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Abstract

This paper examines the scalable parallel implementation of QR factorization of a general matrix,
targeting SMP and multi-core architectures. Two implementations of algorithms-by-blocks are presented.
Each implementation views a block of a matrix as the fundamental unit of data, and likewise, operations
over these blocks as the primary unit of computation. The first is a conventional blocked algorithm
similar to those included in libFLAME and LAPACK but expressed in a way that allows operations in
the so-called critical path of execution to be computed as soon as their dependencies are satisfied. The
second algorithm captures a higher degree of parallelism with an approach based on Givens rotations
while preserving the performance benefits of algorithms based on blocked Householder transformations.
We show that the implementation effort is greatly simplified by expressing the algorithms in code with
the FLAME/FLASH API, which allows matrices stored by blocks to be viewed and managed as matrices
of matrix blocks. The SuperMatrix run-time system utilizes FLASH to assemble and represent matrices
but also provides out-of-order scheduling of operations that is transparent to the programmer. Scalability
of the solution is demonstrated on a ccNUMA platform with 16 processors.

1 Introduction

The process of extracting parallelism from commonly used libraries must be reevaluated with the emergence
of SMP architectures with many processors, multi-core systems that will soon have many cores, and hardware
accelerators such as the Cell processor [3, 23]. These “many-threaded” architectures change many of the
parameters that have driven the development of previous generations of such libraries. In particular, cores
will be faster, latencies will be lower, the amount of memory per core will be smaller—causing data locality
to be of greater concern—and parallelism will be demanded for smaller problems. In this paper, we explore
techniques that may become part of the solution in the context of one dense linear algebra operation, the
QR factorization [14, 39], which is among the most useful (and challenging) operations to parallelize.

Traditional algorithms for QR factorization based on Householder transformations, along with LU fac-
torization with partial pivoting, exhibit a shared property: periodically, a column of the matrix must be
updated as part of a sub-operation that resides along the critical path of execution. In order to compute
the k-th Householder transformation, the k-th column must have been updated with respect to all previ-
ous transformations. This property significantly constrains the order in which the computations may be
performed.

The problem is compounded by the fact that, for scalability and data locality, it is best to view and
store the matrix as a two dimensional array of submatrices (blocks) and to compute sub-operations (tasks)
with these blocks. This fact creates a situation where the column needed for computing the Householder
transformation most likely spans more than one block. Viewing and storing matrices by blocks was also
observed for out-of-core dense linear algebra computations [34] and the implementation of dense linear
algebra operations on distributed-memory architectures [18, 33, 37].
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In this paper we explain how to continue to achieve high performance while keeping the underlying
implementation simple. The contributions of this paper include the following:

• We demonstrate that high performance can be attained by programs written at a high level of abstrac-
tion, even those that implement algorithms for complex operations within sophisticated environments
such as many-threaded architectures.

• We compare and contrast traditional blocked algorithms for the QR factorization via Householder
transformations to a new algorithm-by-blocks that is similar to a blocked implementation of the QR
factorization via Givens rotations.

• We show how the FLASH extension of FLAME elegantly supports storage by blocks for these algorithms
and also how the SuperMatrix run-time system transparently supports out-of-order computation on
blocks.

This paper is structured as follows. In Section 2 we review the description of the QR factorization via
Householder transformations from [16]. Then, in Section 3, we present two algorithms-by-blocks. The first
is an implementation of the conventional algorithm found in LAPACK [2] and libFLAME [4, 15] which is
improved to advance operations that are in the critical path from “future” iterations. The second algorithm
exploits parallelism through an approach based on Givens rotations while maintaining both level-3 BLAS
performance and the reduced computational cost of the QR factorization via Householder transformations.
The implementation of these algorithms using the FLAME/FLASH API is outlined in Section 4. In Sec-
tion 5 we demonstrate the scalability of these solutions on an SGI Altix 350 composed of 16 Intel Itanium2
processors, and in Section 6 we provide a few concluding remarks.

In the paper, we adopt the following conventions. Matrices, vectors, and scalars are denoted by upper-
case, lower-case, and lower-case Greek letters, respectively. The identity matrix is denoted by I and e0 will
denote the first column of this matrix. The dimensions and lengths of such matrices and vectors are generally
obvious from the context.

