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Abstract

Take a multicore Digital Signal Processor (DSP) chip designed for cellular base stations and
radio network controllers, add floating-point capabilities to support 4G networks, and out of
thin air a HPC engine is born. The potential for HPC is clear: It promises 128 GFLOPS (single
precision) for 10 Watts; It is used in millions of network related devices and hence benefits from
economies of scale; It should be simpler to program than a GPU. Simply put, it is fast, green,
and cheap. But is it easy to use? In this paper, we show how this potential can be applied to
general-purpose high performance computing, more specifically to dense matrix computations,
without major changes in existing codes and methodologies, and with excellent performance
and power consumption numbers.

1 Introduction

A decade ago, it was recognized that Graphics Processing Units (GPUs) could be employed
for general purpose high-performance computing. They were relatively easy to program, highly
efficient, and, most importantly, economy of scale made them affordable. Now, GPUs are an
integral part of the scientific computing landscape.

Digital Signal Processors (DSPs) have traditionally been at the heart of embedded systems.
Of importance to the HPC community is that they are very low power, benefit from economy of
scale, and they are easy to program, provided one is willing to forgo Fortran. Unlike traditional
GPUs, they are not accelerators that require a host processor and suffer from the overhead
associated with transfering data between the host and the accelerator. They are fully functional
cores that are quite similar, from the point of view of programming and memory hierarchy,
to a conventional processor. The problem was that, until recently, such processors utilized
fixed-point rather than floating-point computation. This has now changed.

We report on our experience with a specific DSP, the Texas Instruments (TI) Keystone
multi-core Digital Signal Processor (DSP) architecture, codenamed C66x. This multicore pro-
cessor represents the industry’s first DSP with a combined floating-point performance of 128
single precision (SP) GFLOPs (billions of floating point operations per second) on a single de-
vice running at 1 Ghz, a power consumption of 10W per chip, and thus with a theoretical ratio
of 12.8 GFLOPS/Watt (SP). Its ubiquitous use (they are present in a wide variety of embedded
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systems, network devices, and similar applications) makes it affordable and available. Its pro-
gramming model (C/C++ with OpenMP support for multi-threaded codes) will make the port
of existing codes straightforward. The fact that it is a standalone processor makes it attractive
for applications for which hardware accelerators are not an option. The question is: does it live
up to these promises?

Dense linear algebra libraries are often among the first libraries to be ported to a new
architecture. There are at least two reasons for this: (1) Many applications cast computation
in terms of dense linear algebra options and (2) If an architecture cannot support dense linear
algebra libraries effectively, it is likely not going to support other HPC applications well. The
libflame library [15] is a modern alternative to the widely used LAPACK library. We examine
how well it can be mapped to the C66x.

A prerequisite for high performance for dense matrix library is the high-performance imple-
mentation of matrix-matrix multiplication kernels known as the level-3 BLAS [5]. The GEneral
Matrix-Matrix multiplication (gemm) operation is simultaneously the most important of these
and highly representative of how well the rest of the level-3 BLAS can be mapped to a pro-
cessor [16, 7, 8]. Since no BLAS library for the C66x existed when we started this study, we
describe in detail the implementation of gemm on this architecture. We will show that, as of
this writing, it achieves roughly 10 GFLOPS/core and 74 GFLOPS aggregate on 8 cores, which
transforms multi-core DSPs into one of the most energy-efficient HPC architectures as of today.

Parallelizing operations to multiple cores requires a thread library and/or compiler support.
When this project commensed, there was no such support, but OpenMP support was being
added to the TI’s C/C++ compiler. Our implementation of a multi-threaded version of gemm
and the libflame library provides us with an opportunity to also report on early experiences
with the OpenMP implementation by TI.

2 The C6678 DSP architecture

The C6678 DSP is a high-performance fixed/floating-point DSP based on TI’s KeyStone multi-
core architecture. Incorporating eight C66x DSP cores, the device runs at a core speed of 1 GHz.
TI’s KeyStone architecture provides a programmable platform integrating various subsystems,
including up to eight C66x cores, memory subsystem, peripherals, and accelerators.Central to
this architecture are key components such as Multicore Navigator that allows for efficient data
management between the various device components. The TeraNet is a non-blocking switch
fabric enabling fast and contention-free internal on-chip data movement. The multicore shared
memory controller (MSMC) allows access to shared and external memory directly without draw-
ing from switch fabric capacity. Figure 1 shows a functional diagram of the C6678 DSP.

2.1 C66x core capabilities and instruction set

For fixed-point use, the C66x core has 4x the multiply accumulate (MAC) capability of previous
DSP generations. As a novelty, it integrates floating point capabilities, with a per-core raw peak
performance of 32 MACS/cycle and 16 flops/cycle. It can execute up to 8 single precision floating
point MAC operations per cycle and can perform double- and mixed-precision operations with
fully IEEE754 compliance. The C66x instruction set incorporates 90 new instructions specifically
targeted for floating point and vector processing. The integration of floating-point capabilities
makes the C66x core a suitable platform for general-purpose high performance codes, which is
the target subject of our study.

Many of the new features present in the C66x DSP target increased performance for vector
processing. The vector processing capability has extended the width of the SIMD instructions.
C66x DSPs can execute instructions that operate on 128-bit vectors. The C66x DSP also sup-
ports SIMD operations using floating-point arithmetics. Improved vector processing capability
combined with the natural instruction level parallelism of C6000 architecture (e.g execution of
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Figure 1: Functional diagram of TI C6678 DSP.

up to 8 instructions per cycle) results in a very high level of parallelism that can be exploited
through the use of TI’s C/C++ compiler.

