
Managing the Complexity of Lookahead for
LU Factorization with Pivoting

Ernie Chan and Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{echan,rvdg}@cs.utexas.edu

Andrew Chapman
Microsoft Corporation

One Microsoft Way
Redmond, Washington 98052

andrew.chapman@microsoft.com

ABSTRACT
We describe parallel implementations of LU factorization with piv-
oting for multicore architectures. Implementations that differ in
two different dimensions are discussed: (1) using classical partial
pivoting versus recently proposed incremental pivoting and (2) ex-
tracting parallelism only within the Basic Linear Algebra Subpro-
grams versus building and scheduling a directed acyclic graph of
tasks. Performance comparisons are given on two different sys-
tems.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance

Keywords
LU factorization with partial pivoting, algorithm-by-blocks, directed
acyclic graph, lookahead

1. INTRODUCTION
LU factorization with partial pivoting is simultaneously perhaps

the most important operation for solving linear systems and often
the most difficult one to parallelize due to the pivoting step. In
this paper, we compare different strategies for exploiting shared-
memory parallelism when implementing this operation. A simple
approach is to link to multithreaded Basic Linear Algebra Subpro-
grams (BLAS) [11] libraries. A strategy that requires nontrivial
changes to libraries like Linear Algebra PACKage (LAPACK) [2]
is to add lookahead to classical LU factorization with partial piv-
oting. A recently proposed algorithm-by-blocks with incremental
pivoting [5, 26] changes the pivoting strategy to increase opportu-
nities for parallelism, at some expense to the numerical stability
of the algorithm. To manage the resulting complexity, we intro-
duced the SuperMatrix runtime system [8] as a general solution
for parallelizing LU factorization with pivoting, which maps an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

algorithm-by-blocks to a directed acyclic graph (DAG) and sched-
ules the tasks from the DAG in parallel. This approach solves the
programmability issue that faces us with the introduction of mul-
ticore architectures by separating the generation of a DAG to be
executed from the scheduling of tasks.

The contributions of the present paper include:

• An implementation of classical LU factorization with partial
pivoting within a framework that separates programmability
issues from the runtime scheduling of a DAG of tasks.

• A comparison of different pivoting strategies for LU factor-
ization.

Together these contributions provide further evidence that the Su-
perMatrix runtime system solves the problem of programmability
while providing impressive performance.

In our previous SPAA paper [7], we first introduced this con-
cept of using out-of-order scheduling to parallelize matrix compu-
tation using the Cholesky factorization as a motivating example, an
operation which directly maps to an algorithm-by-blocks. On the
other hand, LU factorization with partial pivoting does not easily
map well to an algorithm-by-blocks. Our solution addresses pro-
grammability since we can use the same methodology to parallelize
this more complex operation without adding any extra complexity
to the code that implements LU factorization with partial pivoting.

The rest of the paper is organized as follows. In Section 2, we
present LU factorization with partial pivoting and several tradi-
tional methods for parallelizing the operation. We describe the Su-
perMatrix runtime system in Section 3. In Section 4, we describe
LU factorization with incremental pivoting and its counterpart for
QR factorization. Section 5 provides performance results, and we
conclude the paper in Section 6.

2. LU FACTORIZATION WITH PARTIAL
PIVOTING

We present the right-looking unblocked and blocked algorithms
for computing the LU factorization with partial pivoting using stan-
dard Formal Linear Algebra Method Environment (FLAME) nota-
tion [16] in Figure 1. The thick and thin lines have semantic mean-
ing and capture how the algorithms move through the matrix where
the symbolic partitions reference different submatrices on which
computation occurs within each iteration of the loop.

We first describe the updates performed within the loop of the

unblocked algorithm. The SWAP routine takes the vector
„
α11

a21

«
,

finds the index of the element with the largest magnitude in that
vector, which is stored in π1, and exchanges that element with α11.
Next, the pivot is applied (PIV) where the rest of the π1-th row is