Algorithms in this paper are given in a notation that we have developed as part of the FLAME project [4,
15]. If one keeps in mind that the thick lines in the partitioned matrices and vectors relate to how far the
computation has proceeded, we believe the notation is mostly intuitive. Otherwise, we suggest that the
reader consult some of these related papers for a broader review of the FLAME methodology.

2 Computing the QR factorization via Householder Transforma-

tions

Given an m × n real-valued matrix A, with m ≥ n, its QR factorization is given by A = QR where the
m × m matrix Q is orthogonal (that is, QT Q = QQT = I), and the m × n matrix R is upper triangular.

There are many different methods for computing the QR factorization, including those based on Givens
rotations, orthogonalization via Gram-Schmidt and Modified Gram-Schmidt, and Householder transforma-
tions [14, 39].

For dense matrices, the method of choice largely depends on how the factorization is subsequently used,
the stability of the system, and the dimensions of the matrix. For problems where m ≫ n, the method based
on Householder transformations is typically the algorithm of choice, especially when Q does not need to be
explicitly computed.

2.1 Householder transformations (reflectors)

Given the real-valued vector x of length m, partition x =

(

χ0

x1

)

, where χ0 equals the first element of x. The

Householder vector associated with x is defined as the vector u =

(

1
x1/ν0

)

, where ν0 = χ0 +sign(χ0)‖x‖2.
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Algorithm: [A, b] := QRunb(A)

Partition A→

„

ATL ATR

ABL ABR

«

and b→

„

bT

bB

«

where ATL is 0× 0 and bT has 0 elements

while n(ABR) 6= 0 do
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Figure 1: Unblocked Householder QR factorization.

If β = 2
uT u

then (I − βuuT )x = ηe0, annihilating all but the first element of x, which becomes η =
−sign(χ0)‖x‖2. The transformation I − βuuT is referred to as a Householder transformation or reflector.

Let us introduce the notation [u, η, β] := h(x) as the computation of the above mentioned η, u, and β
from vector x and the notation H(x) for the corresponding transformation (I−βuuT ). An important feature
of H(x) is that it is orthogonal and symmetric (H(x)T = H(x)).

2.2 A simple (unblocked) algorithm

The computation of the QR factorization proceeds as described in Figure 1. The idea is that Householder
transformations are computed to successively annihilate all the subdiagonal elements of matrix A. The
Householder vectors are stored by overwriting those elements that have been previously annihilated. Upon
completion, matrix R will have overwritten the upper triangular part of the matrix while the Householder
vectors are stored in the strictly lower trapezoidal part of the matrix. The scalars β discussed above are
stored in the vector b of length n. The cost of this algorithm is 2n2(m − n/3) floating-point arithmetic
operations (FLOPs).

If the matrix Q is explicitly desired, it can be formed by carefully accumulating the product H0 ·
H1 · · ·Hn−1 = Q, where Hk equals the (k + 1)-th Householder transformation computed as part of the
factorization described above. Frequently, Q does not need to be formed explicitly, and thus we will not
discuss the issue further.

2.3 A high-performance (blocked) algorithm

It is well-known that high performance can be achieved in a portable fashion by casting algorithms in terms
of matrix-matrix multiplication [10, 12]. We now review this technique as applied to the QR factorization [6].

Two observations play a key role:

• Let u0, . . . , us−1 equal the first s Householder vectors computed as part of the factorization and let
β0, . . . , βs−1 be the corresponding scalars so that Hj = (I − βjuju

T
j ), j = 0, . . . , s − 1. Then H0 ·

H1 · · ·Hs−1 = I + UsSsU
T
s , where Us is an n × s unit lower-trapezoidal matrix, Ss is an s × s upper-

triangular matrix, and the subdiagonal of the (j + 1)-th column of Us equals uj, j = 0, . . . , s − 1.
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Algorithm: [A, S] := QRblk(A)

Partition A→

„

ATL ATR

ABL ABR

«

and S →

„

ST

SB

«

where ATL is 0× 0 and ST has 0 rows

while n(ABR) 6= 0 do
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where A11 is s× s and S1 has s rows
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Figure 2: Blocked Householder QR factorization.

• The QR factorization of the first k columns of A yields the same k vectors uk and the same values in
the upper triangular part of those k columns as would a full QR factorization.

