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Abstract

Few realize that, for large matrices, many dense matrix computationyeactearly the same performance when
the matrices are stored on disk as when they are stored in a very largeneraiory. Similarly, few realize that, given
the right programming abstractions, coding Out-of-Core (OOC) imphtations of dense linear algebra operations
(where data resides on disk and has to be explicitly moved in and out of mm&imory) is no more difficult than
programming high-performance implementations for the case whemaaléx is in memory. Finally, few realize
that on a contemporary eight core architecture or a platform equipedawitaphics processor (GPU) one can solve
a 100,000 x 100,000 symmetric positive definite linear system in about one hour. Thus, @l@ms that used to
be considered large, it is not necessary to utilize distributed-memohnjtestures with massive memories if one is
willing to wait longer for the solution to be computed on a fast multithreadehitacture like a multi-core computer
or a GPU. This paper provides evidence in support of these claims.

1 Introduction

Examples of problems that require the solution of very latgese linear systems or linear least-squares problems in-
clude the estimation of Earth’s gravitational field, Bourydalement formulations in electromagnetism and acoustics
and molecular dynamics simulations [2, 19, 17, 31, 38]. gsthapplicationsarge refers to matrices with a number
of rows/columns in tha 0> to 107 range. When these matrices become too large to fit in memoeyymarst either
change the mathematical formulation of the problem or usersary memory (e.qg., disk). We will focus on the latter.
While data stored on disk can be accessed via virtual memargfud design of Out-of-Core (OOC) algorithms is
generally required to attain high performance. Moreovethe past cutting-edge architectures often did not incor-
porate virtual memory, which may happen again for futuretimadre architectures particularly since virtual memory
consumes considerable power. Thus, the topic of develdp@@ algorithms for dense linear problems continues to
be an active area of research.

There are only a few Open Source libraries available for O@@sd linear algebra computations. The traditional
sequential LAPACK [1] library does not include OOC routireasd the more receriti bf | ane [37] library only
includes prototype OOC capabilities [22]. For large-sgatiblems ScaLAPACK provides prototype OOC implemen-
tations of Cholesky, LU, and QR factorization based solvigs9, 13] as does the SOLAR [33] library that builds
upon ScalLAPACK routines for in-core computation. The Rallinear Algebra Package (PLAPACK) [34], which
inspired thel i bf | ane sequential library, is an alternative to ScaLAPACK for naggspassing architectures and
provides an OOC extension, POOCLAPACK, that, like ScaLARADd SOLAR, targets message-passing architec-
tures [30, 29, 20, 21, 38]. A survey on parallel OOC impleragans of individual operations and/or machine specific
libraries for dense linear systems is given in [32]. Inssgdbout how storing matrices by tiles (what we call blocks)
facilitates scalability can be found in that paper.
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In this paper,

e We briefly review the concept of algorithms-by-blocks anavlam Application Programming Interface (API)
developed as part of the FLAME project facilitates prograngrsuch algorithms. In brief, algorithms-by-
blocks view matrices, possibly hierarchically, as a cdit@tof submatrices (blocks) that become units of data.
The algorithms then orchestrate the computation as opagatiith those blocks, which become units of com-
putation.

e We review a run-time system, SuperMatrix, which given adinalgebra code constructs a Directed Acyclic
Graph (DAG) of tasks (operations with blocks) and depenigsruetween tasks.

e \We discuss how this approach can be extended by using the BA@fetch and/or cache data so that 1/O is
overlapped with computation transparently to the programm

e \We report our experience with this approach on a platformitidudes multiple cores and/or a graphics pro-
cessor (GPU), and a RAM of moderate size, using the Choleslktgrization as a motivating example.

e \We show that, once the problem size becomes large, the perfme attained by the OOC implementation rivals
that of a high-performance algorithm for matrices that fitiemory.

e We reason that this approach can also accommodate OOC impietions of algorithms-by-tiles for the level-3
Basic Linear Algebra Subprograms (BLAS) [15] and the LU arRlif@ctorizations.

e We argue that the approach may become a highly cost-eféestilution for solving these kinds of operations,
making it possible for less well-funded projects to addrasslium to large size problems.

Together, these contributions advance the state-of+thie-this area.

The rest of the paper is structured as follows. In Section awiew some of the fundamental parts of the FLAME
project using the Cholesky factorization. An infrastruetin support of OOC computation is proposed in Section 3.
Parallel execution of dense linear algebra operationstivéltata in-core is briefly addressed by using algorithms-by
blocks combined with dynamic scheduling and multi-threhiteplementations of BLAS, as described in Section 4.
Experiments reporting performance for the OOC Choleskjofazation on a multi-core platform and a workstation
equiped with a GPU are reported in Section 5. We briefly inditeow a traditional application may interface with
the proposed solvers in Section 6. We close the paper witlv adacluding remarks and a brief discussion of future
work in Section 7.