The C66x DSP consists of eight functional units, two register files, and two data paths as
shown in Figure 1. The two general-purpose register files (A and B) each contain 32 32-bit
registers for a total of 64 registers. They can be used for data or can be data address pointers,
and support packed 8-bit, 16-bit, 32-bit, 40-bit, and 64-bit data. Multiplies also support 128-bit
data.

The eight functional units (.M1, .L1, .D1, .S1; .M2, .L2, .D2, and .S2 in Figure 1) are
each capable of executing one instruction every clock cycle. The .M functional units perform
all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and
branch functions. The .D units primarily load data from memory to the register file and store
results from the register file into memory.

2.2 Memory

The C6678 DSP integrates a large amount of on-chip memory. In addition to 32KB of L1
program (L1P) and data (L1D) cache, there is 512KB of dedicated memory per core that can
be configured as mapped RAM or cache. The device also integrates 4096KB of Multicore Shared
Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories
incorporate error detection and error correction. For fast access to external memory, this device
includes a 64-bit DDR3 external memory interface running at 1600 MHz and has ECC DRAM
support.

The 4096KB of L2 memory (512 KB per core) can be configured as all SRAM, all 4-way
set-associative cache, or a mix of the two. By default, L2 is configured as all SRAM after device
reset.
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The 4096KB MSM SRAM in the C6678 device can be configured as shared L2 and/or
shared L3 memory, and allows extension of external addresses from 2GB to up to 8GB. The
MSM SRAM is configured as all SRAM by default. When configured as a shared L2, its contents
can be cached in L1P and L1D. When configured in shared L3 mode, its contents can also be
cached in L2.

2.3 Programmability and multi-thread support

TI’s DSPs run a lightweight real time native operating system called SYS/BIOS. Because
SYS/BIOS can be used in such a wide variety of different microprocessors with very differ-
ent processing and memory constraints, it was designed to be highly configurable.

TI provides a C/C++ compiler as part of its Code Generation Tools. In practice, virtually
every C89-compliant C program can be directly ported to run on the DSP with no additional
effort. To improve the efficiency of the generated core for each TI architecture, the compiler
provides a rich variety of optimization and tuning flags. It supports optimization techniques in
form of pragmas and also intrinsics to extract all the potential performance of the underlying
architecture. OpenMP 3.0 is the preferred programming model for C66x multicore DSPs as of
today. This allows rapid ports of existing multi-threaded codes to the multi-core DSP, as we
illustrate in this paper. TI’s C66x compiler translates OpenMP into multithreaded code with
calls to a custom runtime library. The runtime library provides support for thread management,
scheduling, and synchronization. TI has implemented a runtime library that executes on top
of SYS/BIOS and interprocessor communication (IPC) protocols running on each core of the
DSP. The TI OpenMP runtime library performs the appropriate cache control operations to
maintain the consistency of the shared memory when required. Because TI’s C66x multicore
DSPs have both local private and shared memory they map well into the OpenMP framework.
Shared variables are stored in shared on-chip memory while private variables are stored in local
on-chip L1 or L2 memory. Special precaution must be taken to keep data coherency for shared
variables, as no hardware support for cache coherency between cores is provided. Some of these
issues will be illustrated in Section 4.

3 GEMM on a single C66x core

Developing an optimized BLAS (Basic Linear Algebra Subprograms [6]) library is usually the
first step toward the development of higher level scientific libraries when a new HPC architecture
emerges. It also illustrates the performance that can be effectively extracted from the new
architecture. In addition, these kernels are commonly useful to illustrate typical optimization
techniques particular to the architecture.

The lack of a Fortran compiler in the TI toolchain makes it even difficult to test a naive
reference BLAS implementation. Our trivial first approach was to take the Fortran reference
implementations of the BLAS from netlib and translating these into C using f2c, and directly
the TI C compiler to get the full BLAS running on one core of the DSP.

As is well-known, these reference implementations do not attain high performance, even more
on specific-purpose architectures like the TI DSP. To overcome this, an optimized version of
single precision matrix-matrix multiplication (sgemm) has been implemented and is described
in this section. Note that gemm is a key routine towards the development of a full Level-3
BLAS [10]. Our algorithm is structured much like the implementation in the GotoBLAS [8, 7]
library. GotoBLAS is one of the most widely used and highly performing BLAS implementation
as of today. Since its early versions, it has been successfully ported to many of the most extended
microarchitectures. We illustrate next how Goto’s approach can be effectively implemented on
the TI DSP.
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3.1 The GotoBLAS approach

Memory hierarchy is commonly divided into multiple levels, each one with a particular size/per-
formance ratio (smaller, faster memories are found as one gets closer to the processor, following
a “pyramidal” approach.) The TI DSP is no exception. Following this assumption, GotoBLAS
aims at decomposing gemm into different layers, each one mapped to a different level of the
memory hierarchy, with the final goal of amortizing data movements between memory levels
with computation and thus attaining near-optimal performance by keeping recently used data
as close to the processor as possible.

A typical high-performance gemm implementation follows the three nested loop approach
shown in Figure 2. Considering the operation C := AB + C, where A, B, and C are m × k,
k × n, and m× n matrices, we partition the operands:

A =
(
A0 A1 . . . AK−1

)
, B =


B0

B1

...
BK−1

 ,

where Ap and Bp contain bk columns and rows, respectively (except for AK−1 and BK−1 which
may have less columns or rows, respectively), as shown in the outer loop of Figure 2. We consider
this partition to proceed through dimension K. With this partitioning scheme,

C := A0B0 + A1B1 + · · ·+ AK−1BK−1 + C.

