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Abstract—This paper considers the modifications required
to transform a highly-efficient, specialized linear algebra core
into an efficient engine for computing Fast Fourier Trans-
forms (FFTs). We review the minimal changes required to
support Radix-4 FFT computations and propose extensions to
the micro-architecture of the baseline linear algebra core. Along
the way, we study the critical differences between the two classes
of algorithms. Special attention is paid to the configuration of the
on-chip memory system to support high utilization. We examine
design trade-offs between efficiency, specialization and flexibility,
and their effects both on the core and memory hierarchy for a
unified design as compared to dedicated accelerators for each
application. The final design is a flexible architecture that can
perform both classes of applications. Results show that the
proposed hybrid FFT/Linear Algebra core can achieve 26.6
GFLOPS/S with a power and efficiency of 40 GFLOPS/W and
12 GFLOPS/mm2, respectively.

I. INTRODUCTION

Basic Linear Algebra Subroutines (BLAS) and Fast Fourier
Transforms (FFTs) are two of the most important classes
of algorithms in the computational sciences. General Matrix
Multiplication (GEMM) is the primary component of the level-
3 BLAS and of most dense linear algebra algorithms (and
many sparse/structured linear algebra algorithms), which in
turn have applications in virtually every area of computational
science. With its high ratio of computation to data motion
and its balanced use of addition and multiplication, GEMM
typically provides the opportunity to demonstrate the maxi-
mum sustainable floating-point computation rate of a computer
system.

By contrast, FFTs are fundamentally linked to the under-
lying mathematics of many areas of computational science.
They are perhaps the most important single tool in “signal pro-
cessing” and analysis, and play a fundamental role in indirect
imaging technologies, such as synthetic aperture radar [1] and
computerized tomographic imaging [2]. FFTs are a widely-
used tool for the fast solution of partial differential equations,
and support fast algorithms for the multiplication of very
large integers. Unlike GEMM, the FFT has a more modest
number of computations per data element (this is one of the
main reasons that it is “fast”), so that performance of FFT
algorithms is typically limited by the data motion requirements
rather than by the arithmetic computations.

While GEMM is a straightforward kernel with simple,
predictable data access patterns, the FFT provides more chal-
lenges to obtaining high performance. First: the increased ratio
of data movement per computation (even with perfect caches)

will cause the algorithm to be memory bandwidth limited
on most current computer systems. Second: memory access
patterns includes strides of 2, 4, 8, ...N/2, which interfere
pathologically with the cache indexing and the cache and
memory banking for standard processor designs. Third: the
butterfly operation contains more additions than multiplica-
tions, so the “balanced” FPUs on most current architectures
will be under-utilized.

For both the GEMM and FFT algorithms, application-
specific designs have been proposed that promise orders of
magnitude improvements in power/area efficiency relative to
general purpose processors [3], [4]. However, each of these
have been isolated and dedicated design instances limited to
one algorithm. With full-custom design increasingly becoming
cost-prohibitive, there is a need for solutions that have enough
flexibility to run a range of operations at the efficiency of
full-custom designs. In this paper, we analyze the similarities
between algorithms and show how one might transform an
optimized GEMM core to an FFT core. We consider whether
a combined core that can perform either operation efficiently is
practical, and analyze the loss in efficiency required to achieve
this flexibility.

Our starting point is a Linear Algebra Core (LAC) that
we developed in previous work [5]. The core design and
its efficiency were originally derived for GEMM operations.
Applying minimal extensions, we showed how a LAC can
support the full range of level-3 BLAS [6] and matrix-
factorizations [7] with minimal loss in efficiency. In this paper,
we investigate further extensions of the LAC to also support
FFTs.

We begin by exploring FFT algorithms that may be suitable
for the baseline LAC architecture. After evaluating LAC
limitations and trade-offs for possible solutions, we introduce
an “FFT core” that we have optimized for FFTs over a wide
range of vector lengths. While optimized for performing FFTs,
this core is based on a minimal set of modifications to the
existing LAC architecture. We then take similarities between
the original LAC and the FFT-optimized design to introduce
a flexible, hybrid design that can perform both of these
applications efficiently. Comparing both full-custom designs
with our proposed hybrid core, we demonstrate the costs of
flexibility versus efficiency.

Our methodology is based on multiple iterations of an
algorithm-architecture co-design process, taking into account
the interplay between design choices for the core and for the



external memory hierarchy. As part of this process, we study
multiple choices in core configurations and compare them in
terms of power, area efficiency, and design simplicity.

The rest of the paper is organized as follows: In Section II
we provide a brief overview of related work. Section III
describes the conventional and Fused Multiply Add (FMA)
Radix-2 and Radix-4 butterfly FFT algorithms. In Section IV,
we describe the baseline LAC architecture. Section V de-
scribes the mapping of the FFT and Section VI studies the
trade-off between different core configurations. In Section VII,
we demonstrate the estimated design features and compare
with some competing options. Finally, we conclude the paper
in Section VIII.

II. RELATED WORK

The literature related to fixed-point FFT hardware in the dig-
ital signal processing domain is immense. Literature reviews
of hardware implementations date back to 1969 [8] – only four
years after the publication of the foundational Cooley-Tukey
algorithm [9].

The literature related to floating-point FFT hardware is
considerably more sparse, especially for double-precision im-
plementations. Important recent work includes the automatic
generation of hardware FFT designs from high-level specifica-
tions [4]. These hardware designs can be used in either ASIC
or FPGA implementations [10], but the published double-
precision results for these designs are currently limited to
FPGAs [11]. Hemmert and Underwood [12] provide perfor-
mance comparisons between CPU and FPGA implementations
of double-precision FFTs, and include projections of antic-
ipated performance. Finally, a broad survey of the power,
performance, and area characteristics of single-precision FFT
performance on general-purpose processors, GPUs, FPGAs
and ASICs is provided by Chung [10].

