ 3h− 2 +

γ

β
h

]
n2

p
β.

Now, let us assume that the α term is inconsequential (which will be true if n is large
enough). Then the minimum can be computed by taking the derivative (with respect
to h) and setting this to zero: −√ph−3/2 + (3 +K) = 0 or h = ((3 +K)/

√
p)−2/3 =

3
√
p/(3 + K)2/3, where K = γ/β. Typically γ/β � 1, and hence (3 + K)−2/3 ≈

3−2/3 ≈ 1/2, meaning that the optimal h is given by h ≈ 3
√
p/2. Of course, details of

how the collective communication algorithms are implemented will affect this optimal
choice. Moreover, α is typically four to five orders of magnitude greater than β, and
hence the α term cannot be ignored for more moderate matrix sizes, greatly affecting
the analysis.

While the cost analysis assumes the special case where m = n = k and d0 = d1,
and that the matrices are perfectly balanced among the d0×d0 mesh, the description
of the algorithm is general. It is merely the case that the cost analysis for the more
general case becomes more complex.

The algorithm and the related insights are similar to those described in Agarwal
et al. [1], although we arrive at this algorithm via a different path.

Now, PLAPACK and Elemental both include stationary C algorithms for the
other cases of matrix multiplication (C := αATB + βC, C := αABT + βC, and
C := αATBT + βC). Clearly, 3D algorithms that utilize these implementations can
be easily proposed. For example, if C := ATBT + C is to be computed, one can
partition

A =

 A0

...
Ah−1

 and B =
(
B0 · · · Bh−1

)
,

after which

C +ATBT = (C +AT0 B
T
0 )︸ ︷︷ ︸

by layer 0

+ (0 +AT1 B
T
1 )︸ ︷︷ ︸

by layer 1

+ · · ·+ (0 +ATh−1B
T
h−1).︸ ︷︷ ︸

by layer h-1

The communication overhead for all four cases is similar, meaning that for all four
cases, the resulting stationary C 3D algorithms have similar properties.
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7.2. Stationary A algorithms (eSUMMA3D-A). Let us next focus on
C := AB + C. Algorithms such that A is the stationary matrix are implemented
in PLAPACK and Elemental. They have costs similar to that of the eSUMMA2D-C
algorithm.

Let us describe a 3D algorithm, with a d0 × d1 × h mesh, again viewed as h
layers. If we partition, conformally, C and B so that C =

(
C0 · · · Ch−1

)
and

B =
(
B0 · · · Bh−1

)
, then

(C0 := C0 +AB0 C1 := C1 +AB1 · · · Ch−1 := Ch−1 +ABh−1) .︸ ︷︷ ︸
by layer 0

︸ ︷︷ ︸
by layer h− 1

This suggests the following 3D algorithm:
• Duplicate (broadcast) A to each of the layers. If matrix A is perfectly bal-

anced among the processors, the cost of this can be approximated by

log2(h)α+
mk

d0d1
β.

• Scatter C and B so that layer K receives CK and BK . This means having all
processors (I, J, 0) simultaneously scatter approximately (mn + nk)/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

log2(h)α+
h− 1

h

(m+ k)n

d1d0
β = log2(h)α+

(h− 1)(m+ k)n

p
β.

• Compute CK := CK+ABK simultaneously on all layers with a 2D stationary
A algorithm. The cost of this is approximated by

2mnk

p
γ + T+

eSUMMA2D-A(m,n/h, k, d0, d1).

• Gather the CK submatrices to layer 0. The cost of such a gather can be
approximated by

log2(h)α+
h− 1

h

mn

d1d0
β.

Rather than giving the total cost, we merely note that the stationary A 3D algorithms
can similarly be stated for general m, n, k, d0, and d1, and that then the costs are
similar.

Now, PLAPACK and Elemental both include stationary A algorithms for the
other cases of matrix multiplication. Again, 3D algorithms that utilize these imple-
mentations can be easily proposed.

7.3. Stationary B algorithms (eSUMMA3D-B). Finally, let us again focus
on C := AB + C. Algorithms such that B is the stationary matrix are also imple-
mented in PLAPACK and Elemental. They also have costs similar to that of the
SUMMA algorithm for C := AB + C.