GotoBLAS implements gemm as a sequence of highly optimized updates C := ApBp + C,
usually referred as panel-panel multiplications, or gepp attending to the shape of the operands.
The performance of the gepp operation will ultimately determine the performance of the overall
gemm implementation.

The gepp algorithm proceeds by packing the corresponding panel Bp in the outer loop into a
contiguous memory buffer, partitioning the panel Ap into roughly square blocks A0,p, A1,p, . . . , AM−1,p

and packing them in a similar fashion, as shown in Figure 2. We consider this partition to pro-
ceed through dimension M . The computation of the multiplication of a block Ai,p and the
panel Bp is cast in terms of an inner block-panel multiplication kernel (gebp) using the previ-
ously packed buffers.

In summary, each gepp operation requires three different basic building blocks, in which the
developer must invest much of the optimization effort:

• An inner kernel (gebp) that computes Ci := Ai,pBp + Ci, where both the block Ai,p and
the panel Bp are stored in packed buffers.

• Packing and transposing each block Ai,p into a contiguous memory buffer Â. Ai,p is usually
a sub-matrix part of a bigger matrix, and thus it is not contiguously allocated in memory.
The packing into a contiguous buffer reduces the number of TLB entries to be accessed.
The transposition usually favors the memory access pattern of the inner kernel.

• Packing each panel Bp into a contiguous memory buffer B̂, as it is reused for many gebp
calls.

Typically, the dimensions of the block Ai,p ∈ Rmc×kc are chosen so that Â occupies as much
of the cache memory as possible. This often means half the L2 cache, to ensure that accesses to
data from matrices B and C do not evict data from this block of A. Intuitively, the closer Â is
to the processor, the faster data movements are. This idea suggests that Ai,p should be placed
in the L1 cache during the corresponding update. However, Goto demonstrated that loading
data from the L2 cache is sufficiently fast that this block can be placed in that layer instead.
Since then mc×nc can be larger, the movement of data between RAM and caches is amortized
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Allocate packed buffers Â and B̂
{Partition in the K dimension.}

A0 A1 A2 B1

B2

B0

C

for p = 0 : K − 1 do
{Pack Bp into B̂}
{Partition in the M dimension.}

1

C0

C2

A 0,p

A 1,p

A 2,p

^

C

B

for i = 0 : M − 1 do
{Pack and transpose Ai,p into Â.}
sgemmKernel(. . . )

Ci B
^

A
^

end for
end for

Figure 2: Basic algorithm for GEMM.

better over actual computation [8]. The general principle is now to place block Â in the largest
cache level available, provided that storing Â in this cache level allows the computation of
Ci := ÂB̂ + Ci be computed at the peak rate of the processor. For most architectures, with
some care, elements of Â can be prefetched so that the inner kernel can compute at near-peak
performance, when Â resides in the L2 cache. Thus, the chosen cache level for storing Â is
typically the L2 cache.

The inner kernel gebp proceeds by partitioning the panel B̂ into smaller sub-panels B̂0, B̂1, . . . B̂N−1.
We consider this partition to proceed through dimension N . The size of B̂j makes it possible

for it to be stored in the smaller L1 cache as it is being multiplied by Â.
Thus, at the deepest level of computation, the overal operation is reduced to a successive set

of multiplications of a block, Â, residing in L2 cache by a sub-panel of B̂, B̂j , streamed through
the L1 cache.

3.2 Mapping GotoBLAS to the C66x core

Our tuned implementation of a gemm kernel for the TI DSP follows the same high-level guide-
lines reviewed in Section 3.1. However, the architecture differs from conventional CPUs and
their memory in that it allows greater control over the placement of different data sections in
physical memory. Determinism necessary for real-time applications for which DSPs were ini-
tially designed motivated the addition of these mechanisms to the architecture. As a result,
each level of the cache hierarchy can be configured as a fully user-managed scratchpad memory
that becomes key to extending Goto’s ideas to the DSP.
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3.2.1 Managing the memory hierarchy

Goto’s approach writes the gebp so as to trick the architecture into keeping Â and panels of
B and C in specific memory layers while they are being used for computations. With the DSP
architecture and TI toolchain, we can force the linker to allocate given memory sections in a
certain physical level of the memory hierarchy (L1 cache, L2 cache, MSMC or DDR3 RAM).
This assures that a given buffer will reside on L1 cache, L2 cache or MSMC SRAM during the
execution of the kernel.

The usual workflow when developing a code for the TI DSP proceeds in three main steps:

1. Definition of the memory architecture. Defines the architectural properties of the target
platform, including memory sections, physical allocation of those sections and other pa-
rameters such as section size and address range. In our case, we define three different
sections mapped to L1 and L2 caches and MSMC SRAM, with names L1DSRAM, L2SRAM,
and MSMCSRAM, respectively, with the desired sizes.

2. Linker configuration. Provides information to the linker to bind data sections in the
source code to memory sections defined in the above memory architecture definition. In
our configuration file, we can define three different regions for allocation in L1 and L2
caches, and MSMC SRAM:

/* Create .myL1 section mapped on L1 cache */

Program.sectMap[ ".myL1" ] = "L1DSRAM";

/* Create .myL2 section mapped on L2 cache */

Program.sectMap[ ".myL2" ] = "L2SRAM";

/* Create .myMSMC section mapped on MSMC */

Program.sectMap[ ".myMSMC" ] = "MSMCSRAM";

3. Use of scratchpad buffers in the code. In our gemm implementation, we guide the compiler
to allocate memory for packed buffers into the desired memory section, by using pragma

directives in the code. With the previous definitions, it is possible to allocate static arrays
(pL1, pL2 and pMSMC) in different levels of the hierarchy:

/* L1 allocation */

#pragma DATA_SECTION( pL1, ".myL1" );

float pL1[ L1_SIZE ];

/* L2 allocation */

#pragma DATA_SECTION( pL2, ".myL2" );

float pL2[ L2_SIZE ];

/* MSMC allocation */

#pragma DATA_SECTION( pMSMC, ".myMSMC" );

float pMSMC[ MSMC_SIZE ];

With these considerations, the implementation of gemm for the DSP follows the same se-
quence of outer panel-panel and inner block-panel multiplications described for the Goto ap-
proach, using each buffer to allocate the corresponding sub-blocks of A and B.