Performance of FFT algorithms varies dramatically across
hardware platforms and software implementations, depending
largely on the effort expended on optimizing data motion.
General-purpose, microprocessor-based systems typically de-
liver poor performance, even with highly optimized implemen-
tations, because the power-of-2 strides of the FFT algorithms
interact badly with set-associative caches, with set-associative
address translation mechanisms, and with power-of-2-banked
memory subsystems.

In Section VIII, we compare the performance, area, and
power of our proposed designs with a sampling of floating-
point FFT performance results on general-purpose processors,
specialized computational accelerators, and GPUs.

III. FFT ALGORITHM

At the lowest level, FFT algorithms are based on combining
a small number of complex input operands via sum, difference,
and complex multiplications to produce an equal number of
complex output operands. These are referred to as “butterfly”
operations because of the shape of the dataflow diagram (e.g.,
as shown later in Figure 3). In this section, we briefly give the

mathematical description of Radix-2 and Radix-4 FFT butter-
fly operations as optimized for execution on Fused Multiply-
Add (FMA) units. Then, we discuss the data communication
patterns that are needed when applying these operations to
compute FFTs of longer sequences.

The Radix-2 Butterfly operation can be written as the
following matrix operation, where wj

L are constant values
(usually referred to as “twiddle factors”) which we store in
memory: (

x(j)
x(j + L/2)

)
:=
(

1 ω
j
L

1 −ω
j
L

) (
x(j)

x(j + L/2)

)
.

This operation contains a complex multiplication operation
and two complex additions, corresponding to 10 real floating-
point operations. Using a floating-point MAC unit, this oper-
ation takes six Multiply-ADD operations that yields into 83%
utilization.

A modified, FMA-optimized butterfly is introduced in [13],
where the multiplier matrix in the normal butterfly is factored
and replaced by:(

1 ω
j
L

1 −ω
j
L

)
=
(

2 −1
0 1

) ( 1 0

1 −ω
j
L

)
.

This algorithm requires 12 floating point operations repre-
sented in six multiply-adds. Although the total number of
floating-point operations is increased, they all utilize a fused
multiply-add unit and the total number of FMAs remains six.

A Radix-4 FFT butterfly is typically represented as the
following matrix operation:(

x(j)
x(j + L/4)
x(j + L/2)
x(j + 3L/4)

)
× =

(
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

)
diag(1, ωj

L, ω
2j
L , ω3j

L ).

This contains three complex multiplications and eight complex
additions that sum up to 34 real floating-point operations.
The number of complex additions is much larger than the
number of multiplications. Hence, there is a clear computation
imbalance between multiplications and additions. Note also
that three complex twiddle factors ωj

L, ω2
Lj, and ω3

Lj all have
to be brought into the butterfly unit.

Alternately, the Radix-4 matrix above can be permuted and
factored to give the following representation (ω = ωj

L):(
x(j)

x(j + L/4)
x(j + L/2)
x(j + 3L/4)

)
× =

(
1 0 ω 1
0 1 0 −iω

1 0 −ω 0
0 1 0 −iω

)(
1 ω2 0 0

1 −ω2 0 0

0 0 1 ω2

0 0 1 −ω2

)
.

This can be further divided recursively using the same fac-
torization as in the radix-2 FMA-adapted version. The result
generates 24 FMA operations as depicted in Figure 1. The
FMAC utilization for the Radix-4 DAG is 34/48=70.83%,
but this corresponds to 40/48=83.33% if using the nominal
5NLogN2 operation count from the Radix-2 algorithm that
is traditionally used in computing the FLOP rate. Further
details about this algorithm will be presented in Section V.
The number of loads also drops because only two of the
three twiddle factors (ωj

L and ω2
Lj) are required to perform

the computations.
The two implementations of an L-point Radix-4 FFT are

shown below. The pseudo-code for the standard implementa-

2



b=a-WL
jb d=c-WL

2jd

a=2a-b c=2c-d

c=a-WL
jc

x(j)=2a-c

d=b-iWL
jd

x(j+3L/4)=2b-d

0-34-7

8-9

10-11
12-15

18-2116-17

22-23

x(j+L/2)=x(j)-wj
Lx(j+L/2)

x(j)=2x(j)-x(j+L/2)

0-3

4-5

RADIX 4 on a FMAC
RADIX 2 on a FMAC

Accumulation
Dependency

Multiplication 
Dependency

a=x(j); b=x(j+L/2); d=x(j+3L/4);

x(j+L/4)=d

c=x(j+L/4);
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Fig. 1. DAG of the optimized Radix4 Butterfly using a fused multiply-add
unit. Rectangles on top indicate the input data, solid nodes show complex
computations with four FMA operations each, nodes with dashed lines show
complex computations with two FMA operations each. The nodes are executed
in an order that avoids data dependency hazards due to pipeline latencies, as
shown by the start-finish cycle numbers next to each node.

tion is shown on the left and the pseudo-code for the FMA
optimized version is shown on the right:

for j = 0 : L/4− 1 for j = 0 : L/4− 1
a := x(j); a := x(j);

b := ωj
Lx(j + L/4) b := ωj

Lx(j + L/4)

c := ω2j
L x(j + L/2) c := ω2j

L x(j + L/2)

d := ω3j
L x(j + 3L/4) d := ω3j

L x(j + 3L/4)