Let us describe a 3D algorithm, with a d0×d1×h mesh, again viewed as h layers.
If we partition, conformally, C and A so that

C =

 C0

...
Ch−1
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and

A =

 A0

...
Ah−1

 ,

then 
C0 +A0B
C1 +A1B

...
Ch−1 := Ch−1 +Ah−1B


by layer 0
by layer 1

...
by layer h− 1.

This suggests the following 3D algorithm:
• Duplicate (broadcast) B to each of the layers. If matrix B is perfectly bal-

anced among the processors, the cost can be approximated by

log2(h)α+
nk

d0d1
β.

• Scatter C and A so that layer K receives CK and AK . This means having all
processors (I, J, 0) simultaneously scatter approximately (mn + mk)/(d0d1)
data to processors (I, J, 0) through (I, J, h − 1). The cost of such a scatter
can be approximated by

log2(h)α+
h− 1

h

m(n+ k)

d1d0
β = log2(h)α+

(h− 1)m(n+ k)

p
β.

• Compute CK := CK + AKB simultaneously on all of the layers with a 2D
stationary B algorithm. The cost of this is approximated by

2mnk

p
γ + T+

eSUMMA2D-B(m/h, n, k, d0, d1).

• Gather the CK submatrices to layer 0. The cost of such a gather can be
approximated by

log2(h)α+
h− 1

h

mn

d1d0
β.

Again, a total cost similar to those for stationary C and A algorithms results. Again,
PLAPACK and Elemental both include stationary B algorithms for the other cases of
matrix multiplication. Again, 3D algorithms that utilize these implementations can
be easily proposed.

7.4. Other cases. We leave it as an exercise to the reader to propose and analyze
the remaining eSUMMA3D-A, eSUMMA3D-B, and eSUMMA3D-C algorithms for the
other cases of matrix-matrix multiplication: C := ATB + C, C := ABT + C, and
C := ATBT + C.

The point is that we have presented a systematic framework for deriving a family
of parallel 3D matrix-matrix multiplication algorithms.

7.5. Discussion. This extra level of parallelism gained with 3D SUMMA al-
gorithms allows us to parallelize computation across any one of three dimensions
involved in the matrix-matrix multiplication (two dimensions for forming the output
C, and one for the reduction of A and B). The particular 3D SUMMA algorithmic
variant dictates the dimension along which the extra parallelism occurs. In [13], a
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geometric model is developed that views the set of scalar computations associated
with a matrix-matrix multiplication as a set of lattice points forming a rectangular
prism. This geometric model is based on the Loomis–Whitney inequality [26] that has
been used to devise algorithms that achieve the parallel bandwidth cost lower bound
for matrix-matrix multiplication [4, 5]. Considering this geometric model, each 3D
SUMMA algorithmic variant corresponds to performing computations appearing in
different slices7 in parallel. The orientation of slices is dictated by the 3D SUMMA
algorithmic variant chosen, and the order in which computations are performed within
a slice is dictated by the 2D SUMMA algorithm used within each layer of the process-
ing mesh. We now discuss how the communication overhead of Elemental 2D and 3D
SUMMA algorithms relates to the lower bounds of both the latency and bandwidth
costs associated with parallel matrix-matrix multiplication.

In [23], it was shown that the lower bound on communicated data is Ω(n2/
√
p) for

a matrix multiplication of two n×n matrices computed on a processing grid involving
p processes arranged as a 2D mesh and Ω(n2/ 3

√
p2) for a matrix multiplication of

two n × n matrices computed on a processing grid involving p processes arranged
as a 3D mesh. Examination of the cost functions associated with each eSUMMA2D
algorithm and eSUMMA3D algorithm shows that each achieves the lower bound on
communication for such an operation.

With regard to latency, the lower bound on the number of messages required is
Ω(log(p)) for a matrix multiplication of two n×n matrices computed on a processing
grid involving p processes arranged as either a 2D or 3D mesh. Examination of the
cost functions shows that each achieves the lower bound on latency as well if we
assume that the algorithmic block size balg = n. Otherwise, the proposed algorithms
do not achieve the lower bound.