Most of the effort when developing a new gemm implementation using this methodology
resides in two basic building blocks: the inner kernel and the packing routines. In fact, many of
the particularities of the architecture can be hidden in these two routines, maintaining a common
higher-level infrastructure. We focus next on the particularities of the TI DSP architecture for
the implementation of the inner kernel and packing routines.

3.2.2 Optimizing the inner GEBP kernel

The implementation of the gebp kernel is key to the final performance of the gepp implementa-
tion, and it is usually there where specific optimizations are applied for each architecture. Our
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Figure 3: Inner kernel gebp implementation proceeds by partitioning Â and B̂ into panels of rows
and columns, respectively (top). Each 4 × bk by bk × 8 update is performed in the L1 cache as a
sequence of highly tuned 4× 1 by 1× 8 rank-1 updates (bottom).

implementation partitions both the block, Â, and the panel, B̂, into smaller sub-blocks of rows
and panels, respectively, as shown in Figure 3.

The computation of a new panel of columns of C is divided into a sequence multiplications
involving a few rows of Â (stored in L2 cache) and the current block of columns from panel B̂
(B̂j , stored in L1 cache). This preliminary work computes with four rows of Ai,p (four columns

of Â) at a time, multiplying a block B̂j with 8 columns. This appears to balance the number
of required registers and available parallelism. Before the computation, we prefetch the small
sub-block of Â into the L1 cache, so the deepest level of the overall computation is effectively
performed using exclusively data that reside in L1.

The design of the inner kernel implements techniques that exploit many of the particular
features of the C66x core to attain high efficiency. Figure 5 shows an actual code extract from
the kernel used in our implementation; the kernel proceeds by iterating in the k dimension and
performing a rank-1 update at each iteration to update a part of the result matrix C.

The maximum GFLOPS rate offered by the C66x core is attained by the use of vector
datatypes and instructions in the inner kernel. The code in Figure 5 illustrates some of the
vector datatypes available applied to the calculation of each rank-1 update. x128 t is a
container type for storing 128-bits of data and its use is necessary when performing certain
SIMD operations. When the compiler puts a x128 t object in the register file, the x128 t

object takes four registers (a register quad). Similarly, the float2 t container type is used to
store two floats. This object are filled and manipulated using specific intrinsics.

The SIMD capabilities of the architecture can be exploited in our code by two different
vector intrinsics operating on floating-point data, CMPYSP and DAADDSP to perform floating-point
multipication and addition, respectively:

Multiplication : The C66x core can perform eight single-precision multiplications per cycle:
CMPYSP instruction can calculate four pairs of single-precision multiplies per .M unit per
cycle. Perform the multiply operations for a complex multiply of two complex numbers a
and b. Both sources are in 64-bit format. The result is in 128-bit format and contains the
following results:

c3 = a[1] ∗ b[1]; c2 = a[1] ∗ b[0];

c1 = −a[0] ∗ b[0]; c0 = a[0] ∗ b[1];

The CMPYSP instruction was actually designed for intermediate step in complex multipli-
cation which gives it the negative sign for one of the multiplications.

Addition/substraction : The C66x core can perform eight single-precision addition/subtrac-
tion per cycle: DADDSP and DSUBSP can add/sub 2 floats and they can be executed on both
.L and .S units.

Each rank-1 update proceeds by loading the corresponding elements of Â and B̂ into registers,
and accumulating the results of each intermediate SIMD multiplication in the corresponding
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Figure 4: Basic rank-1 update in the computation of gebp using SIMD instructions (cmpysp).

accumulators that will then be used to update the corresponding entries of matrix C (the
update of C is not shown in the code sample), following the schema in Figure 4. The usage of
a register pair to reference elements of Â and the volatile definition of these pointers forces
the compiler to use load instructions for both registers, and thus make full use of the .D units.
In summary, each iteration executes 8 lddw (double load), 8 cmpysp (2x2 outer product), and 8
daddsp (double add), and uses 32 registers to store the corresponding entries of C. Four cycles
per loop iteration are required, for a total of 16 FLOPS/cycle, and a full occupation of units
during the kernel execution.

3.2.3 Overlapping communication and computation. Memory requirements,
DMA and packing

The DMA support in the TI DSP allows us to hide the overhead introduced by data move-
ment between memory spaces by overlapping communication and computation. Our approach
proceeds as described in Figure 6(a), which illustrates a gepp (the multiplication of a panel of
columns of Ap by a panel of rows of Bp) that initially reside in DDR memory and are stored in
column-major order. As previously described, this panel-panel multiplication proceeds by di-
viding Ap into blocks A0,p, A1,p, . . . , AM−1,p, iteratively performing block-panel multiplications
of Ai,p by the panel Bp.

In order to overlap computation and communication between memory layers, we use double-
buffering and we take benefit of the whole memory hierarchy as illustrated in Figure 6(a). We
create scratchpad buffers in the three cache levels, that will host sub-blocks of A and B:

L1 cache. A buffer will host a packed subblock of the panel B̂ with dimensions bk×8, necessary
as part of the block-panel multiplication. Successive sub-blocks of the panel B̂ are streamed
to L1 to complete the block-panel multiplication.