Algorithm: [A, p] := LUPIV_UNB(A)
Partition

A→
„
ATL ATR
ABL ABR

«
, p→

„
pT
pB

«
whereATL is 0× 0, pT has 0 elements

while n(ATL) < n(A) do

Repartition„
ATL ATR
ABL ABR

«
→

0@A00 a01 A02

aT10 α11 aT12
A20 a21 A22

1A,

„
pT
pB

«
→

p0

π1

p2

!
whereα11 and π1 are scalars»„
α11

a21

«
, π1

–
:= SWAP

„
α11

a21

«
„
aT10 aT12
A20 A22

«
:= PIV

„
π1,

„
aT10 aT12
A20 A22

««
a21 := a21/α11

A22 := A22 − a21a
T
12

Continue with„
ATL ATR
ABL ABR

«
←

0@A00 a01 A02

aT10 α11 aT12
A20 a21 A22

1A,

„
pT
pB

«
←

p0

π1

p2

!
endwhile

Algorithm: [A, p] := LUPIV_BLK(A)
Partition

A→
„
ATL ATR
ABL ABR

«
, p→

„
pT
pB

«
whereATL is 0× 0, pT has 0 elements

while n(ATL) < n(A) do
Determine block size b
Repartition„

ATL ATR
ABL ABR

«
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

!
,„

pT
pB

«
→

p0

p1

p2

!
whereA11 is b× b , p1 is b× 1»„
A11

A21

«
, p1

–
:= LUPIV_UNB

„
A11

A21

«
„
A10 A12

A20 A22

«
:= PIV

„
p1,

„
A10 A12

A20 A22

««
A12 := L−1

11 A12

A22 := A22 −A21A12

Continue with„
ATL ATR
ABL ABR

«
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

!
,„

pT
pB

«
←

p0

p1

p2

!
endwhile

Figure 1: The right-looking unblocked and blocked algorithms (left and right, respectively) for computing the LU factorization with
partial pivoting. Here the matrix is pivoted like LAPACK does so that PIV(p,A) = LU upon completion. In this figure, Lii denotes
the unit lower triangular matrix stored over Aii, and n(A) stands for the number of columns of A.

interchanged with
`
aT10 aT12

´
. Finally, a21 is scaled by 1

α11
,

and a rank-one update is performed over A22.
In the blocked algorithm, the LU factorization (LUPIV) subprob-

lem calls the unblocked algorithm, which updates the column panel„
A11

A21

«
and stores all the pivot indices in p1. We then apply all

of those pivots to the left and right of the current column panel.
Next, a triangular solve with multiple right-hand sides (TRSM) is
performed over A12 with L11, which is the unit lower triangular
matrix of A11. Finally, A22 is updated with general matrix-matrix
multiplication (GEMM). Both TRSM and GEMM are examples of
level-3 BLAS operations [11].

The problem instances of TRSM and GEMM incurred within this
right-looking blocked algorithm are quite easily parallelized. The
bulk of the computation in each iteration lies in the GEMM call
so that straight forward implementations (e.g., LAPACK’s blocked
implementation dgetrf) can exploit parallelism by only linking
to multithreaded BLAS libraries and thus attain high performance.
As such, many opportunities for parallelism are lost since implicit
synchronization points exist between each call to a parallelized
BLAS routine.

2.1 Algorithm-by-blocks
By storing matrices hierarchically [12] and viewing submatrix

blocks as the unit of data and operations with blocks (tasks) as the
unit of computation, we reintroduced the concept of algorithms-
by-blocks [19]. We reformulate the blocked algorithm presented
in Figure 1 (right) as an algorithm-by-blocks in Figure 2 (left) us-

ing the FLASH [21] extension to the FLAME application program-
ming interface (API) for the C programming language [3] for creat-
ing and accessing hierarchical matrices. Notice that the FLAME/C
and FLASH application programming interfaces were typeset to
closely resemble the FLAME notation and thus easily facilitate the
translation from algorithm to implementation. We assume that the
matrix A and the vector p are both stored hierarchically with one
level of blocking. This storage scheme has an additional benefit in
that spatial locality is maintained when accessing the contiguously
stored submatrices.

The matrix object A Figure 2 (left) is itself encoded as a ma-
trix of matrices in FLASH where the top-level object consists of
references to the submatrix blocks. We stride through the matrix
using a unit block size while decomposing the subproblems into
operations on individual blocks. The algorithmic block size b in
Figure 1 (right) now manifests itself as the storage block size of
each contiguously stored submatrix block.

In Figure 2 (right), we illustrate the tasks that overwrite each
block in a 3 × 3 matrix of blocks within each iteration of the loop
in Figure 2 (left). We will use the notationAi,j to denote the i, j-th
block within the matrix of blocks.

In the first iteration, we perform the task LUPIV0 on the en-
tire left column panel of the matrix where the symbolic partition
A11 references A0,0, and A21 references A1,0 and A2,0. For con-
venience, we choose to make each LUPIV task updating a column
panel of blocks an atomic operation because it cannot be easily par-
titioned into finer-grained tasks operating on individual blocks. For
example, if we call the unblocked algorithm to perform LUPIV0, a

1 FLA_Error FLASH_LU_piv_blk(FLA_Obj A, FLA_Obj p)
2 {
3 FLA_Obj ATL, ATR, A00, A01, A02, pT, p0,
4 ABL, ABR, A10, A11, A12, pB, p1,
5 A20, A21, A22 p2,
6 AB0, AB1, AB2;
7
8 FLA_Part_2x2(A, &ATL, &ATR,
9 &ABL, &ABR, 0, 0, FLA_TL);

