
Solving “Large” Dense Matrix Problems
on Multi-Core Processors and GPUs

FLAME Working Note #36

Mercedes Marqúes∗ Gregorio Quintana-Ortı́∗ Enrique S. Quintana-Ortı́∗

Robert van de Geijn†

January 7, 2009

Abstract
Few realize that, for large matrices, many dense matrix computations achieve nearly the same performance when

the matrices are stored on disk as when they are stored in a very large mainmemory. Similarly, few realize that, given
the right programming abstractions, coding Out-of-Core (OOC) implementations of dense linear algebra operations
(where data resides on disk and has to be explicitly moved in and out of mainmemory) is no more difficult than
programming high-performance implementations for the case where thematrix is in memory. Finally, few realize
that on a contemporary eight core architecture or a platform equiped witha graphics processor (GPU) one can solve
a 100, 000 × 100, 000 symmetric positive definite linear system in about one hour. Thus, for problems that used to
be considered large, it is not necessary to utilize distributed-memory architectures with massive memories if one is
willing to wait longer for the solution to be computed on a fast multithreaded architecture like a multi-core computer
or a GPU. This paper provides evidence in support of these claims.

1 Introduction

Examples of problems that require the solution of very largedense linear systems or linear least-squares problems in-
clude the estimation of Earth’s gravitational field, Boundary Element formulations in electromagnetism and acoustics,
and molecular dynamics simulations [2, 19, 17, 31, 38]. In these applications,large refers to matrices with a number
of rows/columns in the105 to 107 range. When these matrices become too large to fit in memory, one must either
change the mathematical formulation of the problem or use secondary memory (e.g., disk). We will focus on the latter.
While data stored on disk can be accessed via virtual memory, careful design of Out-of-Core (OOC) algorithms is
generally required to attain high performance. Moreover, in the past cutting-edge architectures often did not incor-
porate virtual memory, which may happen again for future multi-core architectures particularly since virtual memory
consumes considerable power. Thus, the topic of developingOOC algorithms for dense linear problems continues to
be an active area of research.

There are only a few Open Source libraries available for OOC dense linear algebra computations. The traditional
sequential LAPACK [1] library does not include OOC routinesand the more recentlibflame [37] library only
includes prototype OOC capabilities [22]. For large-scaleproblems ScaLAPACK provides prototype OOC implemen-
tations of Cholesky, LU, and QR factorization based solvers[3, 9, 13] as does the SOLAR [33] library that builds
upon ScaLAPACK routines for in-core computation. The Parallel Linear Algebra Package (PLAPACK) [34], which
inspired thelibflame sequential library, is an alternative to ScaLAPACK for message-passing architectures and
provides an OOC extension, POOCLAPACK, that, like ScaLAPACK and SOLAR, targets message-passing architec-
tures [30, 29, 20, 21, 38]. A survey on parallel OOC implementations of individual operations and/or machine specific
libraries for dense linear systems is given in [32]. Insights about how storing matrices by tiles (what we call blocks)
facilitates scalability can be found in that paper.

∗Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain. {mmarques,gquintan,
quintana}@icc.uji.es.

†Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712.rvdg@cs.utexas.edu.

1

In this paper,

• We briefly review the concept of algorithms-by-blocks and how an Application Programming Interface (API)
developed as part of the FLAME project facilitates programming such algorithms. In brief, algorithms-by-
blocks view matrices, possibly hierarchically, as a collection of submatrices (blocks) that become units of data.
The algorithms then orchestrate the computation as operations with those blocks, which become units of com-
putation.

• We review a run-time system, SuperMatrix, which given a linear algebra code constructs a Directed Acyclic
Graph (DAG) of tasks (operations with blocks) and dependencies between tasks.

• We discuss how this approach can be extended by using the DAG to prefetch and/or cache data so that I/O is
overlapped with computation transparently to the programmer.

• We report our experience with this approach on a platform that includes multiple cores and/or a graphics pro-
cessor (GPU), and a RAM of moderate size, using the Cholesky factorization as a motivating example.

• We show that, once the problem size becomes large, the performance attained by the OOC implementation rivals
that of a high-performance algorithm for matrices that fit inmemory.

• We reason that this approach can also accommodate OOC implementations of algorithms-by-tiles for the level-3
Basic Linear Algebra Subprograms (BLAS) [15] and the LU and QR factorizations.

• We argue that the approach may become a highly cost-effective solution for solving these kinds of operations,
making it possible for less well-funded projects to addressmedium to large size problems.

Together, these contributions advance the state-of-the-art in this area.
The rest of the paper is structured as follows. In Section 2 wereview some of the fundamental parts of the FLAME

project using the Cholesky factorization. An infrastructure in support of OOC computation is proposed in Section 3.
Parallel execution of dense linear algebra operations withthe data in-core is briefly addressed by using algorithms-by-
blocks combined with dynamic scheduling and multi-threaded implementations of BLAS, as described in Section 4.
Experiments reporting performance for the OOC Cholesky factorization on a multi-core platform and a workstation
equiped with a GPU are reported in Section 5. We briefly indicate how a traditional application may interface with
the proposed solvers in Section 6. We close the paper with a few concluding remarks and a brief discussion of future
work in Section 7.