L2 cache. A buffer will allocate the complete packed block Â with dimensions bm × bk, during
the complete computation of the block-panel multiplication.

MSMC SRAM. We create three different buffers that will be used to receive unpacked data
from DDR RAM through DMA transfers. The first one, with dimensions bm × bk, will
receive the unpacked block of Ai+1,p from DDR. The other two, with dimensions bn × bk,

will host sub-panels of the panel B̂, and and will allow the overlap of communication and
computation in the block-panel multiply.

The final goal of our algorithm is to multiply Â, residing in L2 cache memory, by a small
packed block of B̂ that resides in L1. In the first step of a panel-panel multiply, the algorithm
starts two DMA transfers of the block A0,p and the first sub-panel of B to the corresponding
locations in MSMC SRAM. Upon the completion of the transfer, A0,p is packed and stored in
the corresponding L2 buffer, and the corresponding buffer in MSMC SRAM becomes empty
and ready to receive A1,p. At this point, the communication of A1,p, necessary for the next

block-panel multiplication and the next columns of B̂, necessary for the current block-panel
multiplication, to MSMC SRAM are started. These two transfers and the multiplication occur
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void sgemmKernel(const float *pA, const float *pB, float *pC,

const float a, const int k, const int stepC)

{

__float2_t sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7;

__float2_t sum8, sum9, suma, sumb, sumc, sumd, sume, sumf;

__float2_t * restrict ptrB = (__float2_t *) pB;

// Twin addresses defined volatile so the compiler

// use load instructions for both registers;

// Otherwise, it optimizes out one address thereby reducing

// the usage of D units at the expense of an LS unit;

volatile __float2_t * restrict ptrA = (__float2_t *) pA;

volatile __float2_t * restrict ptrATwin = (__float2_t *) pA;

sum0 = 0.0; sum1 = 0.0; ... sumf = 0.0; sumf = 0.0;

for (index = 0; index < k; index++)

{ // Loop over k; Each iteration performs rank one update

__float2_t b01, b23, b45, b67, a01, a23, a01Twin, a23Twin;

__x128_t reg128;

a01 = *ptrA++; a23 = *ptrA++;

// compiler is using LS units to create a twin register

// D units are available;

// force a load (that is, a D unit) to use twin register;

a01Twin = *ptrATwin++; a23Twin = *ptrATwin++;

b01 = *ptrB++; b23 = *ptrB++; b45 = *ptrB++; b67 = *ptrB++;

reg128 = _cmpysp(b01, a01);

// Accumulate b[0]*a[1] and -b[0]*a[0]

sum0 = _daddsp(sum0, _lof2_128(reg128));

// Accumulate b[1]*a[0] and b[1]*a[1]

sum1 = _daddsp(sum1, _hif2_128(reg128));

reg128 = _cmpysp(b23, a01);

// Accumulate b[2]*a[1] and -b[2]*a[0]

sum2 = _daddsp(sum2, _lof2_128(reg128));

// Accumulate b[3]*a[0] and b[3]*a[1]

sum3 = _daddsp(sum3, _hif2_128(reg128));

reg128 = _cmpysp(b45, a01Twin);

// Accumulate b[4]*a[1] and -b[4]*a[0]

sum4 = _daddsp(sum4, _lof2_128(reg128));

// Accumulate b[5]*a[0] and b[5]*a[1]

sum5 = _daddsp(sum5, _hif2_128(reg128));

reg128 = _cmpysp(b67, a01Twin);

// Accumulate b[6]*a[1] and -b[6]*a[0]

sum6 = _daddsp(sum6, _lof2_128(reg128));

// Accumulate b[7]*a[0] and b[7]*a[1]

sum7 = _daddsp(sum7, _hif2_128(reg128));

// Proceed similarly with a23 and a23Twin

// to get sum0...sumf

...

}

// Copy accumulators to output matrix

...

}

Figure 5: Code for the inner kernel used in GEBP.
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Figure 6: (a) Illustration of the overlapping of DMA transfers to on-chip memories and actual
computation in an iteration of a gepp operation. Blocks in blue indicate pending DMA transfer.
Blocks in green indicate packed buffers. Blocks in red indicate actual computation. (b) Packing
(and transposing if necessary) of sub-matrices of A and B.

simultaneously. The multiplication of Â by a sub-panel of B, with Â packed in L2 cache and the
sub-panel of B unpacked in MSMC SRAM, proceeds by sequentially streaming small sub-blocks
of B to the buffer in L1 cache, packing the sub-block in the format required by the inner kernel.
Once both a block of A and the small sub-block of B (both packed) reside in L2 and L1 cache,
respectively, the inner kernel proceeds as described in the previous section. The packing pattern
of blocks of A and B is illustrated in Figure 6(b) and performed by the CPU (not using the
DMA engine).

4 Multi-core DSP programming

Developing a multi-threaded BLAS implementation is one approach to build efficient multi-
threaded higher level dense linear algebra libraries. We propose two different approaches to
extract parallelism and build efficient multi-threaded libraries for dense linear algebra on the
DSP. The first one aims at manually developing multi-threaded codes for each particular BLAS
operation. The second one is based on a runtime system, SuperMatrix, that automatically
extracts task parallelism and only requires a sequential BLAS implementation to build multi-
threaded codes.