τ0 := a+ c b := a− ω2j
L b

τ1 := a− c a := 2a− b
τ2 := b+ d d := c− ω2j

L d
τ3 := b− d c := 2c− d
x(j) := τ0 + τ2; x(j + L/2) := c = a− ωj

Lc
x(j + L/4) := τ1 − iτ3; x(j) := 2a− c
x(j + L/2) := τ0 − τ2; x(j + L/4) := d := b− iωj

l d
x(j + 3L/4) := τ1 + iτ3; x(j + 3L/4) := 2b− d

end for end for

IV. BASELINE LINEAR ALGEBRA ARCHITECTURE

The microarchitecture of the baseline linear algebra
core (LAC) is illustrated in Figure 2. The architecture and
implementation optimize the rank-1 update operation that is
the innermost kernel of parallel matrix multiplication [14].
This allows the implementation to achieve orders of magnitude
better efficiency in power and area consumption than conven-
tional general purpose architectures [3].

A. General Architecture

The LAC architecture consists of a 2D array of nr × nr

Processing Elements (PEs), with nr = 4 in Figure 2. Each PE
has a double-precision Floating-Point Multiply-ACcumulate
(FPMAC) unit with a local accumulator, and local memory
(SRAM) storage divided into a larger single-ported and a
smaller dual-ported memory. PEs on the same row/column
are connected by low-overhead horizontal/vertical broadcast
buses. LAC control is distributed and each PE has a state
machine that drives a predetermined, hard coded sequence
of communication, storage, and computation steps for each
supported operation.

The FPMAC units perform the inner dot-product computa-
tions central to almost all level-3 BLAS operations. To achieve
high performance and register-level locality, the LAC utilizes
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Fig. 2. Linear Algebra Core optimized for rank-1 updates. PEs that own the
current column of 4× kc matrix A and the current row of kc × 4 matrix B,
write elements of A and B to the buses and the other PEs read them [3].

pipelined FPMAC units that can achieve a throughput of
one dependent FPMAC operation per cycle [15]. This means
that there is no data dependency hazard for floating point
accumulations. Note that this is not the case in current general-
purpose architectures [16], which require the use of multiple
accumulators to avoid pipeline stalls.

V. FFT ALGORITHM MAPPING

In this section, we show the details of mapping an FFT on
the LAC along with the required modifications that need to be
made to the existing core architecture. We start by focusing
on small problems that fit in the local core memory. Then,
we present solutions for bigger problems that do not fit in the
local store.

The broadcast bus topology allows a PE to communicate
with other PEs in the same row and with other PEs in the same
column simultaneously. To maximize locality, we consider
only designs in which each butterfly operation is computed
by a single PE, with communication taking place between the
butterfly computational steps. We note that if the LAC dimen-
sions are selected as powers of two, the communication across
PEs between both Radix-2 or Radix-4 butterfly operations will
be limited to the neighbors on the same row or column. The
choice of nr = 2 provides little parallelism, while values of
nr >= 8 provide inadequate bandwidth per PE due to the
shared bus interconnect. Therefore, we choose nr = 4 as the
standard configuration for the rest of the paper.

A. Radix-4 FFT Algorithms on the PEs

In Section III we gave a description of regular and FMA
optimized versions of the Radix-2 and Radix-4 butterfly oper-
ations. Here, we show the details of mapping such operations
on the PEs. A Radix-2 operation takes six FMA operations.
Performing Radix-2 operations in each PE, the LAC can
perform 32-point FFTs, but can only hide the latency of FMA
pipeline for FFT transforms with 64 or more points. The
Radix-4 butterfly on the PE is more complicated due to data
dependencies within the butterfly operation. Figure 1 shows
the DAG of the Radix-4 butterfly. Solid ellipse nodes take 4
FMA operations and dashed nodes take 2 FMA operations. A
pipelined FPMAC unit has q pipeline stages with q = 5 ∼ 9.
The nodes in the DAG should be scheduled in a way that

3



data dependency hazards do not occur due to pipeline latency.
However, the FPMAC units have single cycle accumulation
capabilities. Hence, no data dependency hazards can occur
among addition/accumulations (dashed arrows). For the multi-
plication dependencies (solid arrows), there should be at least
q cycles between start of a child node and the last cycle of its
parent. The start-finish cycle numbers next to each node show
an execution schedule that tolerates pipeline latencies of up to
9 cycles with no stalls, thus providing 100% FMA utilization.

B. FFT on the Core

Here, we describe both Radix-2 and Radix-4 based FFTs on
the LAC. We compare the computation and communication of
these two options, including the bus access behavior.

1) Radix-2 based FFT: When PEs perform Radix-2 butter-
fly operations, each PE has to exchange one of its outputs with
its neighbor of distance 20 (one) after the first stage. All PEs
on the same row perform communication between PE2n and
PE2n+1. After the second stage, PEs exchange outputs with
those of neighbors at a distances of 21 (two). These PEs also
fall on the same row of the 4×4 arrangement of the LAC. After
the third stage, each PE exchanges its output with a PE that has
a distance of 22 (four). In our architecture, with nr = 4, this
translates to adjacent neighbors on the same column. Finally,
after the fourth stage, each PE switches its outputs with the PE
that has a distance of 23 (eight). This also requires a column
bus communication. In subsequent stages, the distances are
multiples of 42 = 16. In a 4×4 arrangement, these are mapped
to the same PE. Therefore, there is no communication between
PEs for these stages.

