
Anatomy of High-Performance Matrix
Multiplication

KAZUSHIGE GOTO

The University of Texas at Austin

and

ROBERT A. VAN DE GEIJN

The University of Texas at Austin

We present the basic principles which underlie the high-performance implementation of the matrix-
matrix multiplication that is part of the widely used GotoBLAS library. Design decisions are
justified by successively refining a model of architectures with multilevel memories. A simple but
effective algorithm for executing this operation results. Implementations on a broad selection of
architectures are shown to achieve excellent performance.

Categories and Subject Descriptors: G.4 [Mathematical Software]: —Efficiency

General Terms: Algorithms;Performance

Additional Key Words and Phrases: linear algebra, matrix multiplication, basic linear algebra
subprogrms

1. INTRODUCTION

Implementing matrix multiplication so that near-optimal performance is attained
requires a thorough understanding of how the operation must be layered at the
macro level in combination with careful engineering of high-performance kernels at
the micro level. This paper primarily addresses the macro issues, while a companion
paper will address the micro issues [Goto and Gunnels].

In [Gunnels et al. 2001] a layered approach to the implementation of matrix
multiplication was reported. The approach was shown to optimally amortize the
required movement of data between two adjacent memory layers of an architecture
with a complex multi-level memory. Like other work in the area [Agarwal et al.
1994; Whaley et al. 2001], that paper ([Gunnels et al. 2001]) casts computation in
terms of an “inner-kernel” that computes C := ÃB + C for some mc × kc matrix
Ã that is stored contiguously in some packed format and fits in cache memory.
Unfortunately, the model for the memory hierarchy that was used is unrealistic in
at least two ways:

Authors’ addresses: Kazushige Goto, Texas Advanced Computing Center, The University of Texas
at Austin, Austin, TX 78712, kgoto@tacc.utexas.edu. Robert A. van de Geijn, Department of
Computer Sciences, The University of Texas at Austin, Austin, TX 78712, rvdg@cs.utexas.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–24.

2 · Kazushige Goto and Robert A. van de Geijn

—It assumes that this inner-kernel computes with a matrix Ã that resides in the
level-1 (L1) cache.

—It ignores issues related to the Translation Look-aside Buffer (TLB).

The current paper expands upon a related technical report [Goto and van de Geijn
2002] which makes the observations that

—The ratio between the rate at which floating point operations (flops) can be
performed by the floating point unit(s) and the rate at which floating point
numbers can be streamed from the level-2 (L2) cache to registers is typically
relatively small. This means that matrix Ã can be streamed from the L2 cache.

—It is often the amount of data that can be addressed by the TLB that is the
limiting factor for the size of Ã. (Similar TLB issues were discussed in [Strazdins
1998].)

In addition, we now observe that

—There are in fact six inner-kernels that should be considered for building blocks for
high-performance matrix multiplication. One of these is argued to be inherently
superior over the others. (In [Gunnels et al. 2001; Gunnels et al. 2005] three of
these six kernels were identified.)

Careful consideration of all these observations underlie the implementation of the
dgemm Basic Linear Algebra Subprograms (BLAS) routine that is part of the
widely used GotoBLAS library [Goto 2005].

This paper attempts to describe the issues at a high level so as to make it ac-
cessible to a broad audience. Low level issues are introduced only as needed. In
Section 2 we introduce notation that is used throughout the remainder of the pa-
per. In Section 3 a layered approach to implementing matrix multiplication is
introduced. High-performance implementation of the inner-kernels is discussed in
Section 4. Practical algorithms for the most commonly encountered cases of matrix
multiplication are given in Section 5. In Section 6 we give further details that are
used in practice to determine parameters that must be tuned in order to optimize
performance. Performance results attained with highly tuned implementations on
various architectures are given in Section 7. Concluding comments can be found in
the final section.

2. NOTATION

The partitioning of matrices is fundamental to the description of matrix multipli-
cation algorithms. Given an m × n matrix X, we will only consider partitionings
of X into blocks of columns and blocks of rows:

X =
(

X0 X1 · · · XN−1

)
=

X̌0

X̌1

...
X̌M−1

 ,

where Xj has nb columns and X̌i has mb rows (except for XN−1 and X̌M−1, which
may have fewer columns and rows, respectively).
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 3

m n k Illustration Label

large large large

:= +

gemm

large large small

:= +

gepp

large small large

:= +

gemp

small large large

:= +

gepm

small large small

:= +

gebp

large small small

:= +

gepb

Fig. 1. Special shapes of gemm.

Letter Shape Description

m Matrix Both dimensions are large or unknown.

p Panel One of the dimensions is small.

b Block Both dimensions are small.

Fig. 2. The labels in Fig. 1 have the form gexy where the letters chosen for x and y indicate the
shapes of matrices A and B, respectively, according to the above table.

The implementations of matrix multiplication will be composed from multipli-
cations with submatrices. We have given these computations special names, as
tabulated in Figs. 1 and 2.

3. A LAYERED APPROACH TO GEMM

In Fig. 3 we show how gemm can be decomposed systematically into the special
cases that were tabulated in Fig. 1. The general gemm can be decomposed into
multiple calls to gepp, gemp, or gepm. These themselves can be decomposed into
multiple calls to gebp, gepb, or gepdot kernels. The idea now is that if these
three lowest level kernels attain high performance, then so will the other cases of
gemm.

Remark 3.1. A theory that supports an optimality claim regarding the general
approach mentioned in this section can be found in [Gunnels et al. 2001].