2 Cholesky Factorization using FLAME

Over the last decade we have developed a complete frameaofést and reliable generation of dense and banded
libraries as part of the FLAME projech{t p: // ww. cs. ut exas. edu/ user s/ fl ane). The set of “tools”
comprises a high-level notation for expressing algoritforsdense and banded linear algebra operations [18], a
formal derivation methodology to obtain provably corrdgoaithms [7], high-level APIs to transform algorithmsant
codes [8], and a run-time system for the automatic paratietn of those codes on multi-core platforms; see [28] and
the references therein. The result is a high-performabcearif for dense linear algebraj, bf | anme, with support for

all major BLAS as well as the most relevant factorizatiorntirees for the solution of linear systems. This infrastruetu

is the basis on which we build our approach for the developmEe@OC codes.

In our papers, we often start by presenting a prototypicatajon, which is then used throughout the paper to
illustrate various aspects of the topic at hand. As we hawe dwa number of other papers that are closely related to
the present one [12, 26], we will use the Cholesky factoionaas that example. We note that what is different in the
current paper is that we focus on the left-looking algorithwariant for computing the Cholesky factorization. Much
of this section can be skipped by those who are very familitir the FLAME project.

Consider am x n Symmetric Positive Definite (SPD) matrik Its Cholesky factorization is given by = LLT,
whereL is then x n lower triangular Cholesky factor. In traditional algoritlk for this factorization overwrites
the lower triangular part ofl while the strictly upper triangular part remains unmodifiétereafter, we denote the
operation that overwrited with its Cholesky factor byl := {L\ A} = CHOL(A).



Algorithm: A := CHOL_UNB_VAR3(A) Algorithm: A := CHOL_BLK_VAR3(A)
. A A
Partiton A — Arp | Are Partition A_>< L TR)
BL|ABR Apr|ABr
where Arr is0 x 0 where Arpis0 x 0
while m(Arr) < m(A) do while m(Arr) < m(A) do
Determine block sizeb Determine block sizeb
Repartition Repartition
A A Aool 401 | A
Arp | Arr ;10 ap1 %2 Arp | Arr 00 | 4101 | 402
Apr|ABr | o jounldin Apr|ABr = | AwogAu] A
Ao | azi | Az Azo Az | A2
where A1isbx b where A;1isb x b
Q11 = Qi1 — alpay Ay = A — ApA
a1 = Jan A1 = {L\A};; = CHOL_UNB_VAR3(A411)
as = az — Aspady Aoy = Aoy — Ago AT
a1 = ag1/0m1 A9y = A21LI1T
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ATL ATR %O aopi %2 ATL ATR 00 01 02
T 1 — | ajp|oii]ai 11 — | Aiwo|Ai1]| A2
BLIZBR Ago | asi | Az BL1BR Agp| Az1 | A2
endwhile endwhile

Figure 1. Unblocked (left) and blocked (right) algorithmm tomputing the Cholesky factorization (left-looking
variant).

A key element of FLAME is the notation for expressing aldamis much like they are presented on a chalk
board [18, 35]. Figure 1 shows unblocked and blocked algmst for computing the Cholesky factorization using
the FLAME notation. Theren(A) stands for the number of rows of a matrix We believe the rest of the notation
to be intuitive. The algorithms in the Figure correspondhe tleft-looking” algorithmic variant for computing the
factorization. Itis well-known that this variant requiresighly half the disk I/O when compared with the better-know
right-looking variant for the operation.

Using the FLAME/C API for the C programming language, theckld algorithm in Figure 1 (right) can be trans-
formed into the C code given in Figure 2 (left). Note the clessemblance between algorithm and code: Moving the
boundaries of the partitioning imposed on the matrix isgenked with routine§LA Part 2x2, FLA Repart _. . .,
andFLA Cont with_... from the FLAME/C API. The updates during the iteration (ldopdy) are computed
using routines=LA_Syr k, FLA_ Gemm and FLA_Tr sm which are simple wrappers to the analogous BLAS, and
routineFLA_Chol _unb_var 3 which corresponds to the FLAME/C unblocked implementafmmthe algorithm in
Figure 1 (left).

With the advent of multi-core processors, the desigmlgbrithms-by-block$16] for dense linear algebra has
regained great interest due to their higher degree of gdissi and better data locality [28]. (In the next section
we will show that they are also the key to the OOC implemeaoitatif the Cholesky factorization.) Algorithms-by-
blocks view matrices as collections of submatrices andesgpthe computation in terms of these submatrix blocks.
Algorithms are then written as before, except with scalarafions replaced by operations on the blocks, which now
become the unit of computation. We note that one of the ficstiences of such algorithms was for OOC dense linear
computations and blocks were referred to as tiles [32]. Saafex to algorithms-by-blocks as algorithms-by-tiles or
tiled algorithms [11, 10].

