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Abstract

Few realize that for large matrices dense matrix com-
putations achieve nearly the same performance when the
matrices are stored on disk as when they are stored in a
very large main memory. Similarly, few realize that, given
the right programming abstractions, coding Out-of-Core
(OOC) implementations of dense linear algebra operations
(where data resides on disk and has to be explicitly moved
in and out of main memory) is no more difficult than pro-
gramming high-performance implementations for the case
where the matrix is in memory. Finally, few realize that
on a contemporary eight core architecture one can solve a
100, 000×100, 000 dense symmetric positive definite linear
system in about an hour. Thus, for problems that used to be
considered large, it is not necessary to utilize distributed-
memory architectures with massive memories if one is will-
ing to wait longer for the solution to be computed on a
fast multithreaded architecture like an SMP or multi-core
computer. This paper provides evidence in support of these
claims.

1 Introduction

Examples of problems that require the solution of very
large dense linear systems or linear least-squares problems
include the estimation of the Earth’s gravitational field,
Boundary Element formulations in electromagnetism and
acoustics, and molecular dynamics simulations [1, 7, 6, 13,
17]. In these applications, large refers to matrices with a
number of rows/columns in the 105 to 107 range. When
these matrices become too large to fit in memory, one must

either change the mathematical formulation of the problem
or use secondary memory (e.g., disk). We will focus on the
latter. While data stored on disk can be accessed via virtual
memory, careful design of Out-of-Core (OOC) algorithms
is generally required to attain high performance. Moreover,
in the past cutting-edge architectures often did not incor-
porate virtual memory, which may happen again for future
multi-core architectures particularly since virtual memory
consumes a considerable amount of power. Thus, the topic
of developing OOC algorithms for dense linear problems
continues to be an active area of research.

There are only a few Open Source libraries available
for OOC dense linear algebra computations. For large-
scale problems ScaLAPACK provides prototype OOC im-
plementations of Cholesky, LU, and QR factorization based
solvers [4] as does the SOLAR [15] library that builds upon
ScaLAPACK routines for in-core computation. The Parallel
Linear Algebra Package (PLAPACK), which inspired the
libflame sequential library, is an alternative to ScaLA-
PACK for message-passing architectures and provides an
OOC extension, POOCLAPACK, that, like ScaLAPACK
and SOLAR, targets message-passing architectures [12]. A
survey on parallel OOC implementations of individual op-
erations and/or machine specific libraries for dense linear
systems is given in [14]. Insights about how storing matri-
ces by tiles (what we call blocks) facilitates scalability can
be found in that paper.

In this paper,

• We briefly review the concept of algorithms-by-blocks
and how an Application Programming Interface (API)
developed as part of the FLAME project facilitates
programming such algorithms. In brief, algorithms-
by-blocks view matrices, possibly hierarchically, as a



collection of submatrices (blocks) that become units of
data. The algorithms then orchestrate the computation
as operations with those blocks, which become units
of computation.

• We review a run-time system, SuperMatrix, which
given a linear algebra code constructs a Directed
Acyclic Graph (DAG) of tasks (operations with
blocks) and dependencies between tasks.

• We discuss how this approach can be extended by us-
ing the DAG to prefetch and/or cache data so that I/O is
overlapped with computation transparently to the pro-
grammer.

• We report our experience with this approach on a plat-
form that includes multiple cores and a RAM of mod-
erate size, using the Cholesky factorization as a moti-
vating example.

• We show that, once the problem size becomes large,
the performance attained by the OOC implementation
rivals that of a high-performance algorithm for matri-
ces that fit in memory.

• We reason that this approach can also accommodate
OOC implementations of algorithms-by-tiles for the
level-3 Basic Linear Algebra Subprograms (BLAS)
and the LU and QR factorizations.

• We argue that the approach may become a highly cost-
effective solution for solving these kinds of opera-
tions, making it possible for less well-funded projects
to solve medium to large size problems.

Together, these contributions advance the state-of-the-art in
this area.