4. HIGH-PERFORMANCE GEBP, GEPB, AND GEPDOT

We now discuss techniques for the high-performance implementation of gebp,
gepb, and gepdot. We do so by first analyzing the cost of moving data be-
tween memory layers with an admittedly naive model of the memory hierarchy. In

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · Kazushige Goto and Robert A. van de Geijn

+
:=

¤¤¤¤¤¤¤¤¤¤¤º

-
C C C C C C C C C C CW

g
e
m
m

v
a
r
1

+
:=

¡
¡µ

@
@R

g
e
p
p

v
a
r
1

+
:=

-

g
e
b
p

+
:=

g
e
p
p

v
a
r
2

+
:=

-

g
e
p
b

+
:=

g
e
m
m

v
a
r
2

+
:=

¡
¡µ

@
@R

g
e
m
p

v
a
r
1

+
:=

-

g
e
p
b

+
:=

g
e
m
p

v
a
r
2

+
:=

-

g
e
p
d
o
t

+
:=

g
e
m
m

v
a
r
3

+
:=

¡
¡µ

@
@R

g
e
p
m

v
a
r
2

+
:=

-

g
e
p
d
o
t

+
:=

g
e
p
m

v
a
r
1

+
:=

-

g
e
b
p

+
:=

Fig. 7Fig. 9Fig. 8Fig. 6

Fig. 3. Layered approach to implementing gemm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 5

fast

slow
?

6

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

A
A

A
Aregisters

Cache

RAM

expensive

cheap
?

6

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

A
A

A
Aregisters

L1 cache

TLB addr.

L2 cache
...

RAM

disk

Simple Model Refined Model

Fig. 4. The hierarchical memories viewed as a pyramid.

Algorithm: C := gebp(A, B, C)

+:=

nrkc

mc

Load A into cache (mckc memops)
for j = 0, . . . , N − 1

Load Bj into cache (kcnr memops)
Load Cj into cache (mcnr memops)

+:=
(Cj := ABj + Cj)

Store Cj into memory (mcnr memops)
endfor

Fig. 5. Basic implementation of gebp.

Section 4.2 we add more practical details to the model. This then sets the stage
for algorithms for gepp, gemp, and gepm in Section 5.

4.1 Basics

In Fig. 4(left) we depict a very simple model of a multi-level memory. One layer
of cache memory is inserted between the Random-Access Memory (RAM) and the
registers. The top-level issues related to the high-performance implementation of
gebp, gepb, and gepdot can be described using this simplified architecture.

Let us first concentrate on gebp with A ∈ Rmc×kc , B ∈ Rkc×n, and C ∈ Rmc×n.
Partition

B =
(

B0 B1 · · · BN−1

)
and C =

(
C0 C1 · · · CN−1

)

and assume that

Assumption (a). The dimensions mc, kc are small enough so that A and nr

columns from each of B and C (Bj and Cj , respectively) together fit in the cache.

Assumption (b). If A, Cj , and Bj are in the cache then Cj := ABj + Cj can be
computed at the peak rate of the CPU.

Assumption (c). If A is in the cache it remains there until no longer needed.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · Kazushige Goto and Robert A. van de Geijn

Under these assumptions, the approach to gebp in Figure 5 amortizes the cost
of moving data between the main memory and the cache as follows. The total cost
of updating C is mckc + (2mc + kc)n memops for 2mckcn flops. Then the ratio
between computation and data movement is

2mckcn

mckc + (2mc + kc)n
flops

memops
≈ 2mckcn

(2mc + kc)n
flops

memops
when kc ¿ n. (1)

Thus
2mckc

(2mc + kc)
(2)

should be maximized under the constraint that mckc floating point numbers fill
most of the cache, under the constraints in Assumptions (a)–(c). In practice there
are other issues that influence the choice of kc, as we will see in Section 6.3. However,
the bottom line is that under the simplified assumptions A should occupy as much
of the cache as possible and should be roughly square1, while leaving room in the
cache for at least Bj and Cj . If mc = kc ≈ n/100 then even if memops are 10 times
slower than flops, the memops add only about 10% overhead to the computation.

We leave it to the reader to similarly analyze gepb and gepdot, keeping in mind
the following pictures:

gepb

+:=

gepdot

+:=

4.2 Refinements

In discussing practical considerations we will again focus on the high-performance
implementation of gebp.

Remark 4.1. Throughout the remainder of the paper, we will assume that ma-
trices are stored in column-major order.

4.2.1 Choosing the cache layer. A more accurate depiction of the memory hier-
archy can be found in Fig. 4(right). This picture recognizes that there are typically
multiple levels of cache memory.

The first question is in which layer of cache the mc × kc matrix A should reside.
Equation (2) tells us that (under Assumptions (a)–(c)) the larger mc×nc, the better
the cost of moving data between RAM and the cache is amortized over computation.
This suggests loading matrix A in the cache layer that is farthest from the registers
(can hold the most data) subject to the constraint that Assumptions (a)–(c) are
(roughly) met.

The L1 cache inherently has the property that if it were used for storing A, Bj

and Cj , then Assumptions (a)–(c) are met. However, the L1 cache tends to be very

1Note that optimizing the similar problem mckc/(2mc +2kc) under the constraint that mckc ≤ K
is the problem of maximizing the area of a rectangle while minimizing the perimeter, the solution
of which is mc = kc. We don’t give an exact solution to the stated problem since there are
practical issues that also influence mc and kc.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 7

small. Can A be stored in the L2 cache instead, allowing mc and kc to be much
larger? Let Rcomp and Rload equal the rate at which the CPU can perform floating
point operations and the rate at which floating point number can be streamed from
the L2 cache to the registers, respectively. Assume A resides in the L2 cache and Bj

and Cj reside in the L1 cache. Assume further that there is “sufficient bandwidth”
between the L1 cache and the registers, so that loading elements of Bj and Cj into
the registers is not an issue. Computing ABj +Cj requires 2mckcnr flops and mckc

elements of A to be loaded from the L2 cache to registers. To overlap the loading
of elements of A into the registers with computation 2nr/Rcomp ≥ 1/Rload must
hold, or

nr ≥ Rcomp

2Rload
. (3)