8. Performance experiments. In this section, we present performance results
that support the insights in the previous sections. Implementations of the eSUMMA-
2D algorithms are all part of the Elemental library. The eSUMMA-3D algorithms
were implemented with Elemental, building upon its eSUMMA-2D algorithms and
implementations. In all of these experiments, it was assumed that the data started and
finished distributed within one layer of the 3D mesh of nodes so that all communication
necessary to duplicate was included in the performance calculations.

As in [28, 29], performance experiments were carried out on the IBM Blue Gene/P
architecture with compute nodes that consist of four 850 MHz PowerPC 450 processors
for a combined theoretical peak performance of 13.6 GFlops per node using double-
precision arithmetic. Nodes are interconnected by a 3D torus topology and a collective
network, each of which supports a per-node bidirectional bandwidth of 2.55 GB/s. In
all graphs, the top of the graph represents peak performance for this architecture so
that the attained efficiency can be easily judged.

The point of the performance experiments was to demonstrate the merits of 3D
algorithms. For this reason, we simply fixed the algorithmic block size, balg, to 128
for all experiments. The number of nodes, p, was chosen to be various powers of two,
as was the number of layers, h. As a result, the d0 × d1 mesh for a single layer was
chosen so that d0 = d1 if p/h was a perfect square and d0 = d1/2 otherwise. The
“zig-zagging” observed in some of the curves is attributed to this square vs. nonsquare
choice of d0×d1. It would have been tempting to perform exhaustive experiments with
various algorithmic block sizes and mesh configurations. However, the performance

7As used, the term “slice” refers to a set of “superbricks” in [13].
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Fig. 8.1. Performance of the different implementations when m = n = k = 30,000 and the
number of nodes is varied.

results were merely meant to verify that the insights of the previous sections have
merit.

In our implementations, the eSUMMA3D-X algorithms utilize eSUMMA2D-X
algorithms on each of the layers, where X ∈ {A,B,C}. As a result, the curve for
eSUMMA3D-X with h = 1 is also the curve for the eSUMMA2D-X algorithm.

Figure 8.1 illustrates the benefits of the 3D algorithms. Inherently, efficiency
cannot be maintained when the problem size is fixed. In other words, “strong” scaling
is unattainable. Still, by increasing the number of layers, h, as the number of nodes,
p, is increased, efficiency can be better maintained.

Figure 8.2 illustrates that the eSUMMA2D-C and eSUMMA3D-C algorithms at-
tain high performance already when m = n are relatively large and k is relatively
small. This is not surprising: The eSUMMA2D-C algorithm already attains high
performance when k is small because the “large” matrix C is not communicated, and
the local matrix-matrix multiplication can already attain high performance when the
local k is small (if the local m and n are relatively large).

Figure 8.3 similarly illustrates that the eSUMMA2D-A and eSUMMA3D-A al-
gorithms attain high performance already when m = k are relatively large and n is
relatively small, and Figure 8.4 illustrates that the eSUMMA2D-B and eSUMMA3D-
B algorithms attain high performance already when n = k are relatively large and m
is relatively small.
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Fig. 8.2. Performance of the different implementations when m = n = 30,000 and k is var-
ied. As expected, the stationary C algorithms ramp up to high performance faster than the other
algorithms when k is small.
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Fig. 8.3. Performance of the different implementations when m = k = 30,000 and n is var-
ied. As expected, the stationary A algorithms ramp up to high performance faster than the other
algorithms when n is small.

A comparison of Figures 8.2(c) and 8.3(a) shows that the eSUMMA2D-A
algorithm (Figure 8.3(a) with h = 1) asymptotes sooner than the eSUMMA2D-C
algorithm (Figure 8.2(c) with h = 1). The primary reason for this is that it in-
curs more communication overhead. But as a result, increasing h is more beneficial
to eSUMMA3D-A in Figure 8.3(a) than is increasing h for eSUMMA3D-C in Fig-
ure 8.2(c). A similar observation can be made for eSUMMA2D-B and eSUMMA3D-B
in Figure 8.4(b).
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Fig. 8.4. Performance of the different implementations when n = k = 30,000 and m is var-
ied. As expected, the stationary B algorithms ramp up to high performance faster than the other
algorithms when m is small.