These two observations underlie the blocked algorithm given in Figure 2. Provided s ≪ m, n the cost of this
algorithm equals that of the unblocked algorithm. The algorithm returns the s × s upper triangular “S1”
matrices that are part of the block Householder transformation stored into an n×s matrix S. This algorithm
represents a departure from traditional implementations such as those found in LAPACK [2] and will allow
us to avoid recomputation of those matrices. In [21, 30, 38], a slightly more efficient way of accumulating
Householder transformations is given, which we call the UT-transform. Since the compact WY-transform
I + USUT [32] is better known, we focus our discussion on it instead.

2.4 Parallelism within the BLAS

Implementations of the QR factorization, whether unblocked or blocked, typically are written so that the
bulk of the computation is performed by the Basic Linear Algebra Subprograms (BLAS), which export a
standardized interface to common operations such as matrix-vector (level-2 BLAS [11]) and matrix-matrix
multiplication (level-3 BLAS [10]).

Parallelism can be attained within each invocation of a BLAS routine with the following benefits:

• The approach allows legacy libraries, such as LAPACK, to be used without modifying the library
source code.

• Parallelism within sub-operations, e.g., the update of

(

A12

A22

)

, can be achieved through multithreaded

implementations of the BLAS.

Disadvantages of this approach, on the other hand, include:

• The degree of parallelism achieved is potentially limited by the efficiency of the underlying multi-
threaded BLAS implementation.

• The end of each BLAS routine executed becomes an implicit synchronization point (or barrier) for the
threads.
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• For many operations the choice of algorithmic variant can significantly impact performance [5].

In the next section we propose two algorithms to overcome these difficulties.

3 Algorithms-by-blocks

Since the early 1990s, various researchers [9, 13, 20, 29] have proposed that matrices should be stored by
blocks rather than the more customary column-major storage used in Fortran and row-major storage used
in C. Storing matrices by blocks recursively reflects a generalization of that idea. It was originally thought
that storing submatrices contiguously would yield a performance improvement due to improved data locality.
More recently, we have further advocated that matrices should not only be stored by blocks but also viewed
as blocks through appropriate abstraction mechanisms [7, 8, 26]. These abstractions simplify the task of
expressing basic units of computations in terms of submatrices.

For our discussion below, it suffices to think of matrices as being partitioned into square blocks. In other
words, there is one level of recursion in the data structure. When considering the algorithm descriptions,
the reader need not concern himself with how the blocks are physically stored.

Consider for simplicity that m = mss and n = nss with ms, ns being two integers and s the block size,
then we envision the partitioned matrix in a typical state at the top of the loop in the algorithm in Figure 2
as

A =





















{U\R}0,0 . . . R0,k−1 R0,k . . . R0,ns−1

...
. . .

...
...

. . .
...

Uk−1,0 . . . {U\R}k−1,k−1 Rk−1,k . . . Rk−1,ns−1

Uk,0 . . . Uk,k−1 Ak,k . . . Ak,ns−1

...
. . .

...
...

. . .
...

Ums−1,0 . . . Ums−1,k−1 Ams−1,k . . . Ams−1,ns−1





















, (1)

where all blocks in A, R, U are s× s. Here the thick and thin lines are visual hints to indicate that, in the
repartitioning at the top of the algorithm loop,

A11 = Ak,k, A21 =







Ak+1,k

...
Ams−1,k






, etc.

3.1 Algorithm-by-blocks I

Our first algorithm that exploits viewing the matrix as a collection of blocks implements the algorithm in
Figure 2. We assume that no parallelism will be extracted from the factorization of the current panel (that
is, within the call to the unblocked algorithm).

We discuss each operation in the body of the loop separately:

• The factorization of the current panel,
[(

A11

A21

)

, b1

]

:=

[(

{U\R}11

U21

)

, b1

]

= QRunb

((

A11

A21

))

,

poses an inherent problem due to our basic assumption that no parallelism occurs within this operation.

Our algorithm copies the individual blocks in

(

A11

A21

)

to a temporary matrix so that it can be factored

using a single-threaded conventional unblocked algorithm, after which the result is copied back into
the original blocks.

Optimization: Since this operation is inherently sequential, it is desirable to use a sequential blocked
algorithm with a block smaller than s to cast the computation in terms of level-3 BLAS operations,
similar to the recursive algorithm in [13, 35].
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• Compute S1. In [21, 30, 38], it is shown how this operation can be cast so that essentially all compu-
tation occurs in the operation UT

11U11 + UT
21U21 which, in terms of the partitioned matrix in (1), can

be obtained as

UT
11U11 + UT

21U21 =







Uk,k

...
Ums−1,k







T 





Uk,k

...
Ums−1,k







= (Uk,k)T Uk,k + (Uk+1,k)T Uk+1,k + · · · + (Ums−1,k)T Ums−1,k.