2 Cholesky Factorization using FLAME

Over the last decade we have developed a complete framework for fast and reliable generation of dense and banded
libraries as part of the FLAME project (http://www.cs.utexas.edu/users/flame). The set of “tools”
comprises a high-level notation for expressing algorithmsfor dense and banded linear algebra operations [18], a
formal derivation methodology to obtain provably correct algorithms [7], high-level APIs to transform algorithms into
codes [8], and a run-time system for the automatic parallelization of those codes on multi-core platforms; see [28] and
the references therein. The result is a high-performance library for dense linear algebra,libflame, with support for
all major BLAS as well as the most relevant factorization routines for the solution of linear systems. This infrastructure
is the basis on which we build our approach for the development of OOC codes.

In our papers, we often start by presenting a prototypical operation, which is then used throughout the paper to
illustrate various aspects of the topic at hand. As we have done in a number of other papers that are closely related to
the present one [12, 26], we will use the Cholesky factorization as that example. We note that what is different in the
current paper is that we focus on the left-looking algorithmic variant for computing the Cholesky factorization. Much
of this section can be skipped by those who are very familiar with the FLAME project.

Consider ann× n Symmetric Positive Definite (SPD) matrixA. Its Cholesky factorization is given byA = LLT ,
whereL is then × n lower triangular Cholesky factor. In traditional algorithms for this factorization,L overwrites
the lower triangular part ofA while the strictly upper triangular part remains unmodified. Hereafter, we denote the
operation that overwritesA with its Cholesky factor byA := {L\A} = CHOL(A).

2

Algorithm: A := CHOL UNB VAR3(A)

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block sizeb
Repartition
(

ATL ATR

ABL ABR

)

→





A00 a01 A02

aT

10
α11 aT

12

A20 a21 A22





where A11 is b× b

α11 := α11 − a10a
T

10

α11 :=
√

α11

a21 := a21 −A20a
T

10

a21 := a21/α11

Continue with
(

ATL ATR

ABL ABR

)

←





A00 a01 A02

aT

10
α11 aT

12

A20 a21 A22





endwhile

Algorithm: A := CHOL BLK VAR3(A)

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block sizeb
Repartition
(

ATL ATR

ABL ABR

)

→





A00 A01 A02

A10 A11 A12

A20 A21 A22





where A11 is b× b

A11 := A11 −A10A
T

10

A11 := {L\A}11 = CHOL UNB VAR3(A11)

A21 := A21 −A20A
T

10

A21 := A21L
−T

11

Continue with
(

ATL ATR

ABL ABR

)

←





A00 A01 A02

A10 A11 A12

A20 A21 A22





endwhile

Figure 1: Unblocked (left) and blocked (right) algorithms for computing the Cholesky factorization (left-looking
variant).

A key element of FLAME is the notation for expressing algorithms much like they are presented on a chalk
board [18, 35]. Figure 1 shows unblocked and blocked algorithms for computing the Cholesky factorization using
the FLAME notation. Therem(A) stands for the number of rows of a matrixA. We believe the rest of the notation
to be intuitive. The algorithms in the Figure correspond to the “left-looking” algorithmic variant for computing the
factorization. It is well-known that this variant requiresroughly half the disk I/O when compared with the better-known
right-looking variant for the operation.

Using the FLAME/C API for the C programming language, the blocked algorithm in Figure 1 (right) can be trans-
formed into the C code given in Figure 2 (left). Note the closeresemblance between algorithm and code: Moving the
boundaries of the partitioning imposed on the matrix is performed with routinesFLA Part 2x2, FLA Repart ...,
andFLA Cont with ... from the FLAME/C API. The updates during the iteration (loopbody) are computed
using routinesFLA Syrk, FLA Gemm, andFLA Trsm, which are simple wrappers to the analogous BLAS, and
routineFLA Chol unb var3 which corresponds to the FLAME/C unblocked implementationfor the algorithm in
Figure 1 (left).

With the advent of multi-core processors, the design ofalgorithms-by-blocks[16] for dense linear algebra has
regained great interest due to their higher degree of parallelism and better data locality [28]. (In the next section
we will show that they are also the key to the OOC implementation of the Cholesky factorization.) Algorithms-by-
blocks view matrices as collections of submatrices and express the computation in terms of these submatrix blocks.
Algorithms are then written as before, except with scalar operations replaced by operations on the blocks, which now
become the unit of computation. We note that one of the first incidences of such algorithms was for OOC dense linear
computations and blocks were referred to as tiles [32]. Somerefer to algorithms-by-blocks as algorithms-by-tiles or
tiled algorithms [11, 10].

A contribution of ours to programmability of algorithms-by-blocks was the recognition that the FLAME/C API
could be extended to describe algorithms hierarchically byallowing each element in a matrix to itself be a matrix.
We call this very simple extension of FLAME/C the FLASH API [24, 27]. Using the FLASH API an algorithm-by-

3

FLA_Error FLA_Chol_blk_var3(FLA_Obj A, int nb_alg)
{
FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,
A20, A21, A22;

int b;

FLA_Part_2x2(A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {
b = min(FLA_Obj_length(ABR), nb_alg);
FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,
/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22,
b, b, FLA_BR);

/*---*/
FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A10,
FLA_ONE, A11);

FLA_Chol_unb_var3(A11);
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10,
FLA_ONE, A21);

FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21);
/*---*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL);

}
return FLA_SUCCESS;

}

FLA_Error FLASH_Chol_by_blocks_var3(FLA_Obj A)
{
FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,
A20, A21, A22;

FLA_Part_2x2(A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR);

/*---*/
FLASH_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A10,
FLA_ONE, A11);

FLA_Chol_blk_var1(FLASH_MATRIX_AT(A11));
FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10,
FLA_ONE, A21);

FLASH_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21);
/*---*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL);

}
return FLA_SUCCESS;