9. Extensions to tensor computations. Matrix computations and linear al-
gebra are useful when the problem being modeled can be naturally described as having
up to two dimensions. The number of dimensions that the object (linear or multi-
linear) describes is often referred to as the order of the object. For problems naturally
described as higher-order objects, tensor computations and multilinear algebra are
utilized.
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As an example of tensor computations, the generalization of matrix-matrix mul-
tiplication to tensor computations is the tensor contraction. Not only is matrix-
multiplication generalized in the respect that the objects represent a greater number
of dimensions, but also the number of dimensions involved in the summation or ac-
cumulation of the multiplication is generalized (up to all dimensions of a tensor can
be involved in the summation of a tensor contraction), and the notion of a transpo-
sition of dimensions is generalized to incorporate the higher number of dimensions
represented by each tensor.

A significant benefit of the notation introduced in this paper is that generalizing
concepts to tensors and multilinear algebra is relatively straightforward. The nota-
tion used for an object’s distribution is comprised of two pieces of information: how
column indices and row indices of the matrix object are distributed. To describe
how a higher-order tensor is distributed, the notation need only extend to describ-
ing how the additional dimensions are distributed. Further, while this paper focuses
predominately on processing grids that are 2D and 3D, modeling higher-order grids
is straightforward. By design, we describe the shape of the grid as an array, where
each element is the size of the corresponding dimension of the grid. When targeting
a higher-order grid, the array need only be reshaped to match the order of the grid.

The challenges of formalizing how the different collective communications relate
different distributions of tensors and of systematically deriving algorithms for tensor
operations are beyond the scope of this paper but will be a part of future work. Initial
results of how the ideas in this paper are extended to the tensor contraction operation
are given in the dissertation proposal of the first author [30].

10. Conclusion. We have given a systematic treatment of the parallel imple-
mentation of matrix-vector multiplication and rank-1 update. This motivates the
vector and matrix distributions that underlie PLAPACK and, more recently, Elemen-
tal. Based on this, we have presented a systematic approach for implementing parallel
2D matrix-matrix multiplication algorithms. With that in place, we then extended
the observations to 3D algorithms.

The ideas in this paper primarily focus on aspects of distributed-memory
architectures that utilize a bulk-synchronous communication model for network
communication. The ideas presented do not preclude the use of many-core and/or
GPU architectures within each node of such distributed-memory architectures. For
distributed-memory architectures that are most appropriately modeled with bulk-
synchronous communications, we hope that the ideas presented will allow others to
investigate how to effectively utilize various on-node architectures. We recognize that
future distributed-memory architectures may be better suited for more asynchronous
communication models; however, it is important to understand when the ideas in this
paper can be applied to better tune algorithms for given architectures.

We believe that sufficient details have been given so that the reader can now
easily extend our approach to alternative data distributions and/or alternative archi-
tectures. Throughout this paper, we have hinted at how the ideas can be extended to
the realm of tensor computation on higher-dimensional computing grids. A detailed
presentation of how these ideas are extended will be given in future work. Another
interesting future direction would be to analyze whether it would be worthwhile to use
the proposed 3D parallelization, but with a different 2D SUMMA algorithm within
each layer. For example, questions such as the following remain: Would it be worth-
while to use the eSUMMA3D-C approach, but with an eSUMMA2D-A algorithm
within each layer?
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Appendix A. Scalability of matrix-vector operations. Here, we consider
the scalability of various algorithms.

A.1. Weak scalability. A parallel algorithm is said to be weakly scalable when
it can maintain efficiency as the number of nodes, p, increases.

More formally, let T (n) and T (n, p) be the cost (in time for execution) of a
sequential and parallel algorithm (utilizing p nodes), respectively, when computing
with a problem with a size parameterized by n. nmax(p) represents the largest problem
that can fit in the combined memories of the p nodes, and let the overhead T+(n, p)
be given by

T+(n, p) = T (n, p)− T (n)

p
.

Then the efficiency of the parallel algorithm is given by

E(n, p) =
T (n)

pT (n, p)
=

T (n)

T (n) + pT+(n, p)
=

1

1 + T+(n,p)
T (n)/p

.