10 FLA_Part_2x1(p, &pT,
11 &pB, 0, FLA_TOP);
12
13 while (FLA_Obj_width(ATL) < FLA_Obj_width(A))
14 {
15 FLA_Repart_2x2_to_3x3(
16 ATL, /**/ ATR, &A00, /**/ &A01, &A02,
17 /* ************* */ /* ******************** */
18 &A10, /**/ &A11, &A12,
19 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
20 1, 1, FLA_BR);
21 FLA_Repart_2x1_to_3x1(pT, &p0,
22 /* ** */ /* ** */
23 &p1,
24 pB, &p2,
25 1, FLA_BOTTOM);
26 /*---*/
27 FLA_Merge_2x1(A11,
28 A21, &AB1);
29 FLASH_LU_piv(AB1, p1);
30 FLA_Merge_2x1(A10,
31 A20, &AB0);
32 FLASH_Apply_pivots(FLA_LEFT, FLA_NO_TRANSPOSE,
33 p1, AB0);
34 FLA_Merge_2x1(A12,
35 A22, &AB2);
36 FLASH_Apply_pivots(FLA_LEFT, FLA_NO_TRANSPOSE,
37 p1, AB2);
38 FLASH_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
39 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
40 FLA_ONE, A11, A12);
41 FLASH_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
42 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
43 /*---*/
44 FLA_Cont_with_3x3_to_2x2(
45 &ATL, /**/ &ATR, A00, A01, /**/ A02,
46 A10, A11, /**/ A12,
47 /* ************** */ /* ****************** */
48 &ABL, /**/ &ABR, A20, A21, /**/ A22,
49 FLA_TL);
50 FLA_Cont_with_3x1_to_2x1(&pT, p0,
51 p1,
52 /* ** */ /* ** */
53 &pB, p2,
54 FLA_TOP);
55 }
56 return FLA_SUCCESS;
57 }

LUPIV0

LUPIV0

LUPIV0

PIV1

TRSM3

PIV1

GEMM5

PIV1

GEMM6

PIV2

TRSM4

PIV2

GEMM7

PIV2

GEMM8

Iteration 1

PIV10

PIV10

LUPIV9

LUPIV9

PIV11

TRSM12

PIV11

GEMM13

Iteration 2

PIV15 PIV16 LUPIV14

Iteration 3

Figure 2: Left: The FLASH implementation of LU factorization with partial pivoting. Right: The tasks that overwrite each block
in every iteration within LU factorization with partial pivoting on a 3× 3 matrix of blocks. The subscripts denote the order in which
the tasks can be sequentially executed within the algorithm-by-blocks. Certain blocks have two tasks overwriting it where the task
pictured on top must be executed first.

pivot may occur within A2,0 in one iteration and then within A1,0

within the next iteration.
The application of the pivots is partitioned into separate tasks

updating each of the two column panels to the right of the current
one with the tasks PIV1 and PIV2. Just like the LU factorization
subproblem, the application of the pivots to a column panel is done
atomically.

The TRSM update of A12 is partitioned into two independent
tasks. TRSM3 overwrites A0,1, which was previously updated by
PIV1, so PIV1 must complete execution before TRSM3 can begin.
This situation is an example of a flow dependency (read-after-write)
between these two tasks where one task reads the output of another
task, which also occurs for PIV2 and TRSM4 onA0,2. The update of
A2,2 is decomposed into four independent tasks overwriting A1,1,
A1,2, A2,1, and A2,2. The same flow dependencies occur between
the GEMM and PIV tasks.

Clearly, this approach generalizes to matrices partitioned with a
large number of blocks.

2.2 Lookahead
The difficulty in exploiting a coarser granularity of parallelism

from LU factorization with partial pivoting lies with each LUPIV
task and the resulting pivoting across the entire matrix, which be-
come bottlenecks within each iteration. In order to alleviate this
problem, lookahead is used, which is also called compute-ahead in
the literature [1, 27]. An early study of look-ahead for distributed-
memory parallelization of LU factorization can already be found
in [13]. For this operation, the update of A22 is subdivided and
partially computed so that the LUPIV from the next iteration can
be performed ahead of the current iteration in parallel with the rest
of the update to A22.

For example in Figure 2 (right), PIV1 and PIV2 are independent
and thus can be executed in parallel along with TRSM3 and TRSM4.
GEMM5, GEMM6, GEMM7, and GEMM8 are also all independent of
each other. In order to apply lookahead, we first schedule PIV1,
TRSM3, and then GEMM5 and GEMM6 to execute first. Once those
tasks are complete, we can then schedule LUPIV9 to execute along-
side PIV2, TRSM5, and then GEMM7 and GEMM8.

The difficulty with traditional approaches for implementing looka-
head is that the code becomes obfuscated and quite complex. Ap-
plying this technique to a wide range of different linear algebra
algorithms has not been done because this solution does not inher-
ently address programmability. First, finding the inherent bottle-
neck to computation is nontrivial. Second, partitioning the rest of
the computation in order to allow the next iteration to start is often
quite difficult. Moreover, lookahead can be applied to more than
one iteration, which further complicates the code.

3. SUPERMATRIX RUNTIME SYSTEM
Instead of exposing the details of parallelization, like lookahead,

within the code that implements the linear algebra operation, we
developed the SuperMatrix runtime system through a clear separa-
tion of concerns where we divide the process of exploiting paral-
lelism into two phases: analyzer and dispatcher. During the ana-
lyzer phase, the execution of tasks is delayed, and instead the DAG
is constructed dynamically for which only the input and output ma-
trix operands of each task are needed to perform the dependence
analysis. Tasks represent the nodes of the graph and data depen-
dencies between tasks represent the edges [7, 8]. Once the ana-
lyzer is done, the dispatcher phase is invoked which dispatches and
schedules tasks to threads.