4.1 Explicit multi-threaded gemm

In this first multi-threaded implementation, each thread updates a panel of rows of matrix C.
Thus, each thread multiplies a panel of rows of A by the whole matrix B. Each local computation
follows the same approach as that illustrated for one core. From the point of view of memory,
we replicate the buffer structure allocated in MSMC memory, as each thread packs its own block
of Ap and panel of Bp independently. L1 and L2 buffers are local to each core and thus do not
have to be replicated. DMA mechanisms are still in place, using different DMA resources for
each core, and thus overlapping communication and calculation at core level. As each thread
operates on different blocks of C, no cache coherency concerns apply, besides a final flush (write
back) of data from local caches to DDR RAM.

A more scalable approach [11], which also avoids some duplicate packing of data in B, is
beyond the scope of this initial study.
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4.2 Runtime-based BLAS

Task parallelism has demonstrated its suitability for extracting parallelism for multi-threaded
dense linear algebra libraries [14, 1] or other types of codes [13] and architectures. We com-
bine several related concepts to automatically extract parallelism and effectively parallelize
sequential codes. First, we store matrices by blocks, instead of using a column-wise or row-wise
storage scheme; we consider a block as the basic unit of data. Second, we derive and implement
algorithms-by-blocks. An algorithm-by-blocks executes a sequential algorithm on blocks, being a
single operation with a block the basic unit of computation. The algorithm evolves by perform-
ing smaller sub-problems on sub-matrices (blocks) of the original matrix. Third, we consider
the data dependencies between tasks to automatically keep track of ready tasks and map them
to available execution resources, much in the line of a superscalar processor.

The libflame library integrates a mechanism, called SuperMatrix, that leverages algorithms-
by-blocks to automatically parallelize sequential codes and schedule sub-operations (or tasks)
to a multi-threaded architecture. This runtime system operates by extracting and maintaining
a directed acyclic graph (DAG) of tasks, that includes information about tasks that compose
a dense linear algebra operation and data dependencies between them. At runtime, only when
a task sees all its input data dependencies satisfied, can be scheduled for execution to a free
computational unit. After the execution of a task, the coresponding dependency information
is updated in the DAG if necessary, releasing new tasks that become ready for execution. The
existence of a set of worker threads waiting for ready tasks makes it possible to execute many
data-independent tasks in parallel, and thus to exploit the inherent task parallelism in a given
dense linear algebra algorithm. What is more important, this parallelization is carried out
without any changes in the existing sequential algorithm-by-blocks. Besides performance, the
main advantage of this approach is programmability, as existing, thoroughly tested sequential
codes are automatically mapped to multi-threaded architectures.

We note that PLASMA [1] provides a similar runtime system which, more recently, includes
the kind of out-of-order scheduling that SuperMatrix has supported since its inception.

4.3 Previous SuperMatrix implementations

The SuperMatrix runtime was originally designed and developed for SMP architectures, using
OpenMP or pthreads as the underlying thread support [3]. In the original design, a pool of
threads maintains a common list of ready tasks in a producer-consumer fashion, executing tasks
as they become ready. Work-stealing, data-affinity and cache-affinity techniques have been
developed to increase both load balancing and data locality, with excellent performance and
scalability [2].

Flexibility yields in the heart of the libflame library in general, and the SuperMatrix run-
time in particular. The full funcionality of the library has been successfully ported to a wide
variety of commercial or experimental architectures. They include the Intel SCC experimental
platform, with 48 x86 cores, or platforms with multiple Nvidia GPUs [14, 9]. In this accelerator-
based architecture, we deploy as many host threads (running on the host, or CPU) as accelerators
exist in the system, and consider each accelerator as a unique computation unit. Thus, each
time a task eligible for execution on the accelerator is found, necessary input data is transferred
to the corresponding memory space (usually through the PCIe bus), the task is executed on the
corresponding accelerator using an optimized parallel library (in the case of Nvidia, invoking
CUBLAS kernels), and data is retreived back to host memory as necessary, where the hybrid ex-
ecution continues. libflame was the first dense linear algebra library to port all its functionality
to systems with multiple GPUs.
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4.4 Retargeting SuperMatrix to multi-core DSPs

Although an accelerator-based implementation as that developed for multi-GPU architectures
will be possible for future systems with multiple DSPs attached to a host system through the
PCIe bus, we advocate here for an alternative implementation in which the whole runtime is
running inside the DSP cores, without a host. This way, the DSP architecture and runtime
system acts as a fully standalone linear-algebra embedded system, exploiting all the benefits of
this type of hardware from the point of view of the ubiquity and power efficiency.

The main problem when porting the SuperMatrix runtime to the multi-core DSP is the
lack of hardware support for cache coherency between caches from different cores. While cache
coherency has been managed by software in other SuperMatrix implementations [4], the total
absence of cache coherency in the TI DSP adds a new burden considering the whole runtime
logic is run in the DSP, without a cache-coherent host attached to it. As a result, in the OpenMP
implementation provided by TI, the user is in charge of managing coherence of shared data.

We can define two different types of shared data in the internals of libflame: control data
(lists of pending and ready tasks, dependency information, etc.) and matrix data (the actual
matrix data). The dynamic nature of the runtime system makes it necessary to heavily use
dynamic memory allocation for these types of data structures. While matrix data coherency
can be managed by software in a relatively easy way, the complexity of handling control data
coherency becomes a real burden and translates into a dramatic increase in the complexity of
SuperMatrix internals.

The TI software stack provides an elegant and flexible workaround for this problem: as we
show with statically allocated arrays, it is also possible to define different heaps to store dy-
namically allocated memory, and to map these heaps to different memory sections. In addition,
mechanisms for enabling or disabling caching on given memory pages allow us to create heaps
in cached or non-cached memory. Following the workflow illustrated for a single core:

1. Definition of the architecture. In this case, we create two different memory sections in
our architecture, both mapped on physical DDR3 memory, with names DDR3 NOCACHE and
DDR3, to allocate the uncached and cached heaps, respectively.