4.2.2 TLB considerations. A second architectural consideration relates to the
page management system. A typical modern architecture uses virtual memory so
that the size of usable memory is not constrained by the size of the physical memory.
Memory is partitioned into pages of some (often fixed) prescribed size. A table,
referred to as the page table maps virtual addresses to physical addresses and keeps
track of whether a page is in memory or on disk. The problem is that this table
itself could be large (many Mbytes) which hampers speedy translation of virtual
addresses to physical addresses. To overcome this, a smaller table, the Translation
Look-aside Buffer (TLB), that stores information about the most recently used
pages, is kept. Whenever a virtual address is found in the TLB, the translation is
fast. Whenever it is not found (a TLB miss occurs), the page table is consulted
and the resulting entry is moved from the page table to the TLB. In other words,
the TLB is a cache for the page table. More recently, a level 2 TLB has been
introduced into some architectures for reasons similar to those that motivated the
introduction of an L2 cache.

The most significant difference between a cache miss and a TLB miss is that a
cache miss does not necessarily stall the CPU. A small number of cache misses can
be tolerated by using algorithmic prefetching techniques as long as the data can be
read fast enough from the memory where it does exist and arrives at the CPU by
the time it is needed for computation. A TLB miss, by contrast, causes the CPU
to stall until the TLB has been updated with the new address. In other words,
prefetching can mask a cache miss but not a TLB miss.

The existence of the TLB means that additional assumptions must be met:

Assumption (d). The dimensions mc, kc are small enough so that A, nr columns
from B (Bj) and nr column from C (Cj) are simultaneously addressable by the
TLB so that during the computation Cj := ABj + Cj no TLB misses occur.

Assumption (e). If A is addressed by the TLB, it remains so until no longer
needed.

4.2.3 Packing. The fundamental problem now is that A is typically a submatrix
of a larger matrix, and therefore is not contiguous in memory. This in turn means
that addressing it requires many more than the minimal number of TLB entries.
The solution is to pack A in a contiguous work array, Ã. Parameters mc and kc

are then chosen so that Ã, Bj , and Cj all fit in the L2 cache and are addressable
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · Kazushige Goto and Robert A. van de Geijn

by the TLB.

Case 1: The TLB is the limiting factor. Let us assume that there are T TLB
entries available, and let TÃ, TBj

, and TCj
equal the number of TLB entries devoted

to Ã, Bj , and Cj , respectively. Then

TÃ + 2(TBj
+ TCj

) ≤ T.

The reason for the factor two is that when the next blocks of columns Bj+1 and
Cj+1 are first addressed, the TLB entries that address them should replace those
that were used for Bj and Cj . However, upon completion of Cj := ÃBj + Cj some
TLB entries related to Ã will be the least recently used, and will likely be replaced
by those that address Bj+1 and Cj+1. The factor two allows entries related to Bj

and Cj to coexist with those for Ã, Bj+1 and Cj+1 and by the time Bj+2 and Cj+2

are first addressed, it will be the entries related to Bj and Cj that will be least
recently used and therefore replaced.

The packing of A into Ã, if done carefully, needs not to create a substantial
overhead beyond what is already exposed from the loading of A into the L2 cache
and TLB. The reason is as follows: The packing can be arranged so that upon
completion Ã resides in the L2 cache and is addressed by the TLB, ready for
subsequent computation. The cost of accessing A to make this happen need not be
substantially greater than the cost of moving A into the L2 cache, which is what
would have been necessary even if A were not packed.

Operation gebp is executed in the context of gepp or gepm. In the former case,
the matrix B is reused for many separate gebp calls. This means it is typically
worthwhile to copy B into a contiguous work array, B̃, as well so that TB̃j

is reduced
when C := ÃB̃ + C is computed.

Case 2: The size of the L2 cache is the limiting factor. A similar argument can
be made for this case. Since the limiting factor is more typically the amount of
memory that the TLB can address (e.g., the TLB on a current generation Pentium4
can address about 256Kbytes while the L2 cache can hold 2Mbytes), we do not
elaborate on the details.

4.2.4 Accessing data contiguously. In order to move data most efficiently to the
registers, it is important to organize the computation so that, as much as practical,
data that is consecutive in memory is used in consecutive operations. One way to
accomplish this is to not just pack A into work array Ã, but to arrange it carefully.
We comment on this in Section 6.

Remark 4.2. From here on in this paper, “Pack A into Ã” and “C := ÃB+C”
will denote any packing that makes it possible to compute C := AB + C while
accessing the data consecutively, as much as needed. Similarly, “Pack B into B̃”
will denote a copying of B into a contiguous format.

4.2.5 Implementation of gepb and gepdot. We leave it to the reader to simi-
larly analyze gepb and gepdot at this level of detail.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 9

Algorithm: C := gepp blk var1(A, B, C) Algorithm: C := gebp opt1(A, B, C)

Č0

Č1
.
.
.

+:=

Ǎ0

Ǎ1
.
.
.

B
+:=

Assumption: B “packed” in memory.

Pack B into B̃
for i = 0, . . . , M − 1

Či +:= Ǎi B̃ (gebp opt1)

endfor

Pack and transpose A into Ã
for j = 0, . . . , N − 1

:=
(Caux := ÃBj)

Unpack Cj := Cj + Caux

endfor

Fig. 6. Optimized implementation of gepp (left) via calls to gebp opt1 (right).

5. PRACTICAL ALGORITHMS

Having analyzed the approaches at a relatively coarse level of detail, we now dis-
cuss practical algorithms for all six options in Fig. 3 while exposing additional
architectural considerations.