3.1 Analyzer
The FLASH code in Figure 2 (left) invokes the analyzer phase

that generates the DAG of tasks. Only flow dependencies occur
between tasks from LU factorization with partial pivoting. For ex-
ample, the analyzer stores tasks as depicted in Figure 2 (right) given
a 3 × 3 matrix of blocks and constructs the resulting DAG shown
in Figure 3 (left).

In nearly all the linear algebra operation we have studied thus
far [26], each operation is decomposed into tasks where each ma-
trix operand consists of a single block, such as TRSM and GEMM.
By contrast, LUPIV and PIV require that a matrix operand be a col-
umn panel of blocks, which was not previously supported by the
SuperMatrix runtime system. We introduce the concept of mac-
roblocks, which is a matrix partition representing several blocks,
so a task’s matrix operand can either be a single block or a mac-
roblock. For instance, LUPIV0 updates the macroblock consisting
of A0,0, A1,0, and A2,0. This macroblock mechanism is needed in
order to properly detect data dependencies between tasks and thus
correctly construct the DAG. Once the DAG is built, the dispatcher
does not need knowledge of a task updating a single block or mac-
roblock and hence a further separation of concerns.

3.2 Dispatcher
Once the DAG is constructed, the dispatcher is invoked in order

to dynamically schedule the tasks in parallel. In [6], we discussed
several different scheduling algorithms and heuristics. In this paper
we will only use a single queue implementation from which all
threads enqueue and dequeue ready tasks. We define ready tasks as
ones where all of its dependent tasks have been executed, so every
task residing on the queue can be executed in parallel.

LUPIV0 is the only initial ready task within the DAG in Fig-
ure 3 (left) and thus is enqueued. Once a thread dequeues that task
from the single queue and executes it, then PIV1 and PIV2, both of
which are the dependent tasks of LUPIV0, become ready and get
enqueued. The dispatcher continues this process until all tasks have
been executed.

A typical scheduling of tasks is to use a simple first-in first-out
(FIFO) queue ordering. Since a thread can choose any task on the
queue to dequeue instead of strictly the one at the head of the queue,

we can apply different heuristics to either improve the load balance
or data locality of tasks executed by each thread.

One particular heuristic is sorting the queue according to the
heights of each task within the DAG. The height of a task is the dis-
tance between itself and its farthest leaf where a leaf is a task in the
DAG without any dependent tasks. Conversely, a root is a task that
does not depend upon any other tasks. In Figure 3 (left), LUPIV0 is
the only root, and PIV15 and PIV16 are leaves. The height of a root
in the DAG represents the critical path of execution. By sorting the
queue with this heuristic and having each thread dequeue from the
head of queue, we attempt to schedule tasks on the critical path of
execution and thus reduce the time to execute all tasks.

This height sorting heuristic mimics the concept of lookahead. In
Figure 3 (left), GEMM5 and GEMM6 both have a height of six while
GEMM7 and GEMM8 have a height of five. By sorting the tasks,
threads will execute GEMM5 and GEMM6 first and then potentially
execute LUPIV9 in parallel with GEMM7 and GEMM8 since all three
of those tasks have the same height.

An algorithm-by-tiles similar to our algorithm-by-blocks had al-
ready been proposed for a parallel out-of-core LU factorization
in [28]. In that implementation, parallelism is extracted within op-
erations with tiles that are brought in from disk rather than across
operations with tiles, and a DAG of tasks is neither built nor sched-
uled. Their approach is also similar to ours in that it also imple-
ments classical LU factorization with partial pivoting.

4. ALTERNATIVES
We present two alternatives to using LU factorization with partial

pivoting as a solution for solving linear systems.

4.1 LU factorization with incremental pivot-
ing

We now review an approach, incremental pivoting, that avoids
many of the dependencies exhibited in the classical LU factoriza-
tion with partial pivoting [23, 24, 26].

While we refer the reader to the aforementioned papers for de-
tails, we very briefly give a flavor of how incremental pivoting
works. Recall that Gaussian elimination is one formulation of LU
factorization. As elements below the diagonal are eliminated in
Gaussian elimination, we can choose to swap the current row where
a zero is to be introduced with the row being used to eliminate that
row. Thus, at each step, the row among such a pair of rows that has
the largest magnitude pivot element could be swapped to be used
to introduce a zero in the other row after swapping. Incremental
pivoting works similarly but with blocks.

In Figure 3 (right), we present the DAG for LU factorization
with incremental pivoting on a 3 × 3 matrix of blocks. Here, each
LUPIV task updates the symbolic partition A11 which only con-
sists of a single block as opposed to a macroblock. The TRSM
tasks update the blocks composing A12, which is similar to TRSM
within LU factorization with partial pivoting, but these tasks are
prepended with the application of the pivots. LUSA and FSSA are
“structurally-aware” kernels that updateA21 andA22, respectively,
which update the matrix according to the LUPIV task performed
within each iteration. Notice that the DAG produced from incre-
mental has a shorter critical path of execution and more opportuni-
ties for exploiting parallelism within the DAG.