}

Figure 2: FLAME/C implementation of the blocked algorithm for the Cholesky factorization (left) and FLASH im-
plementation of the corresponding algorithm-by-blocks.

blocks for the Cholesky factorization is given in Figure 2 (right). The differences between the blocked algorithm and
the algorithm-by-blocks in that Figure (left and right, respectively) lie in the dimensions of the partitioning and the
routines which are invoked from within the loop body. For thealgorithm-by-blocks, the fact that the matrix is indeed
a matrix of submatrices, leads to a unit size for the repartitioning operationFLA Repart 2x2 to 3x3. Here, many
of the details of the FLASH implementation, including the manipulation of the data structures, have been buried
within the FLASH-aware FLAME object definition and the partitioning routines. Abbreviated implementations of
algorithm-by-blocks for the building blocksFLASH Syrk, FLASH Trsm, andFLASH Gemm are given in Figure 3.
FLA Chol blk var1 corresponds to the blocked implementation of the right-looking Cholesky factorization, which
usually yields higher performance on multi-threaded architectures.

3 OOC Implementation

OOC algorithms for dense linear algebra operations traditionally consider a (logical) partitioning of the matrix into
submatrices that are stored contiguously on disk. Initially matrices were partitioned into submatrices that were blocks
of columns [14, 23]1. Later it was recognized that this does not scale as matrix sizes become huge (or when memory
is relatively small). This is overcome by partitioning the matrix by rows and columns, with the simplest case corre-
sponding to submatrices being squaretiles (except perhaps for submatrices on the fringe when the matrix size is not an
integer multiple of the tile size) [33, 20, 21, 6]. In a nutshell, the reason is that the size of the tile brought into memory
can always be kept constant, and therefore the ratio betweenthe computation and I/O overhead can be fixed. Starting
from a square partitioning, an OOC algorithm-by-blocks brings a few tiles in-core (usually, to fill a considerable part
of the RAM), computes with these, and stores back the resultson disk to release space for the data involved in future
operations. Optimizing such an OOC implementation becomesa matter of carefully orchestrating the computation so
as to bring data into memory for computation in time while (nearly) minimizing the amount of reads and writes (I/O)
and/or overlapping I/O and computation. It is particularlythe overlapping of I/O with computation (so-called double
buffering) that has negatively affected programmability,turning otherwise manageable code into spaghetti code.

1Many practical implementations still use this partitioning,especially on clusters with very large memories.

4

In the remainder of this section we present a series of OOC algorithms that start with a basic implementation and
culminate in an advanced one that manages all I/O via a run-time system that hides details from the library developer.

3.1 A basic OOC algorithm

An OOC algorithm-by-tiles for the Cholesky factorization is directly obtained from the algorithm-by-blocks in the
previous section by just considering the tile to be the unit of computation: The routines in Figures 2 (left) together
with those in Figure 3are the OOC implementation.

Given a SPD matrix, created on disk as an OOC matrix of tiles (of dimensiont × t), a direct OOC implemen-
tation of the Cholesky factorization can be easily obtainedfrom the algorithm-by-tiles by inserting calls to a routine
FLAOOC Copy to bring the necessary data into auxiliary workspaces in-core just before the calls toFLA Chol blk var1,
FLA Syrk, FLA Trsm, FLA Gemm; after the operations, calls toFLAOOC Copy could be inserted to store the results
back to disk.

Unfortunately, low performance can be expected from this implementation as, e.g., there is no overlap between
I/O and computation. In the next two subsections we describetechniques and tools to improve performance and
programmability, including a run-time system that handlesI/O transparent to the programmer. As a result, the code
does not change: the different schemes that we describe simply change the policy that the run-time system uses to
move tiles to and from disk.

3.2 Software cache

The first technique to reduce the amount of I/O is to implementa logical cache of tiles that are in-core. The idea
is that, every time an operation is to proceed, a run-time inspects the software cache to check whether the tiles the
operation involves are already present in-core (cache hit). Thus, actual data transfers only occur for cache misses. A
least-recently-used (LRU) replacement policy decides which tile is moved back to disk in case there is no place left in
the cache to read a new tile. This is also handled by the run-time.

This simple run-time system handles all I/O transparently to the user, improving the programmability as no explicit
I/O calls need to be inserted in the OOC codes. Depending on cache hit rate, it can also improve performance by
reducing the number of transfers between RAM and disk. However, it does not overlap I/O with computation yet.

3.3 Overlap I/O and computation

The run-time knows what tiles are present in-core (i.e., in the software cache) and therefore can exploit some level of
temporal data locality. We next propose going one step further and looking ahead into the future. The domain-specific
feature that facilitates the required fortune-telling is that, for linear algebra codes, the operations that will be executed
in the future can be known in advance at little cost.

The idea is to perform an initial execution of the code, generating a list of tasks (operations on tiles) to be eventually
executed (this is the extra cost we have to pay). Generating alist of tasks for dense linear algebra codes has been
used earlier to expose a higher the degree of parallelism at run-time for multi-core processors (see, e.g., [28]). The
difference here is that we are proposing to use it with a different goal, namely reducing the amount of data transfers
and overlapping computation with I/O for OOC algorithms, ineffect prefetching with perfect knowledge.

Let us elaborate the description of this sophisticated run-time system. The codes in Figures 2 (right) and 3, are
symbolically executed to generate a list of tasks (pending list). Each time a call to routinesFLA Chol blk var1,
FLA Syrk, FLA Trsm, or FLA Gemm is encountered, the run-time simply creates an entry in the list with data to
identify the given operation (e.g., operation name and parameters). The order in which the tasks appear in the list
together with the directionality of the operands (input or output) defines the order and direction in which blocks will
be transferred between memory and disk. Therefore, the future is known in advance!