5.1 Implementing gepp with gebp

The observations in Sections 4.2.1–4.2.4 are now summarized for the implemen-
tations of gepp in terms of gebp in Fig. 6. The packing and computation are
arranged to maximize the size of Ã: by packing B into B̃ in gepp var1, Bj typi-
cally requires only one TLB entry. A second TLB entry is needed to bring in Bj+1.
The use of Caux means that only one TLB entry is needed for that buffer, as well
as up to nr TLB entries for Cj (nr if the leading dimension of Cj is large). Thus,
TÃ is bounded by T − (nr + 3). The fact that Cj is not contiguous in memory is
not much of a concern, since that data is not reused as part of the computation of
the gepp operation.

Once B and A have been copied into B̃ and Ã, respectively, the loop in gebp opt1
can execute at almost the peak of the floating point unit.

—The packing of B is a memory-to-memory copy. Its cost is proportional to kc×n
and is amortized over 2m×n× kc so that O(m) computations will be performed
for every copied item. This packing operation disrupts the previous contents of
the TLB.

—The packing of A to Ã rearranges this data from memory to a buffer that will
likely remain in the L2 cache and leaves the TLB loaded with useful entries, if
carefully orchestrated. Its cost is proportional to mc × kc and is amortized over
2mc×kc×n computation so that O(n) computations will be performed for every
copied item. In practice, this copy is typically less expensive.

This approach is appropriate for gemm if m and n are both large, and k is not too
small.

5.2 Implementing gepm with gebp

In Fig. 7 a similar strategy is proposed for implementing gepm in terms of gebp.
This time C is repeatedly updated so that it is worthwhile to accumulate C̃ = AB

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · Kazushige Goto and Robert A. van de Geijn

Algorithm: C := gepm blk var1(A, B, C) Algorithm: C := gebp opt2(A, B, C)

C +:= A0A1 · · ·
B̌0

B̌1
.
.
.

+:=

Assumption: C “packed” in memory.

Set packed C̃ := 0
for p = 0, . . . , K − 1

C̃ +:= Ap B̌p (gebp opt2)

endfor

Unpack C := C̃ + C

Pack and transpose A into Ã
for j = 0, . . . , N − 1

Pack Bj into Baux

+:=
(Cj := ÃBaux + Cj)

endfor

Fig. 7. Optimized implementation of gepm (left) via calls to gebp opt2 (right).

Algorithm: C := gepp blk var2(A, B, C) Algorithm: C := gepb opt1(A, B, C)

C0C1 · · · +:= A

B0B1 · · ·
+:=

T

Assumption: A “packed” in memory.

Pack and transpose A into Ã
for j = 0, . . . , N − 1

Cj +:= Ã
T

Bj (gepb opt1)

endfor

Pack B into B̃
for i = 0, . . . , M − 1

+:=
T

(Caux := AT
i B̃)

Unpack Či = Či + Caux

endfor

Fig. 8. Optimized implementation of gepp (left) via calls to gepb opt1 (right).

before adding the result to C. There is no reuse of B̌p and therefore it is not packed.
Now at most nr TLB entries are needed for Bj , and one each for Btemp, Cj and
Cj+1 so that again TÃ is bounded by T − (nr + 3).

Remark 5.1. The unpack operation C := C̃ + C is more expensive than the
packing of matrix B. Thus, the algorithm in Fig. 6 can be expected to attain better
performance than the one in Fig. 7.

5.3 Implementing gepp with gepb

Fig. 8 shows how gepp can be implemented in terms of gepb. Now A is packed
and transposed by gepp to improve contiguous access to its elements. In gepb B is
packed and kept in the L2 cache, so that it is TB̃ that we wish to maximize. While
Ai, Ai+1, and Caux each typically only require one TLB entry, Či requires nc if the
leading dimension of C is large. Thus, TB̃ is bounded by T − (nc + 3).

Remark 5.2. Since nc is typically much larger than kr the algorithm in Fig. 6
can be expected to yield better performance.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 11

Algorithm: C := gemp blk var1(A, B, C) Algorithm: C := gepb opt2(A, B, C)

C +:= A0A1 · · ·
B̌0

B̌1
.
.
.

+:=

0
BB@

1
CCA

T

Assumption: C “packed” in memory.

for p = 0, . . . , K − 1

Set packed C̃ := 0

C̃ +:=

0
BB@Ap B̌p

1
CCA

T

(gepb opt2)

endfor

Unpack C := C̃T + C

Pack B into B̃
for i = 0, . . . , m− 1 in steps of mr

Pack Ǎi into Aaux

+:=

ţ űT

(Ci := (AauxB̃)T + Ci)
endfor

Fig. 9. Optimized implementation of gemp (left) via calls to gepb opt2 (right).

5.4 Implementing gemp with gepb

In Fig. 9 shows how gemp can be implemented in terms of gepb. This time a
temporary C̃ is used to accumulate C̃ = (AB)T and the L2 cache is mostly filled
with a packed copy of B̃. Again, it is TB̃ that we wish to maximize. While Ci,
Ci+1, and Atemp each take up one TLB entry, Ǎi requires up to mc entries. Thus,
TB̃ is bounded by T − (mc + 3).

Remark 5.3. Since mc is typically much larger than kr the algorithm in Fig. 6
can be expected to yield better performance.

5.5 Implementing gepm and gemp with gepdot

The gepdot operation suffers from the fact that it is now (a packed copy of) C
that remains in the L2 cache. Elements of C must now not only be prefetched while
computation occurs, but must be written back to the L2 cache as well.

Remark 5.4. Algorithms based on gepdot will inherently be more difficult to
optimize than the algorithm in Fig. 6.

6. MORE DETAILS YET

We now give some final insights into how registers are used by kernels like gebp opt1,
after which we comment on how parameters are chosen in practice.

Since it has been argued that the algorithm in Fig. 6 will likely attain the best
performance, we focus on that algorithm:

+:=

nrkc

mc

6.1 Register blocking

Consider Caux := ÃBj in Fig. 6 where Ã and Bj are in the L2 and L1 caches,
respectively. This operation is implemented by computing mr × nr submatrices of

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · Kazushige Goto and Robert A. van de Geijn

Caux in the registers.