Strictly speaking, LU factorization with partial pivoting is nu-
merically unstable due to the potential for 2n in element growth
where n is the matrix dimension. In practice, it is considered to be
stable based on decades of experience. Incremental pivoting is in-
herently less stable than partial pivoting [23] and has not been used
for decades, so it is not known if it is stable in practice.

�� �
LUPIV0

�����

HHHHj�� �
PIV1

?

�� �
PIV2

?�� �
TRSM3

�
��=
Z
ZZ~

�� �
TRSM4

�
��=
Z
ZZ~�� �
GEMM5

Z
ZZ~

�� �
GEMM6

�
��=

�� �
GEMM7

?

@
@
@
@
@@R

�� �
GEMM8

?

�
�

�
�
��	

�� �
LUPIV9

XXXXXXXXz

XXXXXXXXXXXz�� �
PIV10

?

�� �
PIV11

?�� �
TRSM12

?�� �
GEMM13

?�� �
LUPIV14

?

������� �
PIV15

�� �
PIV16

�� �
LUPIV0

?

�����

HHHHj�� �
TRSM1

?

�� �
LUSA3

?

�����

HHHHj

�� �
TRSM2

?�� �
FSSA4

?

HHHHj

�� �
LUSA6

HHHHj

�����

�� �
FSSA5

�
�
�

�
��	

?�� �
FSSA7

?

�� �
LUPIV9

�
�
�

�
��	

?

�� �
FSSA8

?

�� �
TRSM10

@
@
@
@
@@R

�� �
LUSA11

XXXXXXXXXXz�� �
FSSA12

?�� �
LUPIV13

Figure 3: The directed acyclic graphs for LU factorization with partial (left) and incremental (right) pivoting on a 3 × 3 matrix of
blocks.

4.2 QR factorization
QR factorization based on orthogonal transformations, such as

Householder transformations, is a numerically stable alternative but
requires twice the number of floating point operations than LU fac-
torization.

In [25], two Householder-based algorithms-by-blocks for QR
factorization were studied. One was implemented using a classical
high-performance QR factorization while the other implemented
an incremental scheme, first proposed for out-of-core computa-
tion [17], not unlike LU with incremental pivoting. As with LU
factorization, the incremental scheme was shown to exhibit more
parallelism. What is different is that this incremental QR factor-
ization approach is guaranteed to be stable. Thus, if stability is a
concern, this alternative solution method can be employed despite
the extra computational cost.

5. PERFORMANCE
We compare the performance of LU factorization with partial

and incremental pivoting within the SuperMatrix runtime system
with other high-performance libraries and show their performance
on two different platforms.

5.1 Target architectures
We performed experiments on a single SMP node of a large

distributed-memory cluster ranger.tacc.utexas.edu con-
taining 3,936 nodes for which it uses a 2.6.18.8 Linux kernel. Each
node consists of four sockets with 2.3 GHz AMD Opteron Quad-
Core 64-bit processors with a total of 16 cores providing a theoret-
ical peak performance of 147.2 GFLOPS. Each node contains 32
GB of memory, and each socket has a 2 MB L3 cache, which is
shared between the four cores. The OpenMP implementation pro-
vided by the Intel C Compiler 10.1 served as the underlying thread-
ing mechanism used by SuperMatrix. We linked to GotoBLAS2
1.00 and Intel MKL 10.0.

We also gathered results on a 16 core UMA machine running
Windows Server 2008 R2 Enterprise which consists of four sockets
with 2.4 GHz Intel Xeon E7330 Quad-Core processors providing
a theoretical peak performance of 153.6 GFLOPS. This machine
contains 8 GB of memory, and each socket has two 3 MB L2 caches
shared between each pair of cores. We compiled using Microsoft
Visual C++ 2010 and Intel Visual Fortran 11.1. We linked to Goto-
BLAS2 1.00 and Intel MKL 10.2.

5.2 Implementations
We report the performance (in GFLOPS, one billion floating

point operations per second) for several implementations of LU

factorization using double precision floating point arithmetic. We
used an operation count of 2

3
n3 of useful computation for each im-

plementation presented to calculate the rate of execution. We tuned
the storage and algorithmic block size for each problem size when
possible, yet we mapped 16 threads to each of the 16 cores on both
machines for all experiments.

SuperMatrix:.
We used the SuperMatrix runtime system embedded within the

open source library libflame [29]. Both LU factorization with
partial and incremental pivoting are implemented using SuperMa-
trix. For the partial pivoting implementation, we used the schedul-
ing heuristic for sorting tasks according to their heights within the
DAG as described in Section 3. For the incremental pivoting im-
plementation, we used the cache affinity scheduling algorithm de-
scribed in [6] which attempts to balance between both data locality
and load balance simultaneously. SuperMatrix requires that the ma-
trices are stored hierarchically. We call a serial BLAS library for
the execution of tasks on a single thread.