The real execution can now begin. A single thread, known as the scoutor prefectthread, inspects thepending list
in (FIFO) order. For each entry of the list, provided there are enough empty (tile) slots in the software cache, the scout
thread brings the necessary tiles into the RAM, moving the entry into a second list which contains the tasks which
are ready for execution (ready list). A second thread, theworker, runs over the ready list executing tasks as they are
encountered in order. Now, as all data for the computations that are performed by the worker thread are guaranteed
to be in-core, we can employ an in-core library for these operations (to be addressed in the next subsection). When a

5

void FLASH_Syrk_ln(FLA_Obj alpha, FLA_Obj A,
FLA_Obj beta, FLA_Obj C)

/* Special case with mode parameters
FLASH_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

...)
Assumption: A is a row of blocks (row panel) */

{
FLA_Obj AL, AR, A0, A1, A2;

FLA_Part_1x2(A, &AL, &AR, 0, FLA_LEFT);

while (FLA_Obj_width(AL) < FLA_Obj_width(A)){

FLA_Repart_1x2_to_1x3(
AL, /**/ AR, &A0, /**/ &A1, &A2,
1, FLA_RIGHT);

/*---*/
FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

alpha, FLASH_MATRIX_AT(A1),
beta, FLASH_MATRIX_AT(C));

/*---*/

FLA_Cont_with_1x3_to_1x2(
&AL, /**/ &AR, A0, A1, /**/ A2,
FLA_LEFT);

}
}

void FLASH_Trsm_rltn(FLA_Obj alpha, FLA_Obj L,
FLA_Obj B)

/* Special case with mode parameters
FLASH_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
...)

Assumption: L consists of one block and
B consists of a column of blocks */

{
FLA_Obj BT, B0,

BB, B1,
B2;

FLA_Part_2x1(B, &BT,
&BB, 0, FLA_TOP);

while (FLA_Obj_length(BT) < FLA_Obj_length(B)) {
FLA_Repart_2x1_to_3x1(BT, &B0,

/* ** */ /* ** */
&B1,

BB, &B2, 1, FLA_BOTTOM);
/*---*/
FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
alpha, FLASH_MATRIX_AT(L),

FLASH_MATRIX_AT(B1));
/*---*/
FLA_Cont_with_3x1_to_2x1(&BT, B0,

B1,
/* ** */ /* ** */
&BB, B2, FLA_TOP);

}
}

void FLASH_Gemp_nt(FLA_Obj alpha, FLA_Obj A,
FLA_Obj B,

FLA_Obj beta, FLA_Obj C)
/* Special case with mode parameters

FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
...)

Assumption: A is a matrix and
B is a row of blocks (row panel)
C is a column of blocks (column panel) */

{
FLA_Obj AT, A0, CT, C0,

AB, A1, CB, C1,
A2, C2;

FLA_Part_2x1(A, &AT,
&AB, 0, FLA_TOP);

FLA_Part_2x1(C, &CT,
&CB, 0, FLA_TOP);

while (FLA_Obj_length(AT) < FLA_Obj_length(A)){

FLA_Repart_2x1_to_3x1(AT, &A0,
/* ** */ /* ** */

&A1,
AB, &A2,
1, FLA_BOTTOM);

FLA_Repart_2x1_to_3x1(CT, &C0,
/* ** */ /* ** */

&C1,
CB, &C2,
1, FLA_BOTTOM);

/*---*/
FLASH_Gepp(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

alpha, A1,
B,

beta, C1);
/*---*/
FLA_Cont_with_3x1_to_2x1(&AT, A0,

A1,
/* ** */ /* ** */
&AB, A2, FLA_TOP);

FLA_Cont_with_3x1_to_2x1(&CT, C0,
C1,

/* ** */ /* ** */
&CB, C2, FLA_TOP);

}
}

void FLASH_Gepp_nt(FLA_Obj alpha, FLA_Obj A,
FLA_Obj B,

FLA_Obj beta, FLA_Obj C)
/* Special case with mode parameters

FLASH_Gepp(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
...)

Assumption: C is a block and
B, C are rows of blocks (row panels) */

{
FLA_Obj AL, AR, A0, A1, A2;

FLA_Obj BL, BR, B0, B1, B2;

FLA_Part_1x2(A, &AL, &AR, 0, FLA_LEFT);

FLA_Part_1x2(B, &BL, &BR, 0, FLA_LEFT);

FLA_Scal(beta, FLASH_MATRIX_AT(C));

while (FLA_Obj_width(AL) < FLA_Obj_width(A)){

FLA_Repart_1x2_to_1x3(
AL, /**/ AR, &A0, /**/ &A1, &A2,
1, FLA_RIGHT);

FLA_Repart_1x2_to_1x3(
BL, /**/ BR, &B0, /**/ &B1, &B2,
1, FLA_RIGHT);

/*---*/
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

alpha, FLASH_MATRIX_AT(A1),
FLASH_MATRIX_AT(B1),

FLA_ONE, FLASH_MATRIX_AT(C));
/*---*/
FLA_Cont_with_1x3_to_1x2(

&AL, /**/ &AR, A0, A1, /**/ A2,
FLA_LEFT);

FLA_Cont_with_1x3_to_1x2(
&BL, /**/ &BR, B0, B1, /**/ B2,
FLA_LEFT);

}
}

Figure 3: FLASH implementation of the kernels appearing in the FLASH implementation of algorithm-by-blocks for
the Cholesky factorization.