:=

nrkc

mr

Notice that this means that during the computation of Cj it is not necessary that
elements of that submatrix remain in the L1 or even the L2 cache: 2mrnrkc flops
are performed for the mrnr memops that are needed to store the results from the
registers to whatever memory later. We will see that kc is chosen to be relatively
large.

Remark 6.1. The above figure allows us to discuss the packing of A into Ã in
more detail. In our implementation, Ã is stored so that each mr × kc submatrix
is stored contiguously in memory. Each such submatrix is itself stored in column-
major order. This allows Caux := ÃBj to be computed while accessing the elements
of Ã by striding strictly contiguously through memory. Implementations by others
will often store Ã as the transpose of A, which requires a slightly more complex
pattern when accessing Ã.

6.2 Choosing mr × nr

The following considerations affects the choice of mr × nr :

—Typically half the available registers are used for the storing mr × nr submatrix
of C. This leaves the remaining registers for prefetching elements of Ã and B̃.

—It can be shown that amortizing the cost of loading the registers is optimal when
mr ≈ nr.

—As mentioned in Section 4.2.1, the fetching of an element of Ã from the L2 cache
into registers must take no longer than the computation with a previous element
so that ideally nr ≥ Rcomp/(2Rload) must hold. Rcomp and Rload can be found
under “flops/cycle” and “Sustained Bandwidth”, respectively, in Fig. 10.

A shortage of registers will limit the performance that can be attained by gebp opt1,
since it will impair the ability to hide constraints related to the bandwidth to the
L2 cache.

6.3 Choosing kc

To amortize the cost of updating mr × nr elements of Cj the parameter kc should
be picked to be as large as possible.

The choice of kc is limited by the following considerations:

—Elements from Bj are reused many times, and therefore must remain in the L1
cache. In addition, the set associativity and cache replacement policy further
limit how much of the L1 cache can be occupied by Bj . In practice, kcnr floating
point numbers should occupy less than half of the L1 cache so that elements of
Ã and Caux do not evict elements of Bj .

—The footprint of Ã (mc×kc floating point numbers) should occupy a considerable
fraction of the L2 cache.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 13

Remark 6.2. In our experience the optimal choice is such that kc double pre-
cision floating point numbers occupy half of a page. This choice typically satisfies
the other constraints as well as other architectural constraints that go beyond the
scope of this paper.

6.4 Choosing mc

It was already argued that mc × kc matrix Ã should fill a considerable part of the
smaller of (1) the memory addressable by the TLB and (2) the L2 cache. In fact,
this is further constrained by the set-associativity and replacement policy of the L2
cache. In practice, mc is chosen so that Ã only occupies about half of the smaller
of (1) and (2).

7. EXPERIMENTS

In this section we report performance attained by implementations of the dgemm
BLAS routine using the techniques described in the earlier sections. It is not the
purpose of this section to show that our implementations attain better performance
than those provided by vendors and other projects. (We do note, however, that they
are highly competitive.) Rather, we attempt to demonstrate that the theoretical
insights translate to practical implementations.

7.1 Algorithm chosen

Implementing all algorithms discussed in Section 5 on a cross-section of architec-
tures would be a formidable task. Since it was argued that the approach in Fig. 6
is likely to yield the best overall performance, it is that variant which was imple-
mented. The gebp opt1 algorithm was carefully assembly-coded for each of the
architectures that were considered. The routines for packing A and B into Ã and
B̃, respectively, were coded in C, since compilers appear to be capable of optimizing
these operations.

7.2 Parameters

In Fig. 10 we report the physical and algorithmic parameters for a cross-section of
architectures. Not all the parameters are taken into account in the analysis in this
paper, but are given for completeness.

The following parameters require extra comments:

Duplicate This parameter indicates whether elements of matrix B are duplicated.
This is necessary in order to take advantage of SSE2 instructions on the Pentium4
(Northwood) and Opteron processors.

Sustained Bandwidth This is the observed sustained bandwidth from the indi-
cated memory layer to the registers.

Covered Area This is the size of the memory that can be addressed by the TLB.
Some architectures have a (much slower) level 2 TLB that serves the same func-
tion relative to an L1 TLB as does an L2 cache relative to an L1 cache. Whether
to limit the size of Ã by the number of entries in L1 TLB or L2 TLB depends on
the cost of packing into Ã and B̃.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · Kazushige Goto and Robert A. van de Geijn

A
rc

h
it

ec
tu

re
L
1

ca
ch

e
L
2

ca
ch

e
L
3

ca
ch

e
T

L
B

B
lo

ck
si

ze
s

Sub
Architecture

Core

#ofregisters

flops/cycle

Duplicate

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

Size
(Kbytes)

LineSize

Associativity

Sustained
Bandwidth

PageSize
(Kbytes)

L1TLB

L2TLB

CoveredArea
(Kbytes)

Ã(Kbytes)

mc×kc

mr×nr

x
8
6

P
en

ti
u
m

3
K

a
tm

a
i

8
1

N
1
6

3
2

4
0
.9

5
5
1
2

3
2

4
0
.4

0
4

6
4

-
2
5
6

6
4
×

2
5
6

2
×

2

C
o
p
p
er

m
in

e
8

1
N

1
6

3
2

4
0
.9

5
2
5
6

3
2

4
0
.5

3
4

6
4

-
2
5
6

6
4
×

2
5
6

2
×

2

P
en

ti
u
m

4
N

o
rt

h
w

o
o
d

8
1

2
Y

8
6
4

4
1
.8

8
5
1
2

6
4

8
1
.0

6
4

6
4

-
2
5
6

2
2
4

2
2
4
×

1
2
8

4
×

2

P
re

sc
o
tt

8
1

2
N

1
6

6
4

4
1
.9

2
2
K

6
4

8
1
.0

3
4

6
4

-
2
5
6

7
6
8

7
6
8
×

1
2
8

2
×

4

O
p
te

ro
n

8
1

2
Y

6
4

6
4

2
2
.0

0
1
K

6
4

1
6

0
.7

1
4

3
2

5
1
2

2
K

2
7
6
8

3
8
4
×

2
5
6

2
×

4

x
8
6

6
4

(E
M

6
4
T

)