The shortcoming of performing Radix-2 butterflies on the
PEs comes from a computation/communication imbalance. In
stages two through four, broadcast buses are being used for
exchanging data. For each exchange, nr complex numbers are
transferred on the bus, which takes 2nr (eight) cycles. Since
computation requires only six cycles, this imbalance decreases
utilization by an undesirable 25%.

2) Radix-4 based FFT: The Radix-4 algorithm is similar
to the Radix-2 algorithm, but with more work done per step
and with communication performed over larger distances in
each step. Figure 3 shows a 64-point FFT where each PE
performs Radix-4 butterfly operations. This transform contains
three stages. The communication pattern for the first PE
in the second and third stages is shown with highlighted
lines in the figure. In the second stage, PE0=PE(0,0) has to
exchange its last three outputs with the first outputs of its three
neighboring PEs(1,2,3)×40 , or PE1=PE(0,1), PE2=PE(0,2), and
PE3=PE(0,3) (See figure 4). Similarly, in the third stage,
PE(0,0) has to exchange its last three outputs with the first
outputs of PEs that have distance with multiples of 4 or
PEs(4,8,12) = PE(1,2,3)×41 , or PE4=PE(1,0), PE8=PE(2,0),
and PE12=PE(3,0). Since there are only 16 PEs in a core,
PEs that have distances of multiples of 42 = 16 fall onto
the same PE, and there is no PE-to-PE communication. When
communication is required, all the PEs on the same row or
column have to send and receive a complex number to/from
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Fig. 3. 64 point FFT performed by 16 PEs in the core. Each PE is performing
Radix-4 Butterfly operations. The access patterns for PE(0,0) are highlighted.
Stage 2 only utilizes row-buses to perform data communications. Stage 3 only
utilizes column-buses to perform data communications.

each of their neighbors. The amount of data that needs to be
transferred between PEs is 2nr(nr−1). For the case of nr = 4,
the communication takes 24 cycles, which exactly matches the
required cycle count for the radix-4 computations. As such, the
remainder of the paper will focus on the Radix-4 solution only.

The approach used for the 64-point FFT can be generalized
to any (power of 4) size for which the data and twiddle
factors fit into the local memory of the PEs. Consider an
N = 4m point FFT using the Radix-4 butterfly implementation
described above. The transform includes logN4 = m stages.
Out of these m stages, only two use broadcast buses for data
transfer – one stage using the row buses and one stage using
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Fig. 4. Data communication access pattern between PEs of the LAC for Radix-4 FFT.

the column buses. The rest of data reordering is done by
address replacement locally in each PE. Therefore as discussed
in the next subsection, as the transform size increases, the
broadcast buses are available for bringing data in and out of
the LAC for an increasing percentage of the total time.

For larger problem sizes, the radix computations can be
performed in a depth-first or breadth-first order (or in some
combination). We choose the breadth-first approach due to its
greater symmetry and simpler control. In this approach, all the
butterflies for each stage are performed before beginning the
butterflies for the next stage.

C. FFT Memory Hierarchy for Bigger Transform Sizes

The local memory in the PEs will allow storage of input
data, output data, and twiddle factors for problems signifi-
cantly larger than the 64-element example above, but the local
memory size will still be limited. We will use 4096 as a
“typical” value for the maximum size that can be transformed
in PE-local memory, but we note that this is a configurable
parameter.

Given a core capable of computing FFTs for vectors of
length 64, . . . , 4096, it is of interest to explore the off-core
memory requirements to support the data access patterns
required by these small FFTs as well as those of more general
transforms, such as larger 1D FFTs or multidimensional FFTs.
This analysis is limited to on-chip (but off-core) memory.
Considerations for off-chip memory are out of scope of this
paper and are deferred to future work.

First, we note that the butterfly computations shown in
Figure 3 produce results in bit-reversed order. Although some
algorithms are capable of working with transformed results in
permuted orders, in general it is necessary to invert this permu-
tation to restore the results to their natural order. Converting
from bit-reversed to natural order (or the converse) generates
many power-of-two address strides, which are problematic for
memory systems based on power-of-two banking with multi-
cycle bank cycle times. The most straightforward solutions
are based on high-speed, multi-port SRAM arrays, capable of
sourcing or sinking contiguous, strided, or random addresses
at a rate matching or exceeding the bandwidth requirement
of the core. Each of the solutions discussed below will be
capable of handling the bit-reversal transformation, as well as
any other data access patterns required.

1) Algorithm for Larger 1D FFTs: Support for larger one-
dimensional FFTs is provided through the generalized Cooley-

FFT
Core

256x256 FFT Input

Output Buffer/Transpose

256x256 FFT Input

1D FFT 2D FFT

FFT
Core

Stage 1
Read Columns

Stage 2
Read Rows

Stage 1
Read Rows

Stage 2
Read Columns

Fig. 5. Overview of data motion to/from the core for performing a 64K 1D
FFT (left), and for a 256× 256 2D FFT (right).

Tukey factorization, commonly referred to as the “four-step”
algorithm [17]. For an FFT of length N , we split the length
into the product of two integer factors, N = N1N2. The
1D discrete Fourier transform can then be computed by the
sequence: (1) Perform N1 DFTs of size N2; (2) Multiply
the result by an array of complex roots of unity (called
“twiddle factors”); (3) Perform N2 DFTs of size N1. For a
core capable of performing transforms of up to N=4096, this
algorithm allows computing a 1D transform for lengths of up
to 40962 = 224 ' 16 million elements. (On-chip memory
capacity will not be adequate for the largest sizes, but the
algorithm suffices for this full range of sizes.)