6

task is completed, the corresponding entry is removed from the ready list, and any tile used within it, which is not used
by any other task in the ready list, is marked as candidate forremoval from the cache. When new space needs to be
allocated in the software cache, the scout thread moves marked tiles back to disk, if they correspond to data that was
modified, or simply overwrites them with new data otherwise.When there are no candidates for removal, the scout
thread blocks and waits until more tasks are completed.

Probably the most important feature of this approach is how it supports programmability. No change is needed
to the algorithm-by-tiles routines. The run-time system isin charge of all data transfers and automatically overlaps
I/O with computation. The extra cost for this, creating and managing a couple of lists, is more than paid back by the
benefits of reducing idle times due to I/O.

4 Parallel In-Core Kernels for Multi-core Processors

In our approach, the worker thread is in charge of computing the operations on tiles which have been already brought
in-core by the scout thread. Thus, the types of operations that the worker will encounter are symmetric rank-k up-
dates, triangular system solves, matrix-matrix products,and the computation of the in-core Cholesky factorization
of the diagonal tiles (invocations in Figure 3 toFLA Syrk, FLA Trsm, FLA Gemm, andFLA Chol blk var1,
respectively).

4.1 Parallel execution on a general-purpose multi-core processor

Let us consider first that the target architecture is a (general-purpose) processor with several cores (or any other shared-
memory platform with multiple processors). For these architectures there exist highly tuned multithreaded implemen-
tations of the former three operations, e.g. as part of Intel’s MKL library or the GotoBLAS, which efficiently exploit
the hardware parallelism. For example, when kernelsyrk from MKL is invoked from within routineFLA Syrk
to compute a symmetric rank−k update, multiple threads (as many as the user requests) are spawn to compute the
operation in parallel, using one core per thread. (Note thatin case computation is overlapped with I/O, in our OOC
algorithms these threads will run concurrently with the scout thread.) The parallel execution of these three BLAS
operations is therefore transparent to the OOC programmer,which only observes a more reduced execution time.

MKL also includes a multithreaded version of the Cholesky factorization which can, in principle, be used to factor-
ize the diagonal tiles using the multiple cores/processorsof the architecture. However, for an operation with complex
dependencies like this, it may be more efficient to employ a parallelization approach restricted only by the data depen-
dencies (data-flow parallelism). In particular, this second alternative employs the SuperMatrix dynamic scheduling
mechanism [27], developed as part of the FLAME project, to improve the scalability of the operation: a scheduling
run-time system, different from the one that deals with OOC data transfers and overlap described in the previous
section, is in charge of the parallel factorization of the diagonal tiles. In this case, whenFLA Chol blk var1 is
invoked, the scheduling run-time inspects the code for thisroutine, detecting data dependencies among the blocks of
the tile, and scheduling for execution those operations (tasks) which have all its dependencies fulfilled. The result is
a data-flow parallel execution. Details on dynamic out-of-order scheduling in the context of a parallel execution on
multi-core processors can be consulted, e.g., in [28]. In our experiments, we will evaluate the performance of both
alternatives: MKL and dynamic scheduling for the factorization of the diagonal tiles. We will refer to the second one
as “data-flow” in the experiments.

4.2 Parallel execution on a graphics processor

Current workstations include a general-purpose processor(possibly with multiple cores) and usually also a GPU with
its own (device) memory. Provided the tile size is large enough and a tuned kernel exists to compute the particular
operation on the GPU, the time to transfer data between main (or host) memory and device memory can be more than
paid back by the potential of current GPU. For NVIDIA graphics processors, CUBLAS [25, 5] provides an efficient
implementation of BLAS-level operations like those neededin the Cholesky factorization, among others. The in-core
computation of the Cholesky factorization itself is not provided in NVIDIA libraries but can be easily implemented
using the kernels in CUBLAS [4, 36].

7

Thus, using CUBLAS, once the data is in-core the symmetric rank-t updates, matrix-matrix products, and trian-
gular system solves on tiles are performed in our codes in theGPU. Two different alternatives are explored for the
computation of the Cholesky factorization of a (diagonal) tile: a pure CPU computation and a hybrid one, where com-
putation is shared between CPU and GPU. In the pure CPU computation all cores of the general-purpose processor
collaborate in the parallel computation of the factorization of the tile using, e.g., the multi-threaded implementation
of this operation in MKL. Assume for the hybrid computation that the tile initially resides in the device memory.
A blocked right-looking algorithm with block sizeb is used to compute this factorization as follows: the Cholesky
factorization of the diagonalb × b blocks is computed by the CPU. To do so, the block is initiallytransferred to host
memory, factorized there, and the result is put back into device memory. All other updates of the tile are performed
then on the GPU. Once the tile is completely factorized, the result is brought back from the device memory into the
corresponding tile of the software cache in host memory.

5 Experimental Results

All experiments in this section were performed using MKL 10.0.1, CUBLAS 2.0, and single precision. Performance
is measured in terms of GFLOPS (that is, billions of floating-point arithmetic operations –flops– per second), with the
usual count ofn3/3 flops for the Cholesky factorization. The OOC implementations correspond to the (left-looking)
algorithm-by-tilesFLASH Chol by blocks var3 in Figure 2 (left). Unless otherwise stated, the enhancements
described for the OOC variants are incremental so that a variant includes a new strategy plus those of all previous
ones. Several executions were performed to tune the tile size; only the results corresponding to the best case are
shown.