The rest of the paper is structured as follows. In Sec-
tion 2 we review some of the fundamental parts of the
FLAME project using the Cholesky factorization. An in-
frastructure in support of OOC computation is proposed in
Section 3. Parallel execution of dense linear algebra opera-
tions with the data in-core is briefly addressed by using ei-
ther algorithms-by-blocks combined with dynamic schedul-
ing or multi-threaded implementations of BLAS, as de-
scribed in Section 4. Experiments reporting performance
for the OOC Cholesky factorization on a platform with 2
Intel Xeon QuadCore are reported in Section 5. We close
the paper with a few concluding remarks.

2 Cholesky Factorization using FLAME

Over the last decade we have developed a complete
framework for fast and reliable generation of dense and
banded libraries as part of the FLAME project (http:

//www.cs.utexas.edu/users/flame). The set of
“tools” comprises a high-level notation for expressing al-
gorithms for dense and banded linear algebra operations, a
formal derivation methodology to obtain provably correct
algorithms, high-level APIs to transform algorithms into
codes, and a run-time system for the automatic paralleliza-
tion of those codes on multi-core platforms; see [16, 11]
and the references therein. The result is a high-performance
library for dense linear algebra, libflame, with support
for all major BLAS as well as the most relevant factoriza-
tion routines for the solution of linear systems. This infras-
tructure is the basis on which we build our approach for the
development of OOC codes.

In our papers, we often start by presenting a prototypical
operation, which is then used throughout the paper to illus-
trate various aspects of the topic at hand. As we have done
in a number of other papers that are closely related to the
present one [3, 10], we will use the Cholesky factorization
as that example. We note that what is different in the cur-
rent paper is that we focus on the left-looking algorithmic
variant for computing the Cholesky factorization. Much of
this section can be skipped by those who are very familiar
with the FLAME project.

Consider an n × n Symmetric Positive Definite (SPD)
matrix A. Its Cholesky factorization is given by A = LLT ,
where L is the n × n lower triangular Cholesky factor. In
traditional algorithms for this factorization, L overwrites
the lower triangular part of A while the strictly upper tri-
angular part remains unmodified. Hereafter, we denote the
operation that overwrites A with its Cholesky factor by
A := {L\A} = CHOL(A).

A key element of FLAME is the notation for expressing
algorithms much like they are presented on a chalk board
(see, e.g., [16]). Figure 1 shows unblocked and blocked
algorithms for computing the Cholesky factorization using
the FLAME notation. There m(A) stands for the number of
rows of a matrix A. We believe the rest of the notation to
be intuitive. The algorithms in Figure 1 correspond to the
“left-looking” algorithmic variant for computing the factor-
ization. It is well-known that this variant requires roughly
half the disk I/O when compared with the better well-known
right-looking variant for the operation.

Using the FLAME/C API for the C programming lan-
guage, the blocked algorithm in Figure 1 (right) can be
transformed into the C code given in Figure 2 (left).
Note the close resemblance between algorithm and code:
Moving the boundaries of the partitioning imposed on
the matrix is performed with routines FLA Part 2x2,
FLA Repart ..., and FLA Cont with ... from the
FLAME/C API. The updates during the iteration (loop
body) are computed using routines FLA Syrk, FLA Gemm,
and FLA Trsm, which are simple wrappers to the analo-
gous BLAS, and routine FLA Chol unb var3which cor-
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Algorithm: A := CHOL UNB VAR3(A)

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
(

ATL ATR

ABL ABR

)
→




A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22




where A11 is b× b

α11 := α11 − a10a
T
10

α11 :=
√

α11

a21 := a21 −A20a
T
10

a21 := a21/α11

Continue with(
ATL ATR

ABL ABR

)
←




A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22




endwhile

Algorithm: A := CHOL BLK VAR3(A)

Partition A→
(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition
(

ATL ATR

ABL ABR

)
→




A00 A01 A02

A10 A11 A12

A20 A21 A22




where A11 is b× b

A11 := A11 −A10A
T
10

A11 := {L\A}11 = CHOL UNB VAR3(A11)
A21 := A21 −A20A

T
10

A21 := A21L
−T
11

Continue with(
ATL ATR

ABL ABR

)
←




A00 A01 A02

A10 A11 A12

A20 A21 A22




endwhile

Figure 1. Unblocked (left) and blocked (right) algorithms for computing the Cholesky factorization
(left-looking variant).

responds to the FLAME/C unblocked implementation for
the algorithm in Figure 1 (left).