The overall data motion for the 1D FFT is shown in in
the left panel of Figure 5. Assuming that the data begins in
natural order, the first set of DFTs must operate on strided
data – essentially the “columns” of a row-major array. In
order to perform transforms on naturally ordered data, an array
transposition is required. In our design, this is performed while
the data is being loaded from the on-chip memory into the
core, and requires support for reading data at a stride of N2

complex elements.
The core performs the transform as described in the previous

section. The results (which are in bit-reversed order) are
written back to the SRAM array while applying bit-reversal
permutation to restore them to natural order.

The second set of DFTs in the four-step algorithm occur
on naturally contiguous data, but the “in-place” transforms of
the first step operated on transposed data and left the data in
transposed order, so a second transposition is required. This
second transposition can be included in the writeback of the
results from the first set of DFTs, or it can be included while
reading the data for the second set of DFTs. The SRAM
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Radix-4 Cycles 6NlogN
4 /n2

r

Twiddle Mult Cycles - - 6N/n2
r 4N/n2

r

Communication 4N = 2N (R)+2N (W) 6N = 4N (R)+2N (W)

Fig. 6. Different FFT core requirements for both overlapped and non-
overlapped versions of N ×N 2D and N2 1D FFTs.

memory system could be designed to handle the required
irregular addressing in either case, but the control is somewhat
simpler if a transposition is included while reading any data
for both sets of DFTs, rather than combining it with the bit-
reversal permutation in the writeback of the results of the first
set of DFTs.

The multiplication by the “twiddle factors” can easily be
handled in either the transposed or natural ordering. In this
design, it occurs after the data is read back into the core for
the second set of transforms, but before the second set of
transforms begins. The second DFT step therefore requires
twice the read bandwidth of the first set of DFTs, since both
the intermediate data and the twiddle factors must be read
from the SRAM to the core for this step.

After the intermediate data is read into the core (with
transposition) and multiplied by the twiddle factors, the second
set of DFTs can be performed on each contiguous row. As
each of these row DFTs is completed, the data is written from
core memory to the SRAM with the bit-reversal permutation
to return the data to natural order.

This completes 1D FFT, but the values are stored in the
transpose of the natural order. Given the ability of the SRAM
to source data in transposed order, it is assumed that subse-
quent computational steps will simply request the data in the
right format.

2) Algorithm for 2D FFTs: For a core capable of com-
puting 1D FFTs of lengths 64, . . . , 4096, two-dimensional
FFTs of sizes up to 4096 × 4096 are straightforward. These
transforms are similar to large 1D FFTs, but are simpler
to implement since there are no additional “twiddle factors”
required. Since the row transforms can be performed on
naturally contiguous data before the column transforms, the
2D FFT also requires less data transposition. The data motion
for the 2D FFT is shown in the right panel of Figure 5.
After the row transforms are produced and written back to
the SRAM (using bit-reversal to obtain natural ordering), the
data is read in transposed order to allow computation of the
column transforms. Once the second set of transforms are
computed and written back to memory, the SRAM will hold
the transpose of the full 2D FFT of the input data. As in the
1D case, subsequent processing steps can either use the data
in place with its transposed ordering or read the data out in
transposed order.

VI. ARCHITECTURE TRADE-OFFS AND CONFIGURATIONS

In previous sections, we provided the fundamentals for
mapping a Radix-4 based FFT transform to a modified LAC.
In this section, we describe the necessary modifications to the
PEs, the core, and the off-core SRAM to support the efficient
mapping of FFTs. We first describe analytical models before
demonstrating the tradeoff analysis using them.

A. Analytical models

The number of PEs in each row/column is denoted with
nr(=4) and problem sizes are chosen in the range of N =
64, . . . , 4096. Each FMA-optimized Radix-4 butterfly takes 24
cycles as presented in Section III. Therefore, an N -point FFT
requires a cycle count of TotalCycles = N/4×24× logN4 /n2

r .
We consider two cases in our analysis for FFT on the

core: no or full overlap of communication with computation.
Note that the FFT operation has a much higher ratio of
communication/computation (O(N)/O(N logN)) compared
to a typical level-3 BLAS operation like matrix multiplica-
tion (O(N2)/O(N3)). Therefore, the non-overlap FFT so-
lution suffers significantly resulting in low utilization. The
different cases of the core requirements are presented in
Figure 6.

a) Core constraints for 2D FFTs: For both stages of
the 2D FFT and the first stage of the 1D FFT, each core is
performing independent FFT operations on rows and columns.
The twiddle factors remain the same and therefore the core
bandwidth and local store size can be calculated as follows.
The amount of data transfer for a problem of size N includes
N complex inputs and N complex transform outputs resulting
in a total of 4N real number transfers. In case of no overlap,
data transfer and computation are performed sequentially. For
the case of full overlap, the average bandwidth for a FFT of
size N can be derived from the division of the total data trans-
fers by the total computation cycles as BWAvg = 2n2

r/3 log
N
4 .

However, out of logN4 stages, stage 2 utilizes row buses and
stage 3 uses column buses for inter-PE communications. If
column buses are used to bring data in and out of the PEs,
the effective required bandwidth is increased to BWeff =
2n2

r/3(log
N
4 −1).