5.1 Results on a general-purpose multi-core processor

The target architecture for this first experiment is a workstation with two Intel Xeon QuadCore E5405 processors
(8 cores) at 2.0 GHz with 8 GBytes of DDR2 RAM. The Intel 5400 chipset provides an I/O interface with a peak
bandwidth of 1.5 Gbits/second. The disk is a SATA-I with a total capacity of 160 Gbytes.

Figure 4 reports the performance of several (in-core and OOC) routines for the Cholesky factorization:

In-core MKL: The (in-core) implementation of the Cholesky factorization in MKL 10.0.1.

In-core data-flow: Our (in-core) algorithm-by-blocks with dynamic scheduling described in [28].

OOC Basic: Basic OOC implementation as described in Subsection 3.1.

OOC Cache: OOC implementation with a software cache in place to reduce the number of I/O transfers (see Subsec-
tion 3.2).

OOC Reordered + data-flow: Reordered operations to access tiles following a snake-like pattern to improve locality
in the access to the software cache. The factorization of thediagonal tiles is addressed by using the SuperMatrix
dynamic scheduling run-time described in [28].

OOC Overlap I/O: Use of a run-time with scout and worker threads to overlap computation and I/O, and manage the
software cache transparently to the user (see Subsection 3.3).

The results in the figure show a practical peak performance for the in-core Cholesky factorization (based on the
algorithm-by-blocks, AB) that is slightly over 90 GFLOPS. Combining all the OOC techniques mentioned above,
yields a performance that is basically similar to that of thein-core algorithm.

The following table reports the execution time required to compute the Cholesky factorization using theOOC
Overlap I/O variant and the amount of memory that is needed to store the full dense matrix:

Matrix size Time MBytes
10,240 4.9sec 400
51,200 8min 49.9sec 10,000

102,400 1h 4min 52.0sec 40,000

8

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000

G
F

L
O

P
S

Matrix size

Out-of-core Cholesky factorization on tesla (2 Xeon Quadcore)

In-core MKL
In-core data-flow
OOC Basic
OOC Cache
OOC Reorder + data-flow
OOC Ovelap I/O

Figure 4: Performance of the Cholesky factorization codes on a multi-core processor.

5.2 Results on a multi-core processor+ a graphics processor

We next employ an AMD Phenom 9550 QuadCore at 2.2 GHz with 4 GBytes of DDR2 RAM and 4×512 Kbytes of
L2 cache. The chipset provides a I/O interface with a peak bandwidth of 3 Gbits/second. The system has two SATA-II
disks (Seagate ST3160815AS, 7200 r.p.m.) with a total capacity of 2×160 Gbytes. The graphics processor is an
NVIDIA Geforce 9800 GX2, equipped with 128 cores.

Figure 5 reports the performance of several (in-core and OOC) routines for the Cholesky factorization using the
GPU of the system. The timings for the “in-core” results include the cost of transferring data between host and device
memories.

In-core hybrid: Blocked (in-core) implementation of the Cholesky factorization, with diagonal blocks being factor-
ized in the processor using MKL and all remaining updates in the GPU (see Subsection 4.2).

OOC Basic: Basic OOC implementation as described in Subsection 3.1.

OOC Cache: Simple run-time that includes a software cache (see Subsection 3.2).

OOC Hybrid: Computation of the Cholesky factorization of diagonal tiles being shared between CPU and GPU (see
end of Subsection 4.2).

OOC Overlap I/O: Elaborated run-time that handles the software cache and overlaps computation and I/O (see Sub-
section 3.3).

The results in the figure show a practical peak performance for the in-core and the best OOC codes that are close to
126 and 117 GFLOPS, respectively. Thus, for this architecture the OOC techniques rival with the in-core algorithm in
performance.

Finally, the next table shows the time to compute the Cholesky factorization using theOOC Overlap I/O variant
and the amount of memory that is needed to store the full densematrix:

Matrix size Time MBytes
10,240 4.4sec 400
51,200 6min 34.6sec 10,000

102,400 50min 52.3sec 40,000

9

 0

 50

 100

 150

 200

 0 20000 40000 60000 80000 100000

G
F

LO
P

S

Matrix size

Out-of-core Cholesky factorization on NVIDIA 9800GX2 GPU

In-core hybrid
OOC Basic
OOC Cache
OOC Hybrid
OOC Overlap I/O

Figure 5: Performance of the Cholesky factorization codes on a multi-core processor equiped with a GPU.

6 An Application Interface

For applications coded in a traditional style, we provide the following prototype API for submitting matrices to disk.
We note that, unlike other FLAME/C related routines, these routines expose indexing into a matrix, in order to facilitate
how traditional applications may wish to access an otherwise hidden matrix.

Matrices are created on disk with the following call:

FLAOOC_Obj_create(FLA_Matrixtype matrixtype, FLA_Datatype datatype,
dim_t m, dim_t n, dim_t mt, dim_t nt,
char *file_name, FLA_Obj *Aooc);

Purpose: Create a new object that describes anm×n matrixAooc, with entries of typedatatype (FLA INT, FLA REAL,
FLA DOUBLE, etc.), and allocate the associated storage array on disk. Thematrixtype parameter can be used to
roughly half the required space for triangular or symmetric matrices by selecting one fromFLA LOWER TRIANGULAR
orFLA UPPER TRIANGULAR; for full dense matrices,FLA DENSE is to be selected. The matrix is partitioned intomt×nt
tiles, with the elements in each tile being stored contiguously on disk in column-major order, in a file with namefile name.