A contribution of ours to programmability of algorithms-bjocks was the recognition that the FLAME/C API
could be extended to describe algorithms hierarchicallalliywing each element in a matrix to itself be a matrix.
We call this very simple extension of FLAME/C the FLASH APU[227]. Using the FLASH API an algorithm-by-



FLA_Error FLA Chol _bl k_var3( FLA_ Obj A, int nb_alg ) FLA_Error FLASH Chol _by_bl ocks_var3( FLA Cbj A)
{
FLA_Chj ATL, ATR A00, AO01, A02, FLA_Ohj ATL, ATR A00, AO01, AO02,
ABL, ABR, A10, All, Al12, ABL, ABR, A10, All, Al12,
A20, A21, A22; A20, A21, A22;
int b;
FLA Part _2x2( A &ATL, &ATR, FLA Part _2x2( A &ATL, &ATR,
&ABL, &ABR 0, 0, FLATL ); &ABL, &ABR, 0, 0, FLATL );
while ( FLA bj _length( ATL ) < FLA Cbj _length( A) ) { while ( FLA Obj _length( ATL ) < FLA Cbj _length( A) ) {
b = min( FLA_Obj _Ilength(ABR), nb_alg );
FLA Repart_2x2_to_3x3( FLA Repart_2x2_to_3x3(
ATL, [**/ ATR, &A00, /*+/ &A01, &A02, ATL, /*x] ATR, &A00, /**/ &A01, &AD2,
[% wxxrkrarrkkrs k] [k KXREAKARFAKARHKAARF K] [ wxxkkrarrkkar k] [k KrRRKKARFKKARFRKAARE K]
&A10, [*x/ &ALl, &Al12, &A10, [+ &ALl, &A12,
ABL, [+ ABR, &A20, [+ &A21, &A22, ABL, /*+/ ABR, &A20, [+ &A21, &A22,
b, b, FLABR); 1, 1, FLABR);
e %/ e e */
FLA Syrk( FLA LOAER_TRI ANGULAR, FLA_NO TRANSPCSE, FLASH_Syrk( FLA_LOAER_TRI ANGULAR, FLA_NO TRANSPOSE,
FLA_M NUS_ONE, Al0, FLA_M NUS_ONE, AL10,
FLA_ONE, ALl ); FLA_ONE, ALl );
FLA_Chol _unb_var3( All ); FLA_Chol _bl k_var1( FLASH_MATRI X_AT( A1l ) );
FLA_Germ( FLA NO TRANSPOSE, FLA TRANSPCSE, FLASH Gemm{ FLA_NO TRANSPOSE, FLA TRANSPOSE,
FLA_M NUS_ONE, A20, A10, FLA_M NUS_ONE, A20, Al0,
FLA_ONE, A21 ); FLA_ONE, A21 );
FLA Trsn( FLA RIGHT, FLA LOWER TRI ANGULAR, FLASH Trsn{ FLA RI GHT, FLA LOAER TRI ANGULAR,
FLA TRANSPOSE, FLA NONUNI T_Di AG, FLA_TRANSPOSE, FLA NONUNI T_DI AG,
FLA ONE, All, FLA ONE, All,
A21 ); A21);
e */ e e */
FLA_Cont _wi t h_3x3_t 0_2x2( FLA_Cont _wi t h_3x3_t 0_2x2(
&ATL, [*x] &ATR, A00, A01, /**/ AO2, SATL, [**] &ATR, A00, A01, /**/ A02,
A10, All, /*x/ Al2, A10, All, /*x/ Al2,
R R L Y R R L e Y
&ABL, /**/ &ABR, A20, A21, [#*x] A22, &ABL, [**/ &ABR, A20, A21, [*x] A22,
FLA TL ); FLA TL );
} }
return FLA SUCCESS; return FLA_ SUCCESS;
} }

Figure 2: FLAME/C implementation of the blocked algorithor the Cholesky factorization (left) and FLASH im-
plementation of the corresponding algorithm-by-blocks.

blocks for the Cholesky factorization is given in Figure @fit). The differences between the blocked algorithm and
the algorithm-by-blocks in that Figure (left and right, pestively) lie in the dimensions of the partitioning and the
routines which are invoked from within the loop body. For #hgorithm-by-blocks, the fact that the matrix is indeed
a matrix of submatrices, leads to a unit size for the repamiitg operatiorFLA_ Repart 2x2_t 0_3x3. Here, many

of the details of the FLASH implementation, including thenipaulation of the data structures, have been buried
within the FLASH-aware FLAME object definition and the paating routines. Abbreviated implementations of
algorithm-by-blocks for the building blockSLASH_Syr k, FLASH_Tr sm andFLASH Gemmare given in Figure 3.
FLA_Chol bl k_var 1 corresponds to the blocked implementation of the righkilag Cholesky factorization, which
usually yields higher performance on multi-threaded aechires.