Therefore, a certain degree of parallelism can be obtained at the expense of a careful summation of
contributions from different threads. For simplicity, in our implementation this operation is combined
with the factorization of the current panel and performed by only one thread. The cost of computing
S1 in this manner is similar to that of the factorization of the current panel.

• The bulk of independent computations comes from the update
(

A12

A22

)

:=

(

I +

(

U11

U21

)

S1

(

UT
11 UT

21

)

) (

A12

A22

)

,

which can be decomposed as follows:

– First, use a temporary matrix W to compute

W :=

(

U11

U21

)T (

A12

A22

)

=







Uk,k

...
Ums−1,k







T 





Ak,k . . . Ak,ns−1

...
. . .

...
Ams−1,k . . . Ams−1,ns−1






,

(2)

which exposes ample parallelism in form of the computations (U i,k)T Aij , i = k, . . . , ms − 1,
j = k, . . . , ns − 1.

– Next, perform W := S1W by multiplying each s × s block in W as

W := S1W =
(

S1W
k+1 . . . S1W

ns−1
)

. (3)

– Finally, compute
(

A12

A22

)

:=

(

A12

A22

)

+

(

U11

U21

)

W

=







Ak,k+1 . . . Ak,ns−1

...
. . .

...
Ams−1,k . . . Ams−1,ns−1






+







Uk,k

...
Ums−1,k







(

W k+1 · · · Wns−1
)

,

(4)
which again exposes ample parallelism in the form of individual computations Ai,j := Ai,j +
U i,kW j , i = k, . . . , ms − 1, j = k + 1, . . . , ns − 1.

The fundamental question now becomes how to create as much parallelism as possible without the
factorization of the current panel and the formation of S1 becoming a bottleneck because of dependencies.
This problem is addressed by applying updates to future panels as early as possible so that the factorization
of those panels can commence by one thread while other updates of later panels are being performed by
other threads. While this idea is conceptually simple, it is often painful to implement. In Section 4 we will
discuss how to manage the complexity that arises when employing this technique.

The algorithm-by-blocks described above is reminiscent of the algorithm by Toledo [35] for out-of-core QR
factorization when blocks are stored contiguously out-of-core. In Toledo’s algorithm, the QR factorization

of

(

A11

A21

)

requires a block to be brought into memory a few columns at a time, which requires copying

from storage-by-blocks to a “flat” matrix so that an in-core factorization of those columns can proceed.
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3.2 Algorithm-by-blocks II

An alternative approach to computing the QR factorization uses Givens rotations. Given a vector

(

χ0

χ1

)

,

γ and σ can be determined so that γ2 + σ2 = 1 (γ and σ are the cosine and sine of an angle, thus the name

“rotation”) and

(

γ σ
−σ γ

) (

χ0

χ1

)

=

(

χ̌0

0

)

with χ̌0 = ±
√

χ2
0 + χ2

1.

Givens rotations can be used to compute the QR factorization of an m × n matrix A = (αi,j) observing
that, by choosing χ0 = α0,0 and χ1 = α1,0 in the above discussion, then















γ σ 0 . . . 0
−σ γ 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1





























α0,0 α0,1 α0,2 . . . α0,n−1

α1,0 α1,1 α1,2 . . . α1,n−1

α2,0 α2,1 α2,2 . . . α2,n−1

...
...

...
. . .

...
αm−1,0 αm−1,1 αm−1,2 . . . αm,n−1















=















α̌0,0 α̌0,1 α̌0,2 . . . α̌0,n−1

0 α̌1,1 α̌1,2 . . . α̌1,n−1

α2,0 α2,1 α2,2 . . . α2,n−1

...
...

...
. . .

...
αm−1,0 αm−1,1 αm−1,2 . . . αm−1,n−1















.

In practice, α̌0,0 = χ̌0,0 overwrites α0,0 while

(

α̌0,j

α̌1,j

)

=

(

γ σ
−σ γ

) (

α0,j

α1,j

)

, j = 1, . . . , n− 1, overwrite

the corresponding elements of A. By similarly computing and applying rotations with α0,0 and αi,0, i =
2, . . . , m − 1, all elements of the first column below the diagonal are annihilated, after which the process is
repeated with the submatrix that starts at α1,1.