2. Linker configuration. Consider the following extract of configuration file:

/* Create a Default Heap on MSMCSRAM. */

BIOS.heapSize = 0x40000;

BIOS.heapSection = "systemHeap";

Program.sectMap["systemHeap"] = "MSMCSRAM";

/* Create a Non-cached Heap on DDR3. */

var UnCached = new HeapMem.Params();

UnCached.size = 0x1000000;

UnCached.sectionName = "UnCached_heap";

Program.global.UnCached_heap = HeapMem.create(UnCached);

Program.sectMap["UnCached_heap"] = "DDR3_NOCACHE";

/* Create a Cached Heap on DDR3. */

var Cached = new HeapMem.Params();

Cached.size = 0x10000000;

Cached.sectionName = "Cached_heap";

Program.global.Cached_heap = HeapMem.create(Cached);

Program.sectMap["Cached_heap"] = "DDR3";

/* Set DDR uncached section */

Cache.setMarMeta(0x80000000, 0x8000000, 0);

With this configuration, we define three different heaps, each one with its own properties:
in the default heap, with a size of 256 Kb, will be allocated that memory reserved with
classic malloc calls. The second and third ones are special heaps, and must be managed
through special routines provided the TI software stack that allow the management of
dynamic memory on specific heaps. We define two different ad-hoc heaps with 16 Mb
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and 256 Mb, respectively, and map them to the memory sections named as DDR3 NOCACHE

and DDR CACHE. If we consider that the section named as DDR3 NOCACHE starts at adress
0x8000000, the instruction Cache.setMarMeta disables the cacheability of the memory
pages comprised in its address range. Proceeding this way, we have defined a heap mapped
on DDR3 memory whose memory transactions bypass the cache subsystem, and thus cache
coherency does not become a problem.

3. Code. With this configuration, the modifications in the runtime code are limited to the
memory management module in libflame. We provide routines for allocating/deallocating
memory from different heaps depending on the type of data we are managing (non-cached
control data, or cached matrix data).

To avoid the performance penalty due to the use of non-cached DDR memory, in practice we
map the non-cached heap to MSMC on-chip memory instead of DDR3. Thus, the SuperMatrix
runtime allocates control data in non-cached fast on-chip memory (MSMC), and matrix data in
cached slow memory (DDR).

Proceeding this way, the runtime system only deals with cache coherency issues related to
matrix data. Consider the usual runtime operation. Whenever a new ready task is extracted
from the DAG, the corresponding kernel is assigned to a worker thread and executed in the
corresponding core (e.g. in the case of a gemm task, the optimized kernel described in Section 3
is executed). Upon the execution of the task, the runtime system must invalidate the copies of
input matrix blocks that would remain in cache (blocks of A and B in the case of gemm), and
write-back and invalidate the copies of output matrices that have just been written (blocks of
C in the case of gemm). Proceeding this way, future tasks working on the same blocks on the
same or a different core will always encounter consistent versions of the corresponding operands.

With only these considerations, not only gemm but the full functionality of libflame has
been ported to the multi-core TI DSP without major code changes. This includes algorithms-by-
blocks and different algorithmic variants for Level-3 BLAS and LAPACK functionality (Cholesky,
LU factorization with incremental pivoting, QR factorization, Eigenvalue problems, . . . ) [9].
What is more important, the usage of a DSP is transparent both the library developer of new
linear algebra routines and the user codes that make use of them. The full benefits of this full
functionality will not be reaped until more single-core BLAS functionality is available.

This design permits the utilization of the C6678 DSP as a purely standalone system, without
the need of an external host orchestrating the parallel execution. The benefits are clear: lower
acquisition cost, lower power consumption, the possibility of running HPC applications on fully
embedded architectures, no data transfer penalties, and code reutilization from existing SMP
software solutions. However, if an acclerator-based system like for multi-GPU architectures is
desired, the SuperMatrix runtime supports that also fully by implementing the same software
architecture as for multi-accelerator systems.

5 Experimental results

We now report on the performance of the described initial effort.

5.1 Hardware setup

All the experimental evaluation was carried out using a TMDXEVM6678LE evaluation module
(EVM). This EVM includes an on-board C6678 processor running at 1 GHz, equipped with 512
MB of DDR3 RAM memory. To improve the programming productivity and reduce the devel-
opment time, we employed a XDS560V2 emulation board, which greatly reduces the time for
loading code. On the software side, Code Composer Studio version 5.1 was used. This includes
SYS/BIOS version 6.32 as the RTOS operating system, Code Generation Tools version 7.3.0
(C/C++ compiler), MCSDK version 2.1, and TI’s prototype implementation of the OpenMP
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Figure 7: Matrix-matrix multiplication performance on one C66x core for square matrices.

runtime in an internal pre-release version. We used single precision in all our experiments.
Peak for double precision computation on the current architecture is roughly 1/4 that of single
precision computation. It is expected that a future version of this architecture will deliver peak
double precision performance that is half that of single precision performance.

5.2 GEMM performance on one core

Figure 7 reports the performance attained by our optimized gemm implementation on one C66x
core. Results are reported for square matrices in terms of GFLOPS. The y-axis is adjusted so
that the top of the graph represents the theoretical peak performance of one C66x core (16
GFLOPS). We show the performance for C = AB (NN), C = ABT (NT), C = ATBT (TT),
and C = ATB (TN). The maximum performance attained is 9.84 GFLOPs, for the case in which
both A and B are not transposed. The slightly lower performance for the other cases is mainly
due to different packing procedures depending on the exact layout of the original matrices in
DDR3 memory. These numbers suggest an actual utilization of the core of around a 61%, much
in line of modern, tuned BLAS implementations for GPUs, although still far from the 95+%
attained by general-purpose CPUs. Asymptotic performance is attained for relatively small
matrices (around n = 512).