3 OOC Implementation

OOC algorithms for dense linear algebra operations tiathlly consider a (logical) partitioning of the matrix into
submatrices that are stored contiguously on disk. Injtiaatrices were partitioned into submatrices that werelksloc
of columns [14, 23]. Later it was recognized that this does not scale as mas@ssiecome huge (or when memory
is relatively small). This is overcome by partitioning thatmix by rows and columns, with the simplest case corre-
sponding to submatrices being squles (except perhaps for submatrices on the fringe when the xsine is not an
integer multiple of the tile size) [33, 20, 21, 6]. In a nutbhtte reason is that the size of the tile brought into memory
can always be kept constant, and therefore the ratio bettheesomputation and I/O overhead can be fixed. Starting
from a square partitioning, an OOC algorithm-by-blocksigs a few tiles in-core (usually, to fill a considerable part
of the RAM), computes with these, and stores back the resnltisk to release space for the data involved in future
operations. Optimizing such an OOC implementation becamaatter of carefully orchestrating the computation so
as to bring data into memory for computation in time whileaiiy) minimizing the amount of reads and writes (1/0O)
and/or overlapping I/O and computation. It is particuladHg overlapping of 1/0O with computation (so-called double
buffering) that has negatively affected programmabitiftyning otherwise manageable code into spaghetti code.

IMany practical implementations still use this partitioniegpecially on clusters with very large memories.



In the remainder of this section we present a series of OO@ithgs that start with a basic implementation and
culminate in an advanced one that manages all I/0 via a me-giystem that hides details from the library developer.

3.1 A basic OOC algorithm

An OOC algorithm-by-tiles for the Cholesky factorizationdirectly obtained from the algorithm-by-blocks in the
previous section by just considering the tile to be the uhitamputation: The routines in Figures 2 (left) together
with those in Figure &rethe OOC implementation.

Given a SPD matrix, created on disk as an OOC matrix of tiléglif@ensiont x t), a direct OOC implemen-
tation of the Cholesky factorization can be easily obtaifieth the algorithm-by-tiles by inserting calls to a routine
FLAQOQOC_Copy to bring the necessary data into auxiliary workspaces ne-st before the calls teLA_Chol _bl k_var 1,
FLA_Syr k, FLA_Tr sm FLA_Gemm after the operations, calls ELAOOC_Copy could be inserted to store the results
back to disk.

Unfortunately, low performance can be expected from thiglémentation as, e.g., there is no overlap between
I/O and computation. In the next two subsections we desagbkniques and tools to improve performance and
programmability, including a run-time system that handi€stransparent to the programmer. As a result, the code
does not change: the different schemes that we describdysainange the policy that the run-time system uses to
move tiles to and from disk.

3.2 Software cache

The first technique to reduce the amount of 1/O is to implenzettgical cache of tiles that are in-core. The idea
is that, every time an operation is to proceed, a run-timpeots the software cache to check whether the tiles the
operation involves are already present in-core (cache Titys, actual data transfers only occur for cache misses. A
least-recently-used (LRU) replacement policy decidestvkile is moved back to disk in case there is no place left in
the cache to read a new tile. This is also handled by the mae-ti

This simple run-time system handles all I/0O transparewtiné user, improving the programmability as no explicit
I/O calls need to be inserted in the OOC codes. Depending cimechit rate, it can also improve performance by
reducing the number of transfers between RAM and disk. Hewéivdoes not overlap 1/0 with computation yet.

3.3 Overlap I/0 and computation

The run-time knows what tiles are present in-core (i.e hendoftware cache) and therefore can exploit some level of
temporal data locality. We next propose going one stepéunrdid looking ahead into the future. The domain-specific
feature that facilitates the required fortune-tellinghatt for linear algebra codes, the operations that will ezeted

in the future can be known in advance at little cost.

The idea is to perform an initial execution of the code, gatieg a list of tasks (operations on tiles) to be eventually
executed (this is the extra cost we have to pay). Generatligy af tasks for dense linear algebra codes has been
used earlier to expose a higher the degree of parallelismnatime for multi-core processors (see, e.g., [28]). The
difference here is that we are proposing to use it with a aiffegoal, namely reducing the amount of data transfers
and overlapping computation with I/O for OOC algorithmseffect prefetching with perfect knowledge.

Let us elaborate the description of this sophisticatedtime-system. The codes in Figures 2 (right) and 3, are
symbolically executed to generate a list of tagkending lis}. Each time a call to routindSLA_Chol _bl k_var 1,

FLA Syr k, FLA_Tr sm or FLA_Genmis encountered, the run-time simply creates an entry inighevith data to
identify the given operation (e.g., operation name andrpatars). The order in which the tasks appear in the list
together with the directionality of the operands (input otput) defines the order and direction in which blocks will
be transferred between memory and disk. Therefore, thegfigiknown in advance!