The order in which elements are annihilated is not unique. On distributed-memory parallel architectures,
it was often suggested to use the pair αi−1,0 and αi,0 to annihilate αi,0, i = m − 1, . . . , 1 before moving on
to the next column. This procedure allows for nearest-neighbor communication on a mesh of processors and
can create a “wavefront” of computation [27].

The problem with using Givens rotations is that the bulk of the computations in these transformations
is cast in terms of vector operations (level-1 BLAS [24]), which do not attain high performance on current
architectures with deep cache hierarchies. For instance, the application of the first rotation,

(

γ σ
−σ γ

) (

α0,1 α0,2 . . . α0,n−1

α1,1 α1,2 . . . α1,n−1

)

=

(

α̌0,1 α̌0,2 . . . α̌0,n−1

α̌1,1 α̌1,2 . . . α̌1,n−1

)

,

requires O(n) operations on O(n) data, limiting the speed of the processor to that of the memory subsystem.
In addition, computing the QR factorization using Givens rotations is more expensive, as it requires about
3n2(m−n/3) FLOPs—that is, n2(m−n/3) FLOPs more than the corresponding operation via Householder
transformations.

Thus, the natural question becomes whether a blocked version of this algorithm can be attained that 1)
performs roughly the same number of operations as the classic Householder QR factorization, 2) employs
level-3 BLAS operations, and 3) exhibits the same level of parallelism as the algorithm that employs Givens
rotations. We show next that such an implementation is indeed possible.

Assume for simplicity that A can be partitioned into mt × nt blocks of size t × t, with m = mtt and
n = ntt,

A =















M0,0 M0,1 M0,2 . . . M0,nt−1

M1,0 M1,1 M1,2 . . . M1,nt−1

M2,0 M2,1 M2,2 . . . M2,nt−1

...
...

...
. . .

...
Mmt−1,0 Mmt−1,1 Mmt−1,2 . . . Mmt−1,nt−1















.
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The first step is to compute the QR factorization M0,0 = Q0,0R0,0 using an algorithm based on Householder
transformations and to update the remaining blocks in the first block row of A accordingly:

A :=















(Q0,0)T 0 0 . . . 0
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I





























M0,0 M0,1 M0,2 . . . M0,nt−1

M1,0 M1,1 M1,2 . . . M1,nt−1

M2,0 M2,1 M2,2 . . . M2,nt−1

...
...

...
. . .

...
Mmt−1,0 Mmt−1,1 Mmt−1,2 . . . Mmt−1,nt−1















=















R0,0 M̃0,1 M̃0,2 . . . M̃0,nt−1

M1,0 M1,1 M1,2 . . . M1,nt−1

M2,0 M2,1 M2,2 . . . M2,nt−1

...
...

...
. . .

...
Mmt−1,0 Mmt−1,1 Mmt−1,2 . . . Mmt−1,nt−1















.

(Notice that in this entire discussion, we refer to “applying” a matrix Q, which is never formed explicitly.
Instead, acculmulated Householder transformations are applied.) Provided t is large enough, the computation
of this t × t factorization can be performed using the blocked algorithm in Figure 2 choosing s ≪ t. This
factorization results in a level-3 BLAS algorithm that performs approximately 4t3/3 FLOPs. The application
of the Householder transformations to the remaining portion of the first block row may be similarly expressed
in terms of level-3 BLAS operations, incurring a cost of 2t3(nt − 1) FLOPs.

Next, the QR factorization
(

R0,0

M1,0

)

= Q1,0R1,0 =

(

Γ1,0 Σ0,1

Σ1,0 Γ0,1

) (

Ř0,0

0

)

(5)

is computed using the algorithm based on Householder transformations, and the corresponding transforma-
tions are applied to the first two block rows:

A :=















(Γ1,0)T (Σ1,0)T 0 . . . 0
(Σ0,1)T (Γ0,1)T 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I





























R0,0 M̃0,1 M̃0,2 . . . M̃0,nt−1

M1,0 M1,1 M1,2 . . . M1,nt−1

M2,0 M2,1 M2,2 . . . M2,nt−1

...
...

...
. . .