LAPACK + Multithreaded BLAS:.
We linked the sequential implementation of dgetrf provided

by LAPACK 3.0 to multithreaded BLAS routines from GotoBLAS
and MKL. Parallelism is only exploited within each call to a mul-
tithreaded BLAS routine. dgetrf assumes that the matrices are
stored in the traditional “flat” column-major order storage.

Multithreaded GotoBLAS/MKL:.
We linked to the highly optimized multithreaded implementa-

tions of dgetrf within GotoBLAS and MKL. These implementa-
tions exploit parallelism internally.

5.3 Results
Performance results are reported in Figure 4. Several comments

are in order:

• For smaller problem sizes with SuperMatrix, LU factoriza-
tion with incremental pivoting ramps up in performance more
quickly than partial pivoting because there are more oppor-
tunities for parallelism within the DAG as shown in Figure 3.

Despite having many more bottlenecks to parallelism, the
SuperMatrix implementation of LU factorization with par-
tial pivoting achieves much better performance for asymp-
totically large problem sizes because the kernels invoked by
partial pivoting are much more efficient than the ones for
incremental pivoting. The bulk of the computation in par-
tial pivoting lies with calls to GEMM which is a highly-tuned
kernel whereas incremental pivoting predominantly calls the
structurally-aware tasks LUSA and FSSA, which we have
hand coded. In order to implement these tasks, we use an in-
ner algorithmic block size to stride through the matrix operands.
For instance the storage block size is typically 192×192, yet
we use an inner block size of around 48. As we stride through
the matrix operands of each task, we perform computation
on submatrix partitions as in a typical FLAME algorithm.
BLAS operations are highly tuned for larger problem sizes,
such as GEMM performed with 192×192 blocks, as opposed
to multiple calls to GEMM and TRSM on much smaller sub-
matrices [14].

Another difference in asymptotic performance of LU with
partial pivoting versus incremental pivoting is due to the fact
that the former amortizes O(n2) operations related to pivot-
ing over O(n3) operations while the latter amortizes O(b2)

operations related to pivoting overO(b3) operations where n
is the total matrix size and b is the storage block size. Since
b is typically fixed as n increases, asymptotically the per-
formance of the algorithm that uses incremental pivoting is
slower than that of partial pivoting.

As the problem sizes grow asymptotically large, the use of
sorting to provide lookahead achieves good load balance be-
tween threads. Since all the computational kernels invoked
by partial pivoting are significantly faster than incremental
pivoting, partial pivoting outperforms incremental pivoting
despite incremental pivoting having better parallel efficiency.
Unfortunately, partial pivoting does not scale as well as in-
cremental pivoting when using more threads because of the
inherent bottlenecks within LU factorization with partial piv-
oting.

• In order to perform the subproblem for LU factorization with
partial pivoting, we copy the macroblock from storage-by-
blocks to a flat matrix, execute the subproblem using dgetrf,
and then copy the result back into the original macroblock.
We made a small optimization not to copy the matrix for the
LU subproblem if there is only one block within the mac-
roblock. To apply the pivots to a macroblock, we hand coded
a kernel that is structurally-aware of the storage-by-blocks
instead of copying into a flat matrix and calling the optimized
LAPACK implementation dlaswp.

Performing the copy for the LU subproblem does not incur
a significant performance penalty because that task performs
O(n2b) operations on O(nb) data, so the copying is essen-
tially amortized across the computational cost of the task.
Also, the LU subproblem is only invoked once per iteration
of the loop on a single column panel in the hierarchically
stored matrix A. The application of the pivots is performed
on every other column panel within every iteration of the
loop. The relative cost of copying a column panel into a flat
matrix would be too high due to the small amount of opera-
tions done by the application of the pivots.

This hand coded implementation for applying the pivots is
not as highly optimized as the implementation of dlaswp
provided by both GotoBLAS and MKL, so a performance
penalty is incurred when compared to the multithreaded im-
plementations of dgetrf provided by both. The SuperMa-
trix implementations can attain better performance if we de-
velop optimized structurally-aware kernels.

• The sequential implementation of dgetrf linked to multi-
threaded BLAS implementations does not perform as well as
the others because of the many lost opportunities for paral-
lelism.

If numerical stability is not an issue, then we can employ incremen-
tal pivoting for smaller problem sizes and then switch to partial piv-
oting for large problem sizes to provide the best performance with
SuperMatrix.