P
en

ti
u
m

4
P

re
sc

o
tt

1
6
1

2
N

1
6

6
4

4
1
.9

2
2
K

6
4

8
1
.0

3
4

6
4

-
2
5
6

1
1
5
2

7
6
8
×

1
9
2

4
×

4

O
p
te

ro
n

1
6
1

2
Y

6
4

6
4

2
2
.0

0
1
K

6
4

1
6

0
.7

1
4

3
2

5
1
2

2
K

2
6
0
8

3
8
4
×

2
5
6

4
×

4

IA
6
4

It
a
n
iu

m
2

1
2
8

4
N

1
6

6
4

4
-

2
5
6

1
2
8

8
4
.0

0
6
K

1
2
8

2
4

2
.0

0
1
6

-
1
2
8

2
K

2
1
K

1
2
8
×

1
K

8
×

8

P
O

W
E

R

P
O

W
E

R
3

3
2

4
N

6
4

1
2
8

4
2
.0

0
1
K

1
2
8

1
0
.7

5
4

2
5
6

-
1
K

5
1
2

2
5
6
×

2
5
6

4
×

4

P
O

W
E

R
4

3
2

4
N

3
2

1
2
8

2
1
.9

5
1
.4

K
1
2
8

4
0
.9

3
1
2
8
K

5
1
2

8
-

4
1
2
8
4

1
K

4
4
K

2
2
8
8

1
4
4
×

2
5
6

4
×

4

P
P

C
9
7
0

3
2

4
N

3
2

1
2
8

2
2
.0

0
5
1
2

1
2
8

8
0
.9

2
4

1
2
8
4

1
K

4
4
K

2
3
2
0

1
6
0
×

2
5
6

4
×

4

P
O

W
E

R
5

3
2

4
N

3
2

1
2
8

2
2
.0

0
1
.9

2
K

1
2
8

1
0

0
.9

3
1
2
8

4
1
2
8
4

1
K

4
4
K

2
5
1
2

2
5
6
×

2
5
6

4
×

4

P
P

C
4
4
0

F
P

2
3
2
1

4
N

3
2

3
2

6
4

2
.0

0
2

1
2
8

F
u
ll

0
.7

5
4
K

1
2
8

8
0
.7

5
-3

-3
-3

-3
3
K

1
2
8
×

3
K

8
×

4

A
lp

h
a

E
V

4
3
2

1
N

1
6

3
2

1
0
.7

9
2
K

3
2

1
0
.1

5
8

3
2

-
2
5
6

1
4

3
2
×

5
6

4
×

4

E
V

5
3
2

2
N

8
3
2

1
1
.5

8
9
6

6
4

3
1
.5

8
2
K

6
4

1
0
.2

2
8

6
4

-
5
1
2

6
3

5
6
×

1
4
4

4
×

4

E
V

6
3
2

2
N

6
4

6
4

2
1
.8

7
4
K

6
4

1
0
.6

2
8

1
2
8

-
1
K

5
0
4

1
2
8
×

5
0
4

4
×

4

S
P
A

R
C

IV
3
2

4
N

6
4

3
2

4
0
.9

9
8
K

1
2
8

2
0
.1

2
8
K

1
2
8

2
0
.1

2
8

1
6

5
1
2

4
K

2
2
K

5
1
2
×

5
1
2

4
×

4
1

R
eg

is
te

rs
h
o
ld

2
fl
o
a
ti

n
g

p
o
in

t
n
u
m

b
er

s
ea

ch
.

2
in

d
ic

a
te

s
th

a
t

th
e

C
o
v
er

ed
A

re
a

is
d
et

er
m

in
ed

fr
o
m

th
e

L
2

T
L
B

.
3

IB
M

h
a
s

n
o
t

n
o
t

d
is

cl
o
se

d
th

is
in

fo
rm

a
ti

o
n
.

4
O

n
th

es
e

m
a
ch

in
es

th
er

e
is

a
D

-E
R

A
T

(D
a
ta

ca
ch

e
E

ff
ec

ti
v
e

R
ea

l
to

A
d
d
re

ss
T
ra

n
sl

a
ti

o
n

[t
a
b
le

])
th

a
t

ta
k
es

th
e

p
la

ce
o
f
th

e
L
1

T
L
B

a
n
d

a
T

L
B

th
a
t

a
ct

s
li
k
e

a
n

L
2

T
L
B

.

Fig. 10. Parameters for a sampling of current architectures.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 15

Ã (Kbytes) This indicates how much memory is set aside for matrix Ã.

7.3 A few selected architectures

In Fig. 11-17 we show the performance attained on a sampling of current architec-
tures. We briefly discuss each of these below.

Pentium4 (3.6 GHz, 64bit)
Equation (3) indicates that in order to hide the prefetching of elements of Ã with

computation parameter nr must be chosen so that nr ≥ Rcomp/(2Rload). Thus, for
this architecture, nr ≥ 2/(2 × 1.03) ≈ 0.97. Also, EM64T architectures, of which
this Pentium4 is a member, have 16 registers that can store two double precision
floating point numbers each. Eight of these registers are used for storing entries of
C: mr × nr = 4× 4.

The choice of parameter kc is complicated by the fact that updating the indexing
in the loop that computes inner products of columns of Ã and B̃ is best avoided on
this architecture. As a result, that loop is completely unrolled, which means that
storing the resulting code in the instruction cache becomes an issue, limiting kc

to 192. This is slightly smaller than the kc = 256 that results from the limitation
discussed in Section 6.3.