Argumentsmt andnt are user-defined parameters that must be tuned to optimize performance depending on the
problem dimensions, the size of the RAM, and the number oftiles (basically square blocks) that must be kept in-core
during the execution.

Once created, filling the contents of an OOC object (transferring data from main memory to disk) can be done
using the following call:

FLAOOC_Copy_submatrix_to_global(FLA_Trans trans, dim_t m, dim_t n,
void *X, dim_t ldim,
dim_t i, dim_t j, FLA_Obj Aooc);

Purpose:Copy the contents of a conventional column-major matrixX with leading dimensionldim into them×n submatrix
starting at entry (i,j) of Aooc. Thetrans argument may be used to optionally transpose the matrix during the copy.

AssumeFLA Trans equalsFLA NO TRANSPOSE. Then, given anm×n matrixX, in MATLAB notation the previous
call is equivalent to

Aooc(i:i+m-1, j:j+n-1) = X;

whereAooc is an object with the corresponding data stored on disk. We provide, but do not specify here, a call that
can add a multiple of an incore matrix toAooc.

Data transfers in the opposite direction, i.e. from OOC to in-core, can be performed with the following routine:

10

FLAOOC_Copy_global_to_submatrix(FLA_Trans trans, dim_t i, dim_t j, FLA_Obj Aooc,
dim_t m, dim_t n, void *X, dim_t ldim);

Purpose: Copy the contents of them×n submatrix ofAooc whose top-left element is the (i,j) entry into a conventional
column-major matrixX with leading dimensionldim. Thetrans argument may be used to optionally transpose the matrix
during the copy.

Again, an alternative call allows a submatrix fromAooc to be added to a contentional matrixX.
When no longer needed, a call toFLAOOC Obj free is required to ensure that all disk space associated with an

OOC object is properly released:

FLAOOC_Obj_free(FLA_Obj *Aooc);

Purpose: Release all resources allocated to store data associated withAooc on disk.

Note that these are the routines that a typical application would use to access parts of OOC matrices. The OOC
FLAME/C API includes a routine,FLAOOC Copy, which is used to copy tiles to and from disk.

7 Concluding Remarks

We have described an approach to easily develop OOC algorithms for dense linear algebra operations. A run-time
system in charge of I/O transfers inspects the code before the actual execution begins to bring data from disk before it
is needed thus completely hiding I/O latency. As an additional benefit, the run-time system also unburdens the library
developer from having to adapt his codes to include routinesto explicitly handle the I/O. Thus, all computational
routines inlibflame can be fundamentally transformed into OOC codes without having to change the contents of
the library.

Results for an operation like the Cholesky factorization show that the overhead introduced by the run-time is offset
by the gains delivered by the overlap of computation and communication (I/O). Using the new run-time, the FLAME
code for the left-looking variant of the Cholesky factorization allows to decompose a100, 000× 100, 000 matrix on a
multi-core platform with 8 cores in slightly more than one hour. A similar workstation equipped with a current GPU
can decompose this matrix in approximately 50 minutes.

Future work will include applying the same approach to slab and tiled algorithms for the LU and QR factorization;
solving real OOC applications using the resulting codes; and extending the run-time to distributed-memory OOC
packages.

Acknowledgements

The researchers at the Universidad Jaime I were supported byprojects CICYT TIN2005-09037-C02-02, TIN2008-
06570-C04-01 and FEDER, and P1B-2007-19 P1B-2007-32 of theFundacíon Caixa-Castelĺon/Bancaixaand UJI.

This research was partially sponsored by NSF grants CCF–0540926 and CCF–0702714. Additional support came
from theJ. Tinsley Oden Faculty Fellowship Research Programof the Institute for Computational Engineering and
Sciences (ICES) at UT-Austin.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. E. McKenney,
S. Ostrouchov, and D. Sorensen.LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

[2] M. Baboulin. Solving large dense linear least squares problems on parallel distributed computers. Application
to the Earth’s gravity field computation. Ph.D. dissertation, INPT, March 2006. TH/PA/06/22.

[3] M. Baboulin, L. Giraud, S. Gratton, and J. Langou. Parallel tools for solving incremental dense least squares
problems. application to space geodesy. Technical Report UT-CS-06-582; TR/PA/06/63, University of Ten-
nessee; CERFACS, 2006. To appear in Journal of Algorithms and Computational Technology, Vol. 3, No 1
(2009).

11

[4] S. Barrachina, M. Castillo, F. Igual, and R. Mayo adn E. S.Quintana-Ort́ı. Solving dense linear systems on
graphics processors. In Eds. E. Luque et al., editor,Proceedings of Euro-Par 2008, number 5168 in LNCS, pages
739–748. Springer-Verlag Berlin Heidelberg, 2008.

[5] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S.Quintana-Ort́ı. Evaluation and tuning of the level 3
CUBLAS for graphics processors. In9th IEEE International Workshop on Parallel and Distributed Scientific
and Engineering Computing – PDSEC’08, 2008.

[6] Natacha B́ereux. Out-of-core implementations of cholesky factorization: Loop-based versus recursive algo-
rithms. SIAM. J. Matrix Anal. & Appl., 30(4):1302–1319, 2008.

[7] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn.
The science of deriving dense linear algebra algorithms.ACM Transactions on Mathematical Software, 31(1):1–
26, March 2005.

[8] Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear algebra algorithms
in code: The FLAME application programming interfaces.ACM Trans. Math. Soft., 31(1):27–59, March 2005.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.ScaLAPACK Users’ Guide. SIAM, 1997.