The aggregate local store of PEs includes the N complex
input points and N complex twiddle factors. In the no-overlap
case, this amount of storage suffices since there is no need for
extra buffering capacity. However, the overlapped case requires
an extra N point buffer to hold the prefetched input values for
the next transform. Therefore, the aggregate PE local stores in
a core should be 6N floating-point values.

b) Core constraints for 1D FFTs: The second set of
FFTs in the “four-step” 1D FFT, require more input bandwidth
to the cores. Each core is performing independent FFT opera-
tions on rows. The twiddle factors are changing with each new
N point input vector. However, each twiddle factor is going
to be multiplied with the corresponding input before the FFT
computation gets started. An extra 4N real multiplications are
added to the total computations of this transform. Therefore
the total cycle count is TotalCycles = (6NlogN4 + 4N)/n2

r .
The amount of data transfer for a problem of size N includes
2N complex inputs (transform inputs and twiddle factors), and
N complex outputs resulting in a total of 6N real number
transfers. In case of no overlap, data transfer and computation
are performed sequentially. For the case of full overlap, the
average bandwidth for an FFT of size N can be derived from
the division of the total data transfers by the total computation
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cycles as BWAvg = 3n2
r/(3 log

N
4 +2). However, If column

buses are used to bring data in and out of the PEs, the effective
required bandwidth is increased (as in the 2D case described
above) to BWeff = 3n2

r/(3 log
N
4 −1) (see Figure 7).

Each N -point input to the core has to be pre-multiplied by
a different set of twiddle factors, so another buffer is needed
for the corresponding twiddle factors.

Finally, as described earlier, one can compute the 1D
discrete Fourier transform by splitting N into the product of
two integer factors, N = N1 × N2. Earlier we noted that
the fully-overlapped solution has lower communication load
for larger transform lengths. Noting also that the second set
of FFTs put more communication load on the core/external
memory, we expect that ordering the factors so that the larger
factor corresponds to the length of the second set of transforms
will provide more balanced memory transfer requirements.
Figure 8 demonstrates this effect for the case of a 64K point
1D FFT with three different options for 64K = N1 ×N2.

B. Architecture Configuration

In this section, we present a set of core modifications
suggested by the preceding analyses. Several options will be
presented for both the PE and the core to meet the data
handling and access pattern demands of the problem.

a) Core Configuration: Figure 7 shows the core band-
width and local store requirements for the overlapped and non-
overlapped algorithms. The utilization of the non-overlapped
version increases from 35% to 50% as the size of the transform
increases. The overlapped algorithm can fully utilize the FMA
units for all these sizes, maintaining its optimum utilization
of slightly over 83.3%. Depending on the FFT type (1D or
2D), the overlapped algorithm requires 33%∼50% extra local
storage.

Note that the non-overlapped bandwidth is assumed to be
at a fixed rate of four doubles/cycles, which is the maximum
capacity of the LAC. However, for the overlapped algorithm
at problem sizes N <= 1024, extra off-core bandwidth is re-
quired to attain the peak achievable efficiency. The chart on the
left side of Figure 7 shows that the maximum required off-core
bandwidth does not exceed eight doubles/cycle. Therefore,
the off-core bandwidth needs to double that of the original
LAC design. Furthermore, the PE must be able to overlap the
prefetching of input data and the post-storing of output data
from/to off-core memory concurrently with the computations.

Doubling the memory bandwidth could be implemented in
three ways: doubling the width of the column buses, doubling
the number of column buses, or connecting the row buses
to the off-core memory. The first choice would be complex
to implement, since the original column bus bandwidth is
matched to the PE-local SRAM bandwidth. The second choice
is not quite as complex, but still requires an expansion of the
PE local SRAM bandwidth. The best solution is therefore to
expand the memory interface so that both row and column
buses can transfer data to/from PEs. This solution does not
impose any area overhead for additional broadcast buses and
provides an interface to the memory that is always free of
inter-PE use during phases in which the column buses are
busy with inter-PE transfers. Further, this design is symmetric
and natively supports transposition.

b) PE Configuration: The PE micro-architecture must
perform the three tasks of Radix-4 butterfly computation, FFT
communication, and off-core communication concurrently.
Some extra logic and storage is needed to facilitate data
movements and locality. These options are described with the
help of Figure 9.

An 8-byte register file is needed to store the four complex
input, temporary, and output values of the FMA-optimized
Radix-4 butterfly (Figure 1). The twiddle factors take an extra
four registers. We separate these two register files to avoid
adding extra ports to the existing (large) register file and
hence save energy and area. The PE SRAM needs enough
bandwidth to provide data for both Radix-4 computations
and off-core communications. Each butterfly has six complex
inputs and produces four complex outputs. This data transfer
would require 20 cycles from a typical single-ported 8-byte
wide SRAM. The remaining four cycles of the 24-cycle radix-
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Fig. 9. New core and PE configurations for full-overlap FMA-optimized Radix-4 FFT: (a) Core with extended external row bus interface (b) FFT-optimized
core with two 8-byte, single-ported SRAMs (c) Modified linear algebra PE with two 8-byte, single-ported SRAMs to contain matrix A.

16Kbyte SRAM Wide Dual-port Separate
# SRAMs, # ports x bus-width 1,1x16 1, 2x16 2, 1x8

Cycle time (nS) 0.73 0.79 0.67
Energy per access (nJ) 0.010 0.009 0.005

Total area (mm2) 0.054 0.141 0.054
Max Power at Target Freq (mW) 0.010 0.017 0.010

Worst case FFT Access/Cycle 0.613 1.227 1.227
Worst Case FFT total dynamic energy (J) 0.006 0.011 0.006

Fig. 10. PE SRAM options and their area, performance, and energy
consumption report by CACTI [18].

4 compute phase do not provide enough time to implement the
required off-core communications. There are three solutions to
provide the required bandwidth to the PE-local stores: an extra
port to the same PE SRAM could be added, a wider (16 byte
wide) port could replace the existing port, or a separate SRAM
block with its own 8-byte port can be added.