This architecture is the one exception to the rule that Ã should be addressable by
the TLB. When Ã is chosen to fill half of the L2 cache the performance is slightly
better than when it is chose to fill half of the memory addressable by the TLB.

We point out that the Northwood version of the Pentium4 relies on SSE2 instruc-
tions to compute two flops per cycle. This instruction requires entries in B to be
duplicated, a data movement that is incorporated into the packing into buffer B̃.
The SSE3 instruction supported by the Prescott subarchitecture does not require
this duplication when copying to B̃.

Opteron (2.2 GHz, 64bit)
For the Opteron architecture nr ≥ Rcomp/(2Rload) = 2/(2 × 0.71) ≈ 1.4. The

observed optimal choice for storing entries of C in registers is mr × nr = 4× 4.
Unrolling of the inner loop that computes the inner-product of columns of Ã and

B̃ is not necessary like it was for the Pentium4, nor is the size of the L1 cache an
issue. Thus, kc is taken so that a column of B̃ fills half a page: kc = 256. By taking
mc × kc = 384 × 256 matrix Ã fills roughly one third of the space addressable by
the TLB.

The latest Opteron architectures support SSE3 instructions, we have noticed that
duplicating elements of B̃ is still beneficial. This increases the cost of packing into
B̃, decreasing performance by about 3%.

Itanium2 (900 MHz)
The L1 data cache and L1 TLB are inherently ignored by this architecture for

floating point numbers. As a result, the Itanium2’s L2 and L3 caches perform
the role of the L1 and L2 caches of other architectures and only the L2 TLB is
relevant. Thus nr ≥ 4/(2 × 2.0) = 1.0. Since there are ample registers available,
mr × nr = 8 × 8. While the optimal kc = 1K (1K doubles fill half of a page), in
practice performance is almost as good when kc = 128.

This architecture has many features that makes optimization easy: A very large
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · Kazushige Goto and Robert A. van de Geijn

number of registers , very good bandwidth between the caches and the registers, and
an absence of out-of-order execution (a feature of other architectures that makes
controlling the computation difficult).

POWER5 (1.9 GHz)
For this architecture, nr ≥ 4/(2 × 0.93) ≈ 2.15 and mr × nr = 4 × 4. This

architectures has a D-ERAT (Data cache Effective Real to Address Translation
[table]) that acts like an L1 TLB and a TLB that acts like an L2 TLB. Parameter
kc = 256 fills half of a page with a column of B̃. By choosing mc × kc = 256× 256
matrix Ã fills about a quarter of the memory addressable by the TLB. This is a
compromise: The TLB is relatively slow. By keeping the footprint of Ã at the size
that is addressable by the D-ERAT, better performance has been observed.

PowerPC440 FP2 (700 MHz)
For this architecture, nr ≥ 4/(2×0.75) ≈ 2.7 and mr×nr = 8×4. An added com-

plication for this architecture is that the combined bandwidth required for moving
elements of B̃ and Ã from the L1 and L2 caches to the registers saturates the total
bandwidth. This means that the loading of elements of C into the registers cannot
be overlapped with computation, which in turn means that kc should be taken to
be very large in order to amortize this exposed cost over as much computation as
possible. The choice mc × nc = 128× 3K fills 3/4 of the L2 cache.

Optimizing for this architecture is made difficult by lack of bandwidth to the
caches, an L1 cache that is FIFO (First-In-First-Out) and out-of-order execution of
instructions. The addressable space of the TLB is large due to the large page size.

It should be noted that techniques similar to those discussed in this paper were
used by IBM to implement their matrix multiply [Bachega et al. 2004] for this
architecture.

Alpha EV6 (667MHz)
Here nr ≥ 2/(2×0.62) ≈ 1.6 and mr×nr = 4×4. The choice mc×nc = 128×504

fills about half of the area covered by the TLB.
This architecture has very good bandwidth to registers relative to the demands

on that bandwidth. One complication is that the L2 cache has is direct mapped,
which means that cache conflicts occur easily. Leading dimensions that equal a
power of two should be avoided.

7.4 Performance

In Figs. 11–16 we show the performance attained by our approach on the architec-
tures discussed in Section 7.3. For each architecture we show on the left the case
where all matrices are square and on the right the case where m = n = 2000 and k
is varied. We note that gepp with k relatively small is perhaps the most commonly
encountered special case of gemm.

—The top curve, labeled “Kernel”, corresponds to the performance of the kernel
routine (gebp opt1).

—The next lower curve, labeled “dgemm”, corresponds to the performance of the
dgemm routine implemented as a sequence of gepp operations. The gepp oper-
ation was implemented via the algorithms in Fig. 6.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 17

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 11. Pentium4 (3.6 GHz).

—The bottom two curves correspond the percent of time incurred by routines that
pack A and B into Ã and B̃, respectively. (For these curves only the labeling
along the right axis is relevant.)

The overhead caused by the packing operations accounts almost exactly for the
degradation in performance from the kernel curve to the dgemm curve.

The graphs in Fig. 17 investigate the performance of the implementation when
m and n are varied. In the left graph m is varied while n = k = 2000. When
m is small, as it would be for a gepm operation, the packing of B into B̃ is not
amortized over sufficient computation, yielding relatively poor performance. One
solution would be to skip the packing of B. Another would be to implement the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · Kazushige Goto and Robert A. van de Geijn

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 12. Opteron (2.2 GHz).

algorithm in Fig. 7. Similarly, in the right graph n is varied while m = k = 2000.
When n is small, as it would be for a gemp operation, the packing of A into Ã is not
amortized over sufficient computation, again yielding relatively poor performance.
Again, one could contemplate skipping the packing of A (which would require the
gebp operation to be cast in terms of axpy operations instead of inner-products).
An alternative would be to implement the algorithm in Fig. 9.