In Figure 4 (top left), we also compare the performance of the
SuperMatrix implementation of LU factorization with partial piv-
oting where use a simple FIFO ordering of tasks as opposed to
sorting the tasks according to their heights within the DAG. As we
can clearly see, sorting tasks, which mimics lookahead, nearly dou-
bles the performance for SuperMatrix. This scheduling heuristic is
completely subsumed within the runtime system and is not exposed
within the code that implements this operation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

Matrix size

G
F

LO
P

S
LU factorization on 4 x AMD Opteron Quad−Core with GotoBLAS2 1.00 − Linux

SuperMatrix partial pivoting w/o sorting + serial GotoBLAS
SuperMatrix partial pivoting + serial GotoBLAS
SuperMatrix incremental pivoting + serial GotoBLAS
LAPACK dgetrf + multithreaded GotoBLAS
Multithreaded GotoBLAS dgetrf

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

Matrix size

G
F

LO
P

S

LU factorization on 4 x AMD Opteron Quad−Core with MKL 10.0 − Linux

SuperMatrix partial pivoting + serial MKL
SuperMatrix incremental pivoting + serial MKL
LAPACK dgetrf + multithreaded MKL
Multithreaded MKL dgetrf

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

Matrix size

G
F

LO
P

S

LU factorization on 4 x Intel Xeon E7330 Quad−Core with GotoBLAS2 1.00 − Windows

SuperMatrix partial pivoting + serial GotoBLAS
SuperMatrix incremental pivoting + serial GotoBLAS
LAPACK dgetrf + multithreaded GotoBLAS
Multithreaded GotoBLAS dgetrf

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

Matrix size

G
F

LO
P

S

LU factorization on 4 x Intel Xeon E7330 Quad−Core with MKL 10.2 − Windows

SuperMatrix partial pivoting + serial MKL
SuperMatrix incremental pivoting + serial MKL
LAPACK dgetrf + multithreaded MKL
Multithreaded MKL dgetrf

Figure 4: Performance of different implementations of LU factorization on two different platforms.

6. CONCLUSION
In this paper, we have shown a solution for parallelizing LU fac-

torization with partial pivoting that also addresses programmability
by separating the runtime system from the code that implements
the operation. By using this separation of concerns, we are able to
subsume the idea of lookahead seamlessly. As such, this strategy is
highly competitive with finely tuned, high-performance implemen-
tations provided by commercial libraries.

We believe the SuperMatrix runtime system is the only solution
for parallelizing matrix computations that addresses programma-
bility. Hierarchically Tiled Arrays (HTA) [18] and Unified Paral-
lel C (UPC) [20] both provide programming language support for
blocked computation, but those two do not perform dependence
analysis in order to exploit parallelism between operations within
algorithms from which UPC uses lookahead embedded within its
code to parallelize LU factorization with partial pivoting. SMP Su-
perscalar (SMPSs) [22] is a general-purpose runtime system that
also constructs a DAG using the input and output operands of tasks,
but they do not focus on developing algorithms-by-blocks in or-

der to parallelize matrix computations. Parallel Linear Algebra for
Scalable Multi-core Architectures (PLASMA) [4, 5] uses a simi-
lar DAG scheduling methodology to parallelize matrix computa-
tions, but the details of parallelization are not separated from the
code from whom LU factorization with incremental pivoting has
been implemented thus far and not partial pivoting. SuperLU [9]
and High-Performance LINPACK (HPL) [10] both use lookahead
in order to parallelize LU factorization with partial pivoting for
distributed-memory computer architectures, yet neither addresses
programmability since the lookahead strategy is embedded directly
within the code that implements this operation. Communication
avoiding LU factorization [15] is a fundamentally different pivoting
strategy from partial and incremental pivoting since it was designed
to limit communication between nodes of distributed-memory ar-
chitectures.

Additional information
For additional information on FLAME visit

http://www.cs.utexas.edu/users/flame/.

http://www.cs.utexas.edu/users/flame/

7. ACKNOWLEDGMENTS
This research is sponsored by Microsoft Corporation and NSF

grants CCF–0540926 and CCF–0702714. Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF). We thank the Texas Advanced
Computing Center (TACC) for access to their equipment.

8. REFERENCES
[1] C. Addison, Y. Ren, and M. van Waveren. OpenMP issues

arising in the development of parallel BLAS and LAPACK
libraries. Scientific Programming, 11(2):95–104, April 2003.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel,
J. J. Dongarra, J. D. Croz, S. Hammarling, A. Greenbaum,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide
(Third ed.). SIAM, Philadelphia, 1999.

[3] P. Bientinesi, E. S. Quintana-Ortí, and R. A. van de Geijn.
Representing linear algebra algorithms in code: The FLAME
application programming interfaces. ACM Transactions on
Mathematical Software, 31(1):27–59, March 2005.

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel
tiled QR factorization for multicore architectures.
Concurrency and Computation: Practice and Experience,
20(13):1573–1590, September 2008.

[5] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of
parallel tiled linear algebra algorithms for multicore
architectures. Parallel Computing, 35(1):38–53, January
2009.

[6] E. Chan. Runtime data flow scheduling of matrix
computations. Technical Report TR-09-27, The University of
Texas at Austin, Department of Computer Sciences, August
2009.

[7] E. Chan, E. S. Quintana-Ortí, G. Quintana-Ortí, and
R. van de Geijn. SuperMatrix out-of-order scheduling of
matrix operations for SMP and multi-core architectures. In
SPAA ’07: Proceedings of the Nineteenth ACM Symposium
on Parallelism in Algorithms and Architectures, pages
116–125, San Diego, CA, USA, June 2007.