The efficiency attained by the largest problem that can be executed is then given by

E(nmax(p), p) =
1

1 + T+(nmax(p),p)
T (nmax(p))/p

.

As long as

lim
p→∞

T+(nmax(p), p)

T (nmax(p))/p
≤ R <∞,

then the effective efficiency is bounded below away from 0, meaning that more nodes
can be used effectively. In this case, the algorithm is said to be weakly scalable.

A.2. Weak scalability of parallel matrix-vector multiplication. Let us
now analyze the weak scalability of some of the algorithms in section 4.4.

Parallel y := Ax. In (4.2), the cost of the parallel algorithm was approximated
by

Ty:=Ax(m,n, d0, d1) = 2
mn

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

m

d0
β +

d1 − 1

d1

m

d0
γ.

Let us simplify the problem by assuming that m = n so that Ty:=Ax(n) = 2n2γ
p and

Ty:=Ax(n, d0, d1) = 2
n2

p
γ + log2(p)α+

d0 − 1

d0

n

d1
β +

d1 − 1

d1

n

d0
β +

d1 − 1

d1

n

d0
γ.︸ ︷︷ ︸

T+
y:=Ax(n, d0, d1)

Now, let us assume that each node has memory to store a matrix with M entries.
We will ignore memory needed for vectors, workspace, etc. in this analysis. Then
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nmax(p) =
√
p
√
M and

T+(nmax(p), p)

T (nmax(p))/p
=

log2(p)α+ d0−1
d0

nmax

d1
β + d1−1

d1
nmax

d0
β + d1−1

d1
nmax

d0
γ

2n2max/pγ

=
log2(p)α+ d0−1

p nmaxβ + d1−1
p nmaxβ + d1−1

p nmaxγ

2n2max/pγ

=
log2(p)α+ d0−1√

p

√
Mβ + d1−1√

p

√
Mβ + d1−1√

p

√
Mγ

2Mγ

= log2(p)
1

2M

α

γ
+
d0 − 1
√
p

1

2
√
M

β

γ
+
d1 − 1
√
p

1

2
√
M

β

γ
+
d1 − 1
√
p

1

2
√
M
.

We will use this formula to now analyze scalability.
Case 1. d0 × d1 = p× 1. Then

T+(nmax(p), p)

T (nmax(p))/p
= log2(p)

1

2M

α

γ
+
p− 1
√
p

1

2
√
M

β

γ

≈ log2(p)
1

2M

α

γ
+
√
p

1

2
√
M

β

γ
.

Now, log2(p) is generally regarded as a function that grows slowly enough that it
can be treated almost like a constant. This is not so for

√
p. Thus, even if log2(p)

is treated as a constant, limp→∞
T+(nmax(p),p)
T (nmax(p))/p

→ ∞, and eventually efficiency

cannot be maintained. When d0×d1 = p×1, the proposed parallel matrix-vector
multiply is not weakly scalable.

Case 2. d0×d1 = 1×p. We leave it as an exercise for the reader that the algorithm
is not scalable in this case.

The case where d0×d1 = 1×p or d0×d1 = p×1 can be viewed as partitioning the
matrix by columns or rows, respectively, and assigning these in a round-robin fashion
to the 1D array of processors.

Case 3. d0 × d1 =
√
p×√p. Then

T+(nmax(p), p)

T (nmax(p))/p

= log2(p)
1

2M

α

γ
+

√
p− 1
√
p

1

2
√
M

β

γ
+

√
p− 1
√
p

1

2
√
M

β

γ
+

√
p− 1
√
p

1

2
√
M

≈ log2(p)
1

2M

α

γ
+

1

2
√
M

β

γ
+

1

2
√
M

β

γ
+

1

2
√
M
.

Now, if log2(p) is treated like a constant, then R(nmax,
√
p,
√
p) T+(nmax(p),p)

T (nmax(p))/p

is a constant. Thus, the algorithm is considered weakly scalable for practical
purposes.

A.3. Other algorithms. All other algorithms discussed, or derivable with the
methods, in this paper can be analyzed similarly.
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