A simple study of memory power and area consumption
of these options is presented in Figure 10. The dual ported
solution consumes much more power and area than the other
two. Hence, the wide solution needs extra buffering and a more
complicated control to transmit data to/from other components.
The two SRAM solution is the best one with the simplest
control. This FFT PE is presented in Figure 9(b). It has a
symmetric design with two separate buses – each is connected
to all the components in the PE and to one of the SRAMs.

So far, we have described the options for an FFT PE
that is based on the baseline architecture but is specifically
designed for FFT operation. If one starts with an existing linear
algebra PE to make a hybrid FFT/Linear Algebra architecture,
the register file design has to be extended with more ports
and more capacity to match the requirements of the FFT.
There are two options for extending this micro-architecture to
facilitate FFT bandwidth for the hybrid design. The original
linear algebra PE has one larger, single-ported SRAM and
one smaller, dual-ported SRAM. Since the smaller SRAM is
already dual ported, we must modify the larger SRAM to
provide extra bandwidth. As discussed above, the best solution
is to divide the larger SRAM into two halves and adding an
extra bus to the PE (see Figure 9(c)).

c) Off-core Memory Configuration: As noted in Sec-
tion VI, the maximum core bandwidth required for the non-
overlapping case is four double-precision elements per cy-
cle. The non-overlapped configuration requires an effective
bandwidth of up to eight double-precision elements per cycle
for problems sizes smaller than N=1024. Core changes are
required to support external bandwidths above four double-

N
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Overlap 
LS 1D FFT

Stage 1
All buses Free

Stage 2
Row Buses Busy

Stage 2
Column Buses Busy

24 Cycles 24 Cycles 24 Cycles

Row Bus

 Column Bus

READ

READWrite Write

Fig. 11. Schematic of data bus usage for fully overlapped pre-fetch/post-store
for the worst case of a 64-element FFT.

precision values per cycle, with the addition of memory
interfaces on the row buses providing the most symmetric
solution. The effective bandwidth required for pre-fetch/post-
store is decreased by opening up more cycles in which at least
one of the buses is not used.

For the case of double-precision complex data, the natural
data size is 2×64 = 128 bits. We consider whether a memory
with four ports (2 read, 2 write), each with 128 bit width, can
be matched to the instantaneous read and write requirements
of the core.

The worst case occurs for N = 64, where full overlap
of data transfers with computation requires that the external
memory be able to provide 256 double-precision elements
(64 complex input elements plus 64 complex twiddle factors)
and receive 128 double-precision elements (64 complex output
elements) during the 72 cycles required to perform the three
radix-4 computations. The proposed memory interface band-
width is clearly adequate to provide for the average traffic –
external SRAM requires 64 cycles (of the 72 available) to
provide the 256 words prefetched by the core for its next
iteration. The writes require only 32 of the 72 cycles, and
these can be overlapped with the reads.

The detailed scheduling is not particularly complex, but
does require careful design, as shown in Figure 11. Recall
(Figure 3) that during the first radix-4 step (24 cycles) of the
64-point FFT neither row nor column buses are in use, while
the row buses are in use during the second (24-cycle) radix-4
step and the column buses are in use during the third 24-cycle
radix-4 step. Since the SRAM requires 64 cycles to source the
read data, it is clear that reads must occur during all three of
these phases, and that reads must occur on the column buses
during phase 2 (while the row buses are busy) and on the
row buses during phase 3 (while the column buses are busy).
Similarly, the writes require 32 cycles at the SRAM, so they
must occur during at least two of the three phases.

If we further assume that only a single SRAM bank within
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each PE is available for this pre-fetch/post-store communi-
cation (with the other bank being used for the concurrent
computation step), then a PE can read or write to a row or
column bus, but cannot use both row and column buses in the
same cycle without additional buffering. Fortunately, due to the
shared bus architecture, each PE can only write to the column
bus on 1/4 of the cycles and can only write to the row bus on
1/4 of the cycles, so it is straightforward to swizzle the active
PEs so that no PE is both reading and writing on the same
cycle. For all cases with N > 64, there are additional radix-4
stages with no use of the row and column buses, making full
overlap of communication and computation easier to schedule.

VII. EXPERIMENTAL RESULTS AND IMPLEMENTATIONS

In this section, we present area, power and performance
estimates for the LAC with the modifications introduced in
previous sections.

A. Area and Power Estimation

The basic PE and core-level estimations of a LAC in 45nm
bulk CMOS technology are reported in [3], [5]. There, we
show that operation at 1GHz provides the best tradeoff be-
tween performance and efficiency. Power and area of floating-
point units use the measurements reported in [19]. CACTI [18]
is used to estimate the power and area consumption of mem-
ories, register files, look-up tables and buses.

Figure 12 reports the projected power and area consumption
of the components of the PE for the three different designs,
along with the corresponding design metrics. The power
consumption of the FFT design is considered for the worst
case and highest possible number of accesses. For the hybrid
design, we report a pair of numbers, one for GEMM and one
for FFT.

Figure 13 summarizes the power breakdown of the three
proposed designs. For the pure FFT and hybrid cores, the
“actual” power considers the worst case power consumption
when running an FFT. The maximum power breakdown shows
the “maximum power” that is used by the three different PE
designs. We observe that the power consumption is dominated
by the FPMAC unit, with secondary contributions from the
PE-local SRAMs.

Figure 14 demonstrates the efficiency metrics of the three
different PE designs. We can observe that the hybrid design has
lower efficiency when considering maximum power and area.
However, since the leakage power consumption of the SRAM
blocks are negligible, the actual power efficiency is maintained
in the hybrid PE. Note that in all cases, the efficiency numbers
are already scaled by achievable utilization of in all cases.
The area breakdown emphasizes that most of the PE area is
occupied by the memory blocks. The hybrid design has the
largest aggregate PE SRAM capacity.