...
Mmt−1,0 Mmt−1,1 Mmt−1,2 . . . Mmt−1,nt−1















=















Ř0,0 M̌0,1 M̌0,2 . . . M̌0,nt−1

0 M̌1,1 M̌1,2 . . . M̌1,nt−1

M2,0 M2,1 M2,2 . . . M2,nt−1

...
...

...
. . .

...
Mmt−1,0 Mmt−1,1 Mmt−1,2 . . . Mmt−1,nt−1















.

Here, the pre-multiplication by

(

Γ1,0 Σ0,1

Σ1,0 Γ1,1

)T

merely represents the action of the Householder transfor-

mations that resulted from the factorization of

(

R0,0

M1,0

)

with the Householder transformations overwriting

M1,0. The application of these transformations to

(

M0,j

M1,j

)

, j = 1, . . . , nt−1, only requires the transforma-

tions stored in M1,0 in addition to the blocks being updated since zeroes in R0,0 can be “preserved” [16, 28].
Moreover, by exploiting the upper triangular structure of R0,0, the cost of the QR factorization in (5) is
reduced to t2(s + 2t) FLOPs and the update of the remaining part of the first two block rows becomes
t2(s + 4t)(nt − 1) FLOPs. Level-3 BLAS performance can still be attained from these two classes of opera-
tions while exploiting the block upper triangular structure of R0,0. For that purpose, we employ a blocked
algorithm that operates on s columns at a time, which has been used previously in the context of the com-
putation of a “tiled” out-of-core QR factorization in [16] and the computation of the matrix disk function
of a matrix pencil in [28].
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The factorization proceeds like the algorithm based on Givens rotations, annihilating the remaining
blocks below the diagonal block of the first column block, from i = 2, . . . , mt − 1, and exploiting the upper
triangular structure of the diagonal block. After that, the process is repeated with the submatrix that starts
at M1,1. Thus, one can conceptually think of this procedure as an algorithm based on Givens rotations that
computes with blocks as the unit of data.

Provided t ≪ m, n and neglecting lower order terms, the overall cost of the algorithm-by-blocks II is

∑nt−1
k=0

(

4t3/3 +
∑nt−1

j=k+1 2t3 +
∑mt−1

i=k+1

(

t2(s + 2t) +
∑nt−1

j=k+1 t2(s + 4t)
))

≈
∑nt−1

k=0

∑mt−1
i=k+1

∑nt−1
j=k+1 t2(s + 4t)

≈ 2n2(m − n/3)
(

1 + s
2t

)

FLOPs.

This cost equals that of the QR factorization of an m × n matrix using Householder transformations when
s ≪ t, in which case s/t → 0 and the overhead becomes negligible. In practice, the ratio s/t is small and the

overhead is minor. For instance if s = 16 and t = 256, the algorithm only incurs s/(2t)
1+s/(2t) ≈ 3% overhead.

These values of s and t are close to the optimal values determined empirically during our study.
The level of parallelism realized from the algorithm-by-blocks II depends on the size of t relative to

the problem dimension where smaller values of t provide a higher level of concurrency. Unfortunately,
decreasing t may negatively affect the performance of the algorithmic subproblems since s must be decreased
correspondingly if overhead is to be kept low. In these small blocksize situations, level-3 BLAS performance
is less likely to be attained due to the smaller matrix dimensions.

4 Tools

In this section we briefly review some of the tools that the FLAME project puts at our disposal.

4.1 The FLAME/C API

FLAME is a methodology for deriving and implementing dense linear algebra operations [4, 15]. For this
discussion it suffices to focus on the FLAME API for the C programming language, which allows the algorithm
in Figure 2 to be represented in code as shown in Figure 3 (left).

4.2 FLASH

While several studies have been performed in the past on the benefits of storing matrices by blocks [9, 13,
20, 29], the fundamental problem with this approach is that the coding effort becomes very complex. Some
researchers have tried to solve this via programming language solutions [36, 40] while others view matrices
as higher dimensional arrays to capture the levels of blocking [1, 17].

We have observed that, conceptually, one naturally thinks of matrices stored by blocks as matrices of
matrices. As a result, if the API encapsulates information that describes a matrix in an object, as FLAME
does, and allows an element in a matrix to itself be a matrix object, then algorithms over matrices stored by
blocks can be represented in code at the same high level of abstraction as the algorithm in Figure 3 (right).
This layering may be instantiated recursively if multiple levels of hierarchy in the matrix are to be exposed.
We call this extension to the FLAME API the FLASH API [26]. Examples of how simpler operations can
be transformed from FLAME to FLASH implementations can be found in [7, 8].