The real execution can now begin. A single thread, known @sdbutor prefectthread, inspects thgending list
in (FIFO) order. For each entry of the list, provided thereemough empty (tile) slots in the software cache, the scout
thread brings the necessary tiles into the RAM, moving theyanto a second list which contains the tasks which
are ready for executiondady lis). A second thread, theorker, runs over the ready list executing tasks as they are
encountered in order. Now, as all data for the computatibasdre performed by the worker thread are guaranteed
to be in-core, we can employ an in-core library for these afp@ns (to be addressed in the next subsection). When a



void FLASH_Syrk_l n( FLA Onbj al pha, FLA Obj A, void FLASH Trsmrltn( FLA_Cbj al pha, FLA Ohj L,

FLA_Cbj beta, FLA Cbj C) FLA_Gbj B)
/* Special case with node paranmeters I+ Special case with node paraneters
FLASH Syrk( FLA LOWER TRI ANGULAR FLA_NO TRANSPOSE, FLASH_Trsn{ FLA_RI GHT, FLA_LOAER TRl ANGULAR,
. ) FLA_TRANSPCSE, FLA_NONUNI T_DI AG
Assunption: Ais a row of blocks (row panel) */ )
Assunption: L consists of one block and
FLA Obj AL, AR, A0, A1, A2; B consists of a colum of bl ocks */
{
FLA Part_1x2( A, 8AL, &AR 0, FLA LEFT); FLA_Cbj BT, BO,
BB, B1,
while ( FLA Obj _width( AL ) < FLA Cbj_width( A) ){ B2;
FLA Repart _1x2_to_1x3( FLA Part_2x1( B, &BT,
AL, [*x] AR &AD, [+x] &AL, &A2, &BB, 0, FLA TCP );
1, FLARIGHT );
R e E R LT TP */ while ( FLA Obj _length( BT ) < FLA Ohj _length( B) ) {
FLA Syrk( FLA LOWER TR ANGULAR, FLA_NO TRANSPCSE, FLA Repart_2x1_to_3x1( BT, &B0,
al pha, FLASH MATRI X_AT( Al ), [x %% %]
beta, FLASH MATRIX_AT( C) );
e / BB, 1, FLA_BOTTOM);
/%= .
FLA_Cont _wi th_1x3_t o_1x2( FLA Trsn{ FLA RIGHT, FLA_LOAER TRI ANGULAR,
&AL, [*x] &AR A0, AL, [*x| A2, FLA_TRANSPOSE, FLA_NONUNI T_DI AG
FLA LEFT ); al pha, FLASH MATRI X_AT( L ),
FLASH_MATRI X_AT( BL ) );
} R LT */
} FLA Cont _wi th_3x1_to_2x1( &BT, BO,
B1,
Ix k% xf  [x k% %]
&BB, B2, FLA TOP );
}
1
void FLASH Genp_nt( FLA Obj al pha, FLA Obj A, voi d FLASH Gepp_nt( FLA Obj al pha, FLA Obj A
FLA_Obj B, FLA_Obj B,
FLA Chj beta, FLA Chj C) FLA_ Chj beta, FLA Cbj C)
/+ Special case with node paraneters /+ Special case with node paraneters
FLASH Genm{ FLA NO TRANSPOSE, FLA_ TRANSPOSE, FLASH_Gepp( FLA_NO TRANSPOSE, FLA TRANSPOSE,
o ) . )
Assunption: Ais a matrix and Assunption: Cis a block and
B is a row of blocks (row panel) B, C are rows of blocks (row panels) */
Cis a colum of blocks (colum panel) */ {
{ FLA Gbj AL, AR, A0, AL, A2
FLA_Chj AT, A0, CT, @,
AB, Al, CB, CL, FLA_Obj BL, BR, BO, B1l, B2
A2, C2;
FLA Part_1x2( A, &AL, &AR, 0, FLA_LEFT);
FLA Part_2x1( A, &AT,
&AB, 0, FLATOP ); FLA Part_1x2( B, &BL, &BR 0, FLA LEFT);
FLA Part_2x1( C, &CT, FLA_Scal ( beta, FLASH MATRIX_AT( C) );
&CB, 0, FLATOP);

while ( FLA Obj _width( AL ) < FLA Gbj_width( A) ){
while ( FLA Obj _length( AT ) < FLA Cbj length( A) ){
FLA Repart_1x2_to_1x3(

FLA_Repart_2x1_to_3x1( AT, &A0, AL, [*x/ AR &A0, [+x/ &AL, &A2,
Ix wx %] [+ x| 1, FLARIGHT );
&AL,
AB, &A2, FLA Repart _1x2_to_1x3(
1, FLA BOTTOM); BL, /**/ BR &B0, /*x/ &B1, &B2,
1, FLARIGHT );
FLA Repart_2x1_to_3x1( CT, &Q0, R e */
Ix %% %] I* xx %/ FLA Germ{ FLA_NO TRANSPOSE, FLA_ TRANSPOSE,
&Cl, alpha,  FLASH MATRI X_AT( Al ),
CB, &2, FLASH_MATRI X_AT( Bl ),
1, FLA BOTTOM); FLA ONE, FLASH MATRIX_AT( C) );
o m e e e */ J o m m e e e e */
FLASH_Gepp( FLA_NO_TRANSPCSE, FLA_TRANSPCSE, FLA_Cont _wi t h_1x3_t 0_1x2(
al pha, A1, &AL, [*x] &AR, A0, AL, /x| A2,
B, FLA_LEFT );
beta, Cl1);
R e */ FLA Cont _with_1x3_to_1x2(
FLA_Cont _wi th_3x1_to_2x1( &AT, A0, &BL, /+*/ &BR, B0, Bl, /**/ B2,
Al FLA_LEFT );
[ %% ] [% xx %] }
&AB, A2, FLATOP ); |}
FLA Cont _with_3x1_to_2x1( &CT, @,
C1,
[ %% %/ [% % %]
&CB, 2, FLA TCP );