8. CONCLUSION

We have given a systematic analysis of the high-level issues that affect the design
of high-performance matrix multiplication. The insights were incorporated in an
implementation that attains extremely high performance on a variety of architec-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 19

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0
2

4
6

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0
2

4
6

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 13. POWER5 (1.9 MHz).

tures.
Almost all routines that are currently part of LAPACK [Anderson et al. 1999]

perform the bulk of computation in gepp, gemp, or gepm operations. Similarly,
the important Basic Linear Algebra Subprograms (BLAS) kernels can be cast in
terms of these three special cases of gemm [K̊agström et al. 1998]. Our recent
research related to the FLAME project shows how for almost all of these rou-
tines there are algorithmic variants that cast the bulk of computation in terms of
gepp [Gunnels et al. 2001; Bientinesi et al. 005a; Bientinesi et al. 005b; Low et al.
2005; Quintana et al. 2001]. These alternative algorithmic variants will then attain
very good performance when interfaced with matrix multiplication routines that
are implemented based on the insights in this paper.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · Kazushige Goto and Robert A. van de Geijn

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 14. PPC440 FP2 (700 MHz).

One operation that cannot be recast in terms of mostly gepp is the QR factor-
ization. For this factorization, about half the computation can be cast in terms of
gepp while the other half inherently requires either the gemp or the gepm oper-
ation. Moreover, the panel must inherently be narrow since the wider the panel,
the more extra computation must be performed. This suggests that further re-
search into the high-performance implementation of these special cases of gemm is
warranted.

The low-level issues related to the actual implementation details of gebp and the
packing routines will be the topic of a future paper [Goto and Gunnels].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 21

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 15. Itanium2 (900 MHz).

Acknowledgments

This research was sponsored in part by NSF grants ACI-0305163 and CCF-0342369,
and by Lawrence Livermore National Laboratory project grant B546489. We grate-
fully acknowledge equipment donations by Dell, Linux Networx, Virginia Tech, and
Hewlett-Packard. Access to additional equipment was arranged by the Texas Ad-
vanced Computing Center and Lawrence Livermore National Laboratory.

We would like to thank Victor Eijkhout, John Gunnels, Gregorio Quintana, and
Field Van Zee for comments on drafts of this paper.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · Kazushige Goto and Robert A. van de Geijn

 m = n = k

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

k (m = n = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 16. Alpha EV6 (667 MHz).

REFERENCES

Agarwal, R., Gustavson, F., and Zubair, M. 1994. Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM Journal of Research and
Development 38, 5 (Sept.).

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. 1999. LAPACK Users’
Guide, Third Edition ed. SIAM Press.

Bachega, L., Chatterjee, S., Dockser, K. A., Gunnels, J. A., Gupta, M., Gustavson, F. G.,
Lapkowski, C. A., Liu, G. K., Mendell, M. P., Wait, C. D., and Ward, T. J. C. 2004.
A high-performance simd floating point unit for bluegene/l: Architecture, compilation, and
algorithm design. In PACT ’04: Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques. IEEE Computer Society, Washington, DC, USA,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Anatomy of High-Performance Matrix Multiplication · 23

m (n = k = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

n (m = k = 2000)

G
F

lo
ps

0 500 1000 1500 2000

0
1

2
3

4
5

6
7

0
20

40
60

80
10

0

P
er

ce
nt

ag
e

dgemm
Kernel

Pack A
Pack B

Fig. 17. Pentium4 (3.6 GHz).

85–96.

Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ort́ı, E. S., and van de Geijn, R. A.
2005a. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1
(March), 1–26.

Bientinesi, P., Quintana-Ort́ı, E. S., and van de Geijn, R. A. 2005b. Representing linear
algebra algorithms in code: The FLAME APIs. ACM Trans. Math. Soft. 31, 1 (March), 27–59.

Goto, K. 2005. www.tacc.utexas.edu/resources/software/.

Goto, K. and Gunnels, J. A. Anatomy of high-performance matrix multiplication: Low-level
details. in preparation.

Goto, K. and van de Geijn, R. A. 2002. On reducing tlb misses in matrix multiplication. Tech.
Rep. CS-TR-02-55, Department of Computer Sciences, The University of Texas at Austin.

Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2001. FLAME: For-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · Kazushige Goto and Robert A. van de Geijn

mal linear algebra methods environment. ACM Transactions on Mathematical Software 27, 4
(December), 422–455.

Gunnels, J. A., Gustavson, F. G., Henry, G. M., and van de Geijn, R. A. 2005. A novel
model produces matrix multiplication algorithms that predict current practice. In Proceedings
of PARA’04. Elsevier.

Gunnels, J. A., Henry, G. M., and van de Geijn, R. A. 2001. A family of high-performance
matrix multiplication algorithms. In Computational Science - ICCS 2001, Part I, V. N. Alexan-
drov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. K. Tan, Eds. Lecture Notes in
Computer Science 2073. Springer-Verlag, 51–60.

Kågström, B., Ling, P., and Loan, C. V. 1998. GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Soft. 24, 3,
268–302.

Low, T. M., van de Geijn, R., and Zee, F. V. 2005. Extracting SMP parallelism for dense
linear algebra algorithms from high-level specifications. In Proceedings of PPoPP’05.

Quintana, E. S., Quintana, G., Sun, X., and van de Geijn, R. 2001. A note on parallel matrix
inversion. SIAM J. Sci. Comput. 22, 5, 1762–1771.

Strazdins, P. E. 1998. Transporting distributed blas to the Fujitsu AP3000 and VPP-300. In
Proceedings of the Eighth Parallel Computing Workshop (PCW’98). 69–76.

Whaley, R. C., Petitet, A., and Dongarra, J. J. 2001. Automated empirical optimization of
software and the ATLAS project. Parallel Computing 27, 1–2, 3–35.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