4.3 SuperMatrix

Finally, we observe that given an API that views matrices as composed of unit blocks and an algorithm
implemented using this API, the inner workings of the library can be changed so that instead of executing
operations over blocks, a directed acyclic graph (DAG) is built that represents all tasks that need to be
performed together with their dependencies. The DAG is then combined with a run-time system that
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FLA_Error FLA_QR_blk( FLA_Obj A, FLA_Obj S, int nb_alg )

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Obj ST, S0,

SB, S1,

S2;

int s;

FLA_Part_2x2( A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL );

FLA_Part_2x1( S, &ST,

&SB, 0, FLA_TOP );

while ( FLA_Obj_width ( ABR ) != 0 )

{

s = min( nb_alg, FLA_Obj_width( ABR ) );

FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

s, s, FLA_BR );

FLA_Repart_2x1_to_3x1( ST, &S0,

/* ** */ /* ** */

&S1,

SB, &S2, s, FLA_BOTTOM );

/*------------------------------------------------------------*/

/* [ ( A11, := QR_accum_S_unb( ( A11,

A21 ), S1 ] A21 ) ); */

FLA_QR_accum_S_unb( A11,

A21, S1 );

/* ( A11, := I + ( U11 * S1 * ( U11^T U21^T ) * ( A12,

A22 ) U21 ) A22 ) */

FLA_QR_update_blk( A11, A12,

A21, A22, S1 );

/*------------------------------------------------------------*/

FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL );

FLA_Cont_with_3x1_to_2x1( &ST, S0,

S1,

/* ** */ /* ** */

&SB, S2, FLA_TOP );

}

return FLA_SUCCESS;

}

FLA_Error FLASH_QR_blk( FLA_Obj A, FLA_Obj S )

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Obj ST, S0,

SB, S1,

S2;

FLA_Part_2x2( A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL );

FLA_Part_2x1( S, &ST,

&SB, 0, FLA_TOP );

while ( FLA_Obj_width ( ABR ) != 0 )

{

FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

1, 1, FLA_BR );

FLA_Repart_2x1_to_3x1( ST, &S0,

/* ** */ /* ** */

&S1,

SB, &S2, 1, FLA_BOTTOM );

/*------------------------------------------------------------*/

/* [ ( A11, := QR_accum_S_unb( ( A11,

A21 ), S1 ] A21 ) ); */

ENQUEUE_FLA_QR_accum_S_unb( A11,

A21, S1 );

/* ( A11, := I + ( U11 * S1 * ( U11^T U21^T ) * ( A12,

A22 ) U21 ) A22 ) */

FLASH_QR_update_blk( A11, A12,

A21, A22, S1 );

/*------------------------------------------------------------*/

FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL );

FLA_Cont_with_3x1_to_2x1( &ST, S0,

S1,

/* ** */ /* ** */

&SB, S2, FLA_TOP );

}

FLASH_Queue_exec( );

return FLA_SUCCESS;

}

Figure 3: FLAME/C (left) and SuperMatrix (right) implementation of the blocked algorithm in Figure 2.

dynamically schedules tasks for execution as dependencies are fulfilled. These two phases—constructing the
DAG (analyzer) and scheduling the tasks (scheduler/dispatcher)—can take place transparently regardless of
the algorithm used in the library routine.

In Figure 3 (right) we present the SuperMatrix implementation of the algorithm-by-blocks I. The call to
ENQUEUE FLA QR accum S unb enqueues a single task which will be responsible for both the factorization of
the current column block and the construction of S1. The call to FLASH QR update blk decomposes itself
into component tasks, which are then placed on a task queue corresponding to the operations identified
in (2), (3), and (4). Once all tasks are enqueued, the DAG is complete, and a call to FLASH Queue exec

initiates parallel execution. When a task completes execution, all dependent tasks that use blocks updated
by the recently completed task are “notified”. Once a notified task has all of its dependencies fulfilled, it
is marked as ready and available and then enqueued at the tail of the waiting queue. Idle threads dequeue
tasks from the head of this second queue until all tasks have been executed. We call this extension to FLASH
the SuperMatrix run-time system since it allows out-of-order computation similar to machine instructions
within superscalar architectures [19]. For further details on SuperMatrix, see [7, 8].