Figure 3: FLASH implementation of the kernels appearindianELASH implementation of algorithm-by-blocks for
the Cholesky factorization.



task is completed, the corresponding entry is removed frmmaady list, and any tile used within it, which is not used
by any other task in the ready list, is marked as candidatesfooval from the cache. When new space needs to be
allocated in the software cache, the scout thread movesethditks back to disk, if they correspond to data that was
modified, or simply overwrites them with new data otherwig¢hen there are no candidates for removal, the scout
thread blocks and waits until more tasks are completed.

Probably the most important feature of this approach is haupports programmability. No change is needed
to the algorithm-by-tiles routines. The run-time systenmisharge of all data transfers and automatically overlaps
I/0 with computation. The extra cost for this, creating arehaging a couple of lists, is more than paid back by the
benefits of reducing idle times due to I/O.

4 Parallel In-Core Kernels for Multi-core Processors

In our approach, the worker thread is in charge of computiegperations on tiles which have been already brought
in-core by the scout thread. Thus, the types of operaticaisttie worker will encounter are symmetric rakkip-
dates, triangular system solves, matrix-matrix produatg] the computation of the in-core Cholesky factorization
of the diagonal tiles (invocations in Figure 3 EbA Syr k, FLA_Tr sm FLA Genm andFLA _Chol bl k_var 1,
respectively).

4.1 Parallel execution on a general-purpose multi-core proessor

Let us consider first that the target architecture is a (ga+mrrpose) processor with several cores (or any otheedhar
memory platform with multiple processors). For these dedures there exist highly tuned multithreaded implemen-
tations of the former three operations, e.g. as part of k@KL library or the GotoBLAS, which efficiently exploit
the hardware parallelism. For example, when kersglr k from MKL is invoked from within routineFLA_Syr k
to compute a symmetric rank update, multiple threads (as many as the user requestspans 0 compute the
operation in parallel, using one core per thread. (Noteithaase computation is overlapped with 1/O, in our OOC
algorithms these threads will run concurrently with thewddbiread.) The parallel execution of these three BLAS
operations is therefore transparent to the OOC progranwiéch only observes a more reduced execution time.
MKL also includes a multithreaded version of the Choleslotdeaization which can, in principle, be used to factor-
ize the diagonal tiles using the multiple cores/processbtise architecture. However, for an operation with complex
dependencies like this, it may be more efficient to employralfgdization approach restricted only by the data depen-
dencies (data-flow parallelism). In particular, this setaiternative employs the SuperMatrix dynamic scheduling
mechanism [27], developed as part of the FLAME project, tprione the scalability of the operation: a scheduling
run-time system, different from the one that deals with OGiftadransfers and overlap described in the previous
section, is in charge of the parallel factorization of thagtinal tiles. In this case, whéfiLA_Chol _bl k_var 1 is
invoked, the scheduling run-time inspects the code forrthigine, detecting data dependencies among the blocks of
the tile, and scheduling for execution those operatiorskéawhich have all its dependencies fulfilled. The result is
a data-flow parallel execution. Details on dynamic out-afes scheduling in the context of a parallel execution on
multi-core processors can be consulted, e.g., in [28]. meaperiments, we will evaluate the performance of both
alternatives: MKL and dynamic scheduling for the factatia of the diagonal tiles. We will refer to the second one
as “data-flow” in the experiments.

4.2 Parallel execution on a graphics processor

Current workstations include a general-purpose procgpsassibly with multiple cores) and usually also a GPU with
its own (device) memory. Provided the tile size is large goand a tuned kernel exists to compute the particular
operation on the GPU, the time to transfer data between roaimost) memory and device memory can be more than
paid back by the potential of current GPU. For NVIDIA graghfrocessors, CUBLAS [25, 5] provides an efficient
implementation of BLAS-level operations like those neettetthe Cholesky factorization, among others. The in-core
computation of the Cholesky factorization itself is notyaded in NVIDIA libraries but can be easily implemented
using the kernels in CUBLAS [4, 36].



Thus, using CUBLAS, once the data is in-core the symmetn&-taupdates, matrix-matrix products, and trian-
gular system solves on tiles are performed in our codes ifG#RE. Two different alternatives are explored for the
computation of the Cholesky factorization of a (diagonid) ta pure CPU computation and a hybrid one, where com-
putation is shared between CPU and GPU. In the pure CPU catiqmuill cores of the general-purpose processor
collaborate in the parallel computation of the factoriaatof the tile using, e.g., the multi-threaded implemenptati
of this operation in MKL. Assume for the hybrid computatidrat the tile initially resides in the device memory.
A blocked right-looking algorithm with block sizkeis used to compute this factorization as follows: the CHagles
factorization of the diagonadl x b blocks is computed by the CPU. To do so, the block is inititdynsferred to host
memory, factorized there, and the result is put back intacgememory. All other updates of the tile are performed
then on the GPU. Once the tile is completely factorized, #sailt is brought back from the device memory into the
corresponding tile of the software cache in host memory.