B. Comparison to Other Processors

Figure 15 provides comparisons of estimated performance,
area, and power consumption between our proposed design
and several alternative processors [20], [21], [22], [23]. In

PE Design LAC FFT Hybrid

SRAM
Total SRAM Area (mm2) 0.070 0.054 0.073

Total SRAMs MAX Power (W) 0.013 0.010 0.015
Total SRAM Actual Dynamic Power (W) 0.005 0.006 0.006

Floating-Point Unit
FP Area (mm2) 0.042 0.042 0.042
FP Power (W) 0.031 0.031 0.031

Register File
RF Area (mm2) 0.000 0.008 0.008

RF MAx Power (W) 0.000 0.004 0.004
RF Actual Power (W) 0.000 0.003 0.003

Broad-cast Buses
Bus Area /PE (mm2) 0.014 0.014 0.014
Max Bus Power (W) 0.001 0.001 0.001

PE Total
Total PE Area (mm2) 0.126 0.119 0.138

Total PE MAx Power (W) 0.045 0.047 0.052
Total PE Real Power (W) (GEMM,FFT) 0.037 0.041 ( 0.037, 0.041 )

GFLOPS/W (GEMM, FFT) 53.82 40.53 ( 53.80, 40.50 )
GFLOPS/MAX W (GEMM, FFT) 44.59 35.80 ( 38.55, 32.12 )

GFLOPS/mm2 (GEMM, FFT) 15.84 14.00 ( 14.54, 12.11 )
W/mm2 0.334 0.391 0.377

Fig. 12. PE designs for dedicated LAC, dedicated FFT, and a hybrid design
that can perform both operations.

each case, we limit the comparison to double-precision 1D
FFT performance for problem sizes that fit into either the first
and/or second levels of SRAM or cache. All area and power
estimates are scaled to 45nm technology and include only the
cores and SRAM. Such comparisons are necessarily coarse due
to the disparate nature of the data sources – some are based
on detailed engineering specifications, some on measurements
with full-system hardware, and in a few cases power consump-
tion values were estimated based on published thermal design
power of products (and then adjusted as discussed above). In
each case the proposed FFT engine provides at least an order
of magnitude advantage in performance per watt and unit area.

VIII. CONCLUSIONS AND FUTURE WORK

Starting with a baseline linear algebra architecture, this
paper presents analysis and modification of the design to
efficiently support 1D and 2D complex FFT algorithms. A
thorough analysis of the similarities and differences between
the BLAS3 and FFT algorithms at the level of computa-
tional data dependence, inter-PE communication, and off-
core communication was performed. We demonstrate how
careful algorithm analysis for the target architecture, combined
with judiciously chosen data-path modifications, allowed us to
produce a highly efficient accelerator for FFT operations with
minimal changes to the original linear algebra core. Finally,
we present a hybrid core that can perform both algorithms
while maintaining the efficiency characteristic of the original
application-specific design.

Our results show that this hybrid design can achieve up to
40 GFLOPS/W power efficiency for double-precision complex
FFTs with 83% effective utilization of the FMAC units. For
future work we plan to investigate multi-core versions of our
design, including exploration of the next layers of memory
hierarchy down to DRAM. We also plan to look into further
specialization of FFT designs on the same core to achieve
better utilization and efficiency using custom built FP units.
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Fig. 13. Actual and maximum PE power consumption of each design for target applications at 1GHz.

0	
  
5	
  

10	
  
15	
  
20	
  
25	
  
30	
  
35	
  
40	
  
45	
  
50	
  
55	
  
60	
  

GFLOPS/W	
  	
   GFLOPS/mm^2	
  	
   GFLOPS/MAX	
  W	
  	
  

LAC	
  
Hybrid	
  GEMM	
  
FFT	
  
Hybrid	
  FFT	
  

0.00	
  

0.02	
  

0.04	
  

0.06	
  

0.08	
  

0.10	
  

0.12	
  

0.14	
  

0.16	
  

LAC	
   Hybrid	
   FFT	
  

m
m
^2
	
   BC	
  Buses	
  

Registers	
  

FP-­‐MAC	
  

SRAM(s)	
  

Fig. 14. Left: Efficiency parameters for the target applications. Right: Total area breakdown of the PE for each design.

Platform Problem size Cache/SRAM Peak FFT Nominal Power Area GFLOPS/Watt GFLOPS /mm2 Utilization
Running FFT fits in KBytes GFLOPS GFLOPS (Watt) (mm2)
Hybrid Core On-core SRAM 288 32.0 26.7 0.66 2.2 40.50 12.12 83.3%

Hybrid Core+ SRAM Off-core SRAM 2336 32.0 26.7 0.96 13.2 27.7 2.01 83.3%
Xeon E3-1270 (1 core) L1 cache 32 27.2 18.0 28 27.7 0.64 0.65 66.2%

ARM Cortex A9 (1 GHz) L1 cache 32 1.0 0.6 0.28 6.3 2.13 0.09 60.0%
PowerXCell 8i SPE SPE local RAM 2048 102.4 12.0 64 102 0.19 0.12 11.7%

NVIDIA Tesla C2050 L1+L2 cache 1728 515.2 110.0 150.00 529.0 0.73 0.21 21.3%

Fig. 15. Comparison between the proposed hybrid core and several alternatives for cache-contained double-precision FFTs scaled to 45nm.
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