We used OpenMP to provide multithreading facilities where each thread executes asynchronously. We
have also implemented SuperMatrix using the POSIX threads API to reach a broader range of platforms.

Approaches that hide complexity similar to SuperMatrix have been described for more irregular problems
in the frame of the Cilk project [25] (for problems that can be easily formulated as divide-and-conquer, unlike
the QR factorization) and also for general problems but with the specific target of the Cell processor in the
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CellSs project [3].

5 Experiments

In this section, we examine various multithreaded implementations for the QR factorization in order to assess
the potential performance benefits offered by SuperMatrix out-of-order scheduling.

All experiments were performed on an SGI Altix 350 server using double-precision floating-point arith-
metic. This ccNUMA architecture consists of eight nodes, each with two 1.5 GHz Intel Itanium2 processors,
providing a total of 16 CPUs and a peak performance of 96 GFLOPs/sec. (96×109 floating point operations
per second). The nodes are connected via an SGI NUMAlink connection ring and collectively provide 32 GB
(32 × 230 bytes) of general-purpose physical RAM. The OpenMP implementation provided by the Intel C
Compiler served as the underlying threading mechanism used by SuperMatrix. Performance was measured
by linking to the BLAS in Intel’s Math Kernel Library (MKL) version 8.1.

We report the performance (in GFLOPs/sec.) of the following four parallelizations of the QR factoriza-
tion:

• LAPACK dgeqrf + multithreaded MKL. LAPACK 3.0 routine DGEQRF (QR factorization) linked
to multithreaded BLAS in MKL 8.1.

• Multithreaded MKL dgeqrf. Multithreaded implementation of routine DGEQRF (QR factorization)
in MKL 8.1.

• AB-I + serial MKL + FLASH. Our implementation of the algorithm-by-blocks I (AB-I), with
matrices stored hierarchically using the FLASH API, scheduled with the SuperMatrix run-time system
and linked to serial BLAS in MKL 8.1.

• AB-II + serial MKL + FLASH. Our implementation of the algorithm-by-blocks II (AB-II), with
matrices stored hierarchically using the FLASH API, scheduled with the SuperMatrix run-time system
and linked to serial BLAS in MKL 8.1.

When hand-tuning block sizes, an effort was made to determine the best values of s and t for all combi-
nations of parallel implementations and BLAS.

Performance results are reported in Figure 4. The matrix size (m = n) is reflected along the x-axis. The
y-axis is scaled such that the top of the graph represents the theoretical peak performance of the system.

A few comments are due:

• AB-I outperforms the LAPACK implementation linked to MKL starting with problems of size 4000.
The implementation of the QR factorization in MKL, however, attains higher performance than AB-I
for all except the largest problem size.

• AB-II is a clear winner. The performance is close to the LAPACK implementation linked to MKL
for small problems and much higher for problems of dimension larger than 2000. As the problem size
approaches 12000, the performance of our two new algorithms appears to converge.

6 Conclusions

We have presented an experimental study that compares the traditional blocked algorithm for the QR fac-
torization via Householder transformations to two new algorithms-by-blocks. The best algorithm, according
to our preliminary study, combines the parallelism of the Givens rotation scheme for the QR factorization
with a reduced cost and the level-3 BLAS performance of algorithms based on Householder transformations.
The same ideas can be applied to yield two new algorithms-by-blocks for the LU factorization with pivoting
of a matrix using the incremental pivoting scheme and the algorithms in [22, 31].

Clearly more parallelism could have been extracted from algorithm-by-blocks I by parallelizing the fac-
torization that was left as an inherent sequential component. However, the success of algorithm-by-blocks
II appears to make further study into this optimization moot.
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Figure 4: Performance of the QR factorization algorithms on 16 CPUs.

The programming effort was greatly reduced by coding the algorithms with the FLASH extension of
the FLAME/C API while the SuperMatrix run-time system—with its support for out-of-order scheduling
via dynamic dependency analysis—facilitated easy and transparent algorithm-level parallelization of the QR
factorization. The results demonstrate that high performance can be attained by programs coded at a high
level of abstraction on SMP and, likely, future many-threaded architectures.

The SuperMatrix methodology, for algorithm-by-blocks II in particular, should be of interest to those
working to program the IBM Cell processor and similar accelerators. On such architectures, the run-time
system only needs to be changed to dispatch computations along with blocks to the compute cores of such
processors.
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