5 Experimental Results

All experiments in this section were performed using MKLAL.Q, CUBLAS 2.0, and single precision. Performance
is measured in terms of GFLOPS (that is, billions of floatpagnt arithmetic operations —flops— per second), with the
usual count of:3 /3 flops for the Cholesky factorization. The OOC implementagicorrespond to the (left-looking)
algorithm-by-tilesFLASH_Chol _by bl ocks_var 3 in Figure 2 (left). Unless otherwise stated, the enhancésnen
described for the OOC variants are incremental so that anaicludes a new strategy plus those of all previous
ones. Several executions were performed to tune the tite sialy the results corresponding to the best case are
shown.

5.1 Results on a general-purpose multi-core processor

The target architecture for this first experiment is a watish with two Intel Xeon QuadCore E5405 processors
(8 cores) at 2.0 GHz with 8 GBytes of DDR2 RAM. The Intel 5400psket provides an I/O interface with a peak
bandwidth of 1.5 Gbits/second. The disk is a SATA-I with atatapacity of 160 Ghytes.

Figure 4 reports the performance of several (in-core and d@@ines for the Cholesky factorization:

In-core MKL: The (in-core) implementation of the Cholesky factorizatio MKL 10.0.1.
In-core data-flow: Our (in-core) algorithm-by-blocks with dynamic schedglitescribed in [28].
OOC Basic: Basic OOC implementation as described in Subsection 3.1.

OOC Cache: OOC implementation with a software cache in place to redoe@timber of 1/O transfers (see Subsec-
tion 3.2).

OOC Reordered + data-flow: Reordered operations to access tiles following a snalkepliiittern to improve locality
in the access to the software cache. The factorization afitigonal tiles is addressed by using the SuperMatrix
dynamic scheduling run-time described in [28].

OOC Overlap I/O: Use of a run-time with scout and worker threads to overlapmdation and I/O, and manage the
software cache transparently to the user (see Subsec8pn 3.

The results in the figure show a practical peak performancéhi® in-core Cholesky factorization (based on the
algorithm-by-blocks, AB) that is slightly over 90 GFLOPSor@bining all the OOC techniques mentioned above,
yields a performance that is basically similar to that ofitikeore algorithm.
The following table reports the execution time required émpute the Cholesky factorization using t6©C
Overlap I/0O variant and the amount of memory that is needed to store théefiuse matrix:
Matrix size Time MBytes
10,240 4.9sec 400
51,200 8min 49.9sec 10,000
102,400| 1h 4min 52.0seq 40,000




Out-of-core Cholesky factorization on tesla (2 Xeon Quadcore)

— In-coré MKL ‘ ‘

——————— In-core data-flow

140 - 5 0OC Basic |
0O0C Cache

~ -~ 00C Reorder + data-flow

120 | -+~ QOC Ovelap I/0 i

100 - B b

(%] &
a . “
o 80 : i
.} A A -A
L & K
O] e =) iz} B N
60 L B B a -
A A -
L B |
40 TMD/
|
20 1
|
|
|
0 - Il Il Il Il Il
0 20000 40000 60000 80000 100000
Matrix size

Figure 4: Performance of the Cholesky factorization codea multi-core processor.

5.2 Results on a multi-core processor+ a graphics processor

We next employ an AMD Phenom 9550 QuadCore at 2.2 GHz with 4t&Bgf DDR2 RAM and 4512 Kbytes of
L2 cache. The chipset provides a I/O interface with a peaklWaith of 3 Gbits/second. The system has two SATA-II
disks (Seagate ST3160815AS, 7200 r.p.m.) with a total égpat2x160 Gbytes. The graphics processor is an
NVIDIA Geforce 9800 GX2, equipped with 128 cores.

Figure 5 reports the performance of several (in-core and oO@ines for the Cholesky factorization using the
GPU of the system. The timings for the “in-core” results irt® the cost of transferring data between host and device
memories.

In-core hybrid: Blocked (in-core) implementation of the Cholesky factatian, with diagonal blocks being factor-
ized in the processor using MKL and all remaining updatesénGPU (see Subsection 4.2).

OOC Basic: Basic OOC implementation as described in Subsection 3.1.
OOC Cache: Simple run-time that includes a software cache (see SubeexP).

OOC Hybrid: Computation of the Cholesky factorization of diagonalditeing shared between CPU and GPU (see
end of Subsection 4.2).

OOC Overlap I/O: Elaborated run-time that handles the software cache amthpgecomputation and 1/0 (see Sub-
section 3.3).