[8] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ortí,
G. Quintana-Ortí, and R. van de Geijn. SuperMatrix: A
multithreaded runtime scheduling system for
algorithms-by-blocks. In PPoPP ’08: Proceedings of the
Thirteenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 123–132, Salt Lake
City, UT, USA, February 2008.

[9] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous
parallel supernodal algorithm for sparse Gaussian
elimination. SIAM Journal on Matrix Analysis and
Applications, 20(4):915–952, October 1999.

[10] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart.
LINPACK Users’ Guide. SIAM, Philadelphia, 1979.

[11] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set
of level 3 basic linear algebra subprograms. ACM
Transactions on Mathematical Software, 16(1):1–17, March
1990.

[12] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kagstrom.
Recursive blocked algorithms and hybrid data structures for
dense matrix library software. SIAM Review, 46(1):3–45,
2004.

[13] A. Gerasoulis and I. Nelken. Scheduling linear algebra
parallel algorithms on MIMD architectures. In Proceedings
of the Fourth SIAM Conference on Parallel Processing for

Scientific Computing, pages 68–95, Philadelphia, PA, USA,
1990.

[14] K. Goto and R A. van de Geijn. Anatomy of a
high-performance matrix multiplication. ACM Transactions
on Mathematical Software, 34(3):12:1–12:25, May 2008.

[15] L. Grigori, J. W. Demmel, and H. Xiang. Communication
avoiding Gaussian elimination. In SC ’08: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing, pages
1–12, Austin, TX, USA, November 2008.

[16] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A.
van de Geijn. FLAME: Formal linear algebra methods
environment. ACM Transactions on Mathematical Software,
27(4):422–455, December 2001.

[17] B. C. Gunter and R. A. van de Geijn. Parallel out-of-core
computation and updating the QR factorization. ACM
Transactions on Mathematical Software, 31(1):60–78, March
2005.

[18] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and
D. Padua. Programming with tiles. In PPoPP ’08:
Proceedings of the Thirteenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
111–122, Salt Lake City, UT, USA, February 2008.

[19] F. G. Gustavson. New generalized matrix data structures lead
to a variety of high-performance algorithms. In Proceedings
of the IFIP TC2/WG2.5 Working Conference on Software
Architectures for Scientific Computing Applications, pages
211–234, Ottawa, ON, Canada, October 2000.

[20] P. Husbands and K. Yelick. Multi-threading and one-sided
communication in parallel LU factorization. In SC ’07:
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, pages 1–10, Reno, NV, USA, November
2007.

[21] T. Meng Low and R. van de Geijn. An API for manipulating
matrices stored by blocks. FLAME Working Note #12
TR-04-15, The University of Texas at Austin, Department of
Computer Sciences, May 2004.

[22] J. M. Perez, R. M. Badia, and J. Labarta. A
dependency-aware task-based programming environment for
multi-core architectures. In Cluster ’08: Proceedings of the
2008 IEEE International Conference on Cluster Computing,
pages 142–151, Tsukuba, Japan, September 2008.

[23] E. S. Quintana-Ortí and R. A. van de Geijn. Updating an LU
factorization with pivoting. ACM Transactions on
Mathematical Software, 35(2):11:1–11:16, July 2008.

[24] G. Quintana-Ortí, E. S. Quintana-Ortí, E. Chan, R. van de
Geijn, and F. G. Van Zee. Design of scalable dense linear
algebra libraries for multithreaded architectures: The LU
factorization. In MTAAP ’08: Proceedings of the 2008
Workshop on Multithreaded Architectures and Applications,
pages 1–8, Miami, FL, USA, April 2008.

[25] G. Quintana-Ortí, E. S. Quintana-Ortí, E. Chan, R. A. van de
Geijn, and F. G. Van Zee. Scheduling of QR factorization
algorithms on SMP and multi-core architectures. In PDP
’08: Proceedings of the Sixteenth Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing, pages 301–310, Toulouse, France, February
2008.

[26] G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de Geijn,
F. G. Van Zee, and E. Chan. Programming matrix
algorithms-by-blocks for thread-level parallelism. ACM
Transactions on Mathematical Software, 36(3):14:1–14:26,
July 2009.

[27] P. Strazdins. A comparison of lookahead and algorithmic
blocking techniques for parallel matrix factorization.
International Journal of Parallel and Distributed Systems
and Networks, 4(1):26–35, June 2001.

[28] S. Toledo. Locality of reference in LU decomposition with
partial pivoting. SIAM Journal on Matrix Analysis and
Applications, 18(4):1065–1081, October 1997.

[29] F. G. Van Zee. libflame: The Complete Reference.
http://www.lulu.com/content/5915632/, 2009.

	Introduction
	LU Factorization with Partial Pivoting
	Algorithm-by-blocks
	Lookahead

	SuperMatrix Runtime System
	Analyzer
	Dispatcher

	Alternatives
	LU factorization with incremental pivoting
	QR factorization

	Performance
	Target architectures
	Implementations
	Results

	Conclusion
	Acknowledgments
	References