Four sources of inefficiency exists in our inner kernel code, many of them directly related to
architectural issues:

• L1 cache bank conflicts occur at every iteration in our main kernel. An increase in the
amount of L1 cache banks would reduce this issue.

• Loop overhead and load of C to memory: we have observed some corner cases where the
cache for matrix C evicts the cache for the stack. Looping over larger panel would help,
but this is directly limited by the amount of L1 memory.
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• Cache misses occur at the loading stage of each panel of A into cache memory which
happens for every gebp kernel call.

• Additional cache misses also occur related to data movement between memory layers. The
number of misses is directly dependent on the specific sgemm case and data size, and it
is directly related to the size of L2 and MSMC memory.

Further refinement of the described techniques may overcome some or all of these inefficien-
cies.

5.3 GEMM performance on multiple cores

Figure 8 reports the multi-core performance results attained by our two alternative multi-
threaded implementations of gemm. On the left, we show the performance attained by a
manually parallelized OpenMP code. On the right, we show the performance attained by our
SuperMatrix port. Both plots are adjusted to the theoretical peak performance of gemm on
8 cores based on the single-core implementation. Results are given in terms of GFLOPS for
an increasing number of cores (from 1 to 8), for the gemm case in which both A and B are
square matrices and are not transposed. For the SuperMatrix evaluation, we have carried out a
thorough evaluation of performance varying the block size used by the algorithm-by-blocks. In
the figure, we only report performance for the optimal one.

The usage of MSMC memory to store the runtime control data limits the amount of on-
chip memory that can be effectively used as part of the inner kernel. While in the manually
parallelized implementation all MSMC memory can be devoted to actual computation data, in
the runtime-based implementation this amount of memory must be reduced to allow the runtime
logic to fit in on-chip memory. This fact limits the performance of the inner kernel and, thus,
the overall performance of the parallel implementation. As a reference, in Figure 8 we add the
performance of the manually parallelized gemm on 8 cores using the exact kernel and memory
setup as utilized in the runtime-based implementation, labelled as 8c - Manual.

Peak performance on 8 cores is 74.4 GFLOPS considering the manually parallelized gemm.
For this implementation, the attained speedups for the largest tested matrices are 1.99, 3.93, and
7.59 for 2, 4, and 8 cores compared with the optimal sequential implementation, respectively;
for the runtime-based gemm, the attained speedups for the largest tested matrices are 1.92,
3.82, and 7.25. These results demonstrate the scalability of both software solutions towards
multi-threaded dense linear algebra implementations on the multi-core DSP. The differences in
raw performance between both approaches are justified by the different memory setups used
for each implementation. The overhead of using a runtime system orchestrating the automatic
parallelization can be observed for relatively small matrices, for which the manual approach
is clearly more efficient. For larger matrix sizes, the runtime system is fairly competitive and
achieves similar peak performance.

5.4 Power efficiency

Table 9 reports a summary of the power efficiency of common current HPC architectures, both
of general purpose (Intel multi-core) or specific purpose (Nvidia GPUs, Cell B.E. or FPGAs) in
terms of GFLOPS/Watt. We take the maximum performance for single precision gemm found
in the literature for each architecture as a reference as reported in [12]. In the case of the DSP,
we report numbers for our best parallel implementation, and consider the peak performance of
the architecture as 128 GFLOPS to obtain the utilization ratio.

With these results, the TI DSP exhibits the best GFLOPS/Watt ratio considering our im-
plementation of sgemm, improving that attained by the last generation of Nvidia GPUs, Intel
multi-cores and even FPGAs. Moreover, many of the architectures listed in the table are merely
hardware accelerators, hence they need additional hardware support to work as a functional
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Architecture GFLOPS GFLOPS
W Utilization

Core i7-960 96 1.14 95%
Nvidia GTX280 410 2.6 66%
Cell 200 5.0 88%
Nvidia GTX480 940 5.4 70%
Stratix IV 200 7 90+%
TI C66x DSP 74 7.4 57%

Figure 9: Performance of commercial HPC architectures running SGEMM. Source: [12]

system. Our DSP-based implementation is a purely standalone system, with no need of an
external host and therefore with no extra power requirements.

6 Conclusions

We have introduced the new TI C66x multi-core DSP as a novel architecture that perfectly
fits the necessities of today’s HPC. We have seen the strengths (common programming models
for sequential and parallel codes, control over memory allocations, flexibility of the architec-
ture, powerful compiler, . . . ) and weaknesses (lack of cache coherency between cores) of the
architecture. We have demonstrated how it can be efficently and easily programmed rescuing
successful ideas from general-purpose CPUs in the dense linear algebra arena, and illustrated
some common optimization techniques with actual pieces of code.

We have described an efficient implementation of gemm on one DSP core and two different
strategies for exploiting the multiple cores in the DSP. The runtime-based option allows an
easy adaptation of existing algorithms-by-blocks to this novel parallel architecture. As far as
we know, this is the first runtime system aiming at automatically parallelize sequential codes
fully ported to a DSP. Performance results are excellent, as is scalability and power efficiency.
This makes the TI DSP one of the most efficient current solutions, beating even the excellent
GFLOPS/Watt ratio of modern Nvidia Fermi GPUs.
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