The results in the figure show a practical peak performancth&in-core and the best OOC codes that are close to
126 and 117 GFLOPS, respectively. Thus, for this architedtuie OOC techniques rival with the in-core algorithm in
performance.
Finally, the next table shows the time to compute the Chglésttorization using th©OC Overlap 1/0 variant
and the amount of memory that is needed to store the full deasex:
Matrix size Time MBytes
10,240 4.4sec 400
51,200| 6min 34.6sec| 10,000
102,400| 50min 52.3se¢ 40,000
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Figure 5: Performance of the Cholesky factorization codea multi-core processor equiped with a GPU.

6 An Application Interface

For applications coded in a traditional style, we provide fibllowing prototype API for submitting matrices to disk.
We note that, unlike other FLAME/C related routines, thesgines expose indexing into a matrix, in order to faciéitat
how traditional applications may wish to access an otherlWwidden matrix.

Matrices are created on disk with the following call:

FLAOOC_(bj _create( FLA Matrixtype natrixtype, FLA Datatype datatype,

dimt m dimt n, dimt nm, dimt nt,

char =file_nane, FLA Obj *Aooc );
Purpose: Create a new object that describesmann matrix Aooc, with entries of typelat at ype (FLA_I NT, FLA_REAL,
FLA_DOUBLE, etc.), and allocate the associated storage array on disk. nithei xt ype parameter can be used to
roughly half the required space for triangular or symmetric matriceselsctng one fromFLA_LONER TRl ANGULAR
or FLA_UPPER TRI ANGULAR; for full dense matriced;LA DENSE is to be selected. The matrix is partitioned intox nt
tiles, with the elements in each tile being stored contiguously on disk in colunjor-order, in a file with naméi | e_nane.

Argumentsimt andnt are user-defined parameters that must be tuned to optimiterpance depending on the
problem dimensions, the size of the RAM, and the numbe¢itexf (basically square blocks) that must be kept in-core

during the execution.
Once created, filling the contents of an OOC object (transfgrdata from main memory to disk) can be done

using the following call:

FLAOOC Copy_submatrix_to_gl obal ( FLA Trans trans, dimt m dimt n,

void =X, dimt Idim

dimt i, dimt j, FLA Obj Aooc );
Purpose: Copy the contents of a conventional column-major matnixith leading dimensioh di minto themxn submatrix
starting at entryi(,j ) of Aooc. Thet r ans argument may be used to optionally transpose the matrix during the copy.

AssumeFLA Tr ans equalsFLA_NO.TRANSPGCSE. Then, given amxn matrix X, in MATLAB notation the previous

call is equivalent to
Aooc( i:i+m1l, j:j+n-1) = X
whereAooc is an object with the corresponding data stored on disk. Weige, but do not specify here, a call that
can add a multiple of an incore matrixAmoc.
Data transfers in the opposite direction, i.e. from OOC todre, can be performed with the following routine:
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FLAOOC _Copy_gl obal _to_submatri x( FLA Trans trans, dimt i, dimt j, FLA Oobj Aooc,
dimt m dimt n, void *X, dimt |dim);
Purpose: Copy the contents of thexxn submatrix ofAooc whose top-left element is thé { ) entry into a conventiona
column-major matrixX with leading dimensioh di m Thet r ans argument may be used to optionally transpose the matrix
during the copy.
Again, an alternative call allows a submatrix fréxnoc to be added to a contentional matkx
When no longer needed, a callkb ACOC_Cbj _f r ee is required to ensure that all disk space associated with an
OOC object is properly released:

FLAOCOC Obj _free( FLA Onj =*Aooc );
Purpose: Release all resources allocated to store data associateAagthon disk.

Note that these are the routines that a typical applicatiounla@vuse to access parts of OOC matrices. The OOC
FLAME/C API includes a routine-LAOCC_Copy, which is used to copy tiles to and from disk.

7 Concluding Remarks

We have described an approach to easily develop OOC algwitor dense linear algebra operations. A run-time
system in charge of I/0O transfers inspects the code beferadtual execution begins to bring data from disk before it
is needed thus completely hiding 1/O latency. As an addititenefit, the run-time system also unburdens the library
developer from having to adapt his codes to include routtoesxplicitly handle the I/O. Thus, all computational
routines inl i bf | ame can be fundamentally transformed into OOC codes withouinigalo change the contents of
the library.

Results for an operation like the Cholesky factorizatioovskthat the overhead introduced by the run-time is offset
by the gains delivered by the overlap of computation and comeation (1/0). Using the new run-time, the FLAME
code for the left-looking variant of the Cholesky factotina allows to decomposel@0, 000 x 100,000 matrix on a
multi-core platform with 8 cores in slightly more than oneuhoA similar workstation equipped with a current GPU
can decompose this matrix in approximately 50 minutes.

Future work will include applying the same approach to skattded algorithms for the LU and QR factorization;
solving real OOC applications using the resulting codest extending the run-time to distributed-memory OOC
packages.
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