[10] Alfredo Buttari, Julien Langou, Jakub Kurzak, , and Jack Dongarra. A class of parallel tiled linear algebra
algorithms for multicore architectures. LAPACK Working Note 190 UT-CS-07-600, University of Tennessee,
September 2007.

[11] Alfredo Buttari, Julien Langou, Jakub Kurzak, , and Jack Dongarra. Parallel tiled QR factorization for multicore
architectures. LAPACK Working Note 190 UT-CS-07-598, University of Tennessee, July 2007.

[12] Ernie Chan, Enrique S. Quintana-Ortı́, Gregorio Quintana-Ortı́, and Robert van de Geijn. SuperMatrix out-of-
order scheduling of matrix operations for SMP and multi-core architectures. InSPAA ’07: Proceedings of the
Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures, pages 116–125, San Diego, CA,
USA, June 9-11 2007. ACM.

[13] E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-core scalapack LU,
QR, and Cholesky factorization routines. LAPACK Working Note 118 CS-97-247, University of Tennessee,
Knoxville, Jan. 1997.

[14] Eduardo D’Azevedo and Jack Dongarra. The design and implementation of the parallel out-of-core scalapack lu,
qr, and cholesky factorization routines.Concurrency: Practice and Experience, 12(15):1481–1493, 2000.

[15] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra
subprograms.ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[16] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kagstrom. Recursive blocked algorithms and hybrid data
structures for dense matrix library software.SIAM Review, 46(1):3–45, 2004.

[17] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for acoustical scattering
problems using boundary element methods.Journal of Sound and Vibration, 191(1):145–165, 1996.

[18] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formal linear algebra
methods environment.ACM Transactions on Mathematical Software, 27(4):422–455, December 2001.

[19] Brian C. Gunter.Computational methods and processing strategies for estimating Earth’s gravity field. PhD
thesis, The University of Texas at Austin, 2004.

[20] Brian C. Gunter, Wesley C. Reiley, and Robert A. van de Geijn. Parallel out-of-core Cholesky and QR fac-
torizations with POOCLAPACK. InProceedings of the 15th International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 2001.

12

[21] Brian C. Gunter and Robert A. van de Geijn. Parallel out-of-core computation and updating the QR factorization.
ACM Transactions on Mathematical Software, 31(1):60–78, March 2005.

[22] Thierry Joffrain, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Rapid development of high-performance
out-of-core solvers. InProceedings of PARA 2004, number 3732 in LNCS, pages 413–422. Springer-Verlag
Berlin Heidelberg, 2005.

[23] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. InProceedings of the
International Conference on Parallel Processing 1995, volume III - Algorithms and Applications, pages 29–33,
1995.

[24] Tze Meng Low and Robert van de Geijn. An api for manipulating matrices stored by blocks. Technical Report
TR-2004-15, Department of Computer Sciences, The University of Texas at Austin, May 2004.

[25] NVIDIA. CUBLAS Library. NVIDIA, 2007.

[26] Gregorio Quintana-Ortı́, Francisco D. Igual, Enrique S. Quintana-Ortı́, and Robert van de Geijn. Solving dense
linear systems on platforms with multiple hardware accelerators. InACM SIGPLAN 2009 symposium on Princi-
ples and practices of parallel programming (PPoPP’09), 2009. To appear.

[27] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́, Robert van de Geijn, Field Van Zee, and Ernie Chan. Pro-
gramming matrix algorithms-by-blocks for thread-level parallelism. ACM Transactions on Mathematical Soft-
ware. To appear.

[28] Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́, Robert van de Geijn, Field Van Zee, and Ernie
Chan. Programming algorithms-by-blocks for matrix computations to better exploit thread-level par-
allelism. ACM Trans. Math. Soft., 2008. To appear; available as FLAME Working Note #32 at
http://www.cs.utexas.edu/users/flame/.

[29] Wesley C. Reiley. Efficient parallel out-of-core implementation of the Cholesky factorization. Technical Report
CS-TR-99-33, Department of Computer Sciences, The University of Texas at Austin, Dec. 1999. Undergraduate
Honors Thesis.

[30] Wesley C. Reiley and Robert A. van de Geijn. POOCLAPACK:Parallel Out-of-Core Linear Algebra Package.
Technical Report CS-TR-99-33, Department of Computer Sciences, The University of Texas at Austin, Nov.
1999.

[31] N. Schafer, R. Serban, and D. Negrut. Implicit integration in molecular dynamics simulation. InASME Interna-
tional Mechanical Engineering Congress & Exposition, 2008. (IMECE2008-66438).

[32] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra. InDIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1999.

[33] Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable library for scalable
out-of-core linear algebra computation. InProc. of IOPADS ’96, 1996.

[34] Robert A. van de Geijn.Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[35] Robert A. van de Geijn and Enrique S. Quintana-Ortı́. The Science of Programming Matrix Computations.
www.lulu.com, 2008.

[36] Vasily Volkov and James Demmel. LU, QR and Cholesky factorizations using vector capabilities of GPUs.
Technical Report UCB/EECS-2008-49, EECS Department, University of California, Berkeley, May 2008.

[37] F. G. Van Zee.libflame. the complete reference, 2008. In preparation.http://www.cs.utexas.edu/
users/flame.

[38] Y. Zhang, T. K. Sarkar, R. A. van de Geijn, and M. C. Taylor. Parallel MoM using higher order basis function
and PLAPACK in-core and out-of-core solvers for challenging EM simulations. InIEEE AP-S & USNC/URSI
Symposium, 2008.

13