With the advent of multi-core processors, the design of
algorithms-by-blocks [5] for dense linear algebra has re-
gained great interest due to their higher degree of paral-
lelism and better data locality [11]. (In the next section
we will show that they are also the key to the OOC im-
plementation of the Cholesky factorization.) Algorithms-
by-blocks view matrices as collections of submatrices and
express the computation in terms of these submatrix blocks.
Algorithms are then written as before, except with scalar
operations replaced by operations on the blocks, which now
become the unit of computation. We note that one of the
first incidences of such algorithms was for OOC dense lin-
ear computations and blocks were referred to as tiles [14].
Some refer to algorithms-by-blocks as algorithms-by-tiles
or tiled algorithms [2].

A contribution of ours to programmability of algorithms-
by-blocks was the recognition that the FLAME/C API could
be extended to describe algorithms hierarchically by allow-
ing each element in a matrix to itself be a matrix. We
call this very simple extension of FLAME/C the FLASH
API [9, 11]. Using the FLASH API an algorithm-by-blocks
for the Cholesky factorization is given in Figure 2 (right).

The differences between the blocked algorithm and the
algorithm-by-blocks in that Figure (left and right, respec-
tively) lie in the dimensions of the partitioning and the rou-
tines which are invoked from within the loop body. For the
algorithm-by-blocks, the fact that the matrix is indeed a ma-
trix of submatrices, leads to a unit size for the repartition-
ing operation FLA Repart 2x2 to 3x3. Here, many
of the details of the FLASH implementation, including
the manipulation of the data structures, have been buried
within the FLASH-aware FLAME object definition and
the partitioning routines. Abbreviated implementations of
algorithm-by-blocks for the building blocks FLASH Syrk,
FLASH Trsm, and FLASH Gemm are given in Figure 3.
FLA Chol blk var1 corresponds to the blocked im-
plementation of the right-looking Cholesky factorization,
which usually yields higher performance on multi-threaded
architectures.

3 OOC Implementation for Multi-core Pro-
cessors

OOC algorithms for dense linear algebra operations tra-
ditionally consider a (logical) partitioning of the matrix into
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FLA_Error FLA_Chol_blk_var3( FLA_Obj A, int nb_alg )
{

FLA_Obj ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,

A20, A21, A22;
int b;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {
b = min( FLA_Obj_length(ABR), nb_alg );
FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,
/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,
ABL, /**/ ABR, &A20, /**/ &A21, &A22,
b, b, FLA_BR );

/*---------------------------------------------*/
FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A10,
FLA_ONE, A11 );

FLA_Chol_unb_var3( A11 );
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10,
FLA_ONE, A21 );

FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21 );
/*---------------------------------------------*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}
return FLA_SUCCESS;

}

FLA_Error FLASH_Chol_by_blocks_var3( FLA_Obj A )
{
FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,
A20, A21, A22;

FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL );

while ( FLA_Obj_length( ATL ) < FLA_Obj_length( A ) ) {

FLA_Repart_2x2_to_3x3(
ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */
&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,
1, 1, FLA_BR );

/*---------------------------------------------*/
FLASH_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A10,
FLA_ONE, A11 );

FLA_Chol_blk_var1( FLASH_MATRIX_AT( A11 ) );
FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10,
FLA_ONE, A21 );

FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,
FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
FLA_ONE, A11,

A21 );
/*---------------------------------------------*/
FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,
A10, A11, /**/ A12,

/* *************** */ /* ****************** */
&ABL, /**/ &ABR, A20, A21, /**/ A22,
FLA_TL );

}
return FLA_SUCCESS;

}

Figure 2. FLAME/C implementation of the blocked algorithm for the Cholesky factorization (left) and
FLASH implementation of the corresponding algorithm-by-blocks.

submatrices that are stored contiguously on disk. Initially
matrices were partitioned into submatrices that were blocks
of columns [4, 8]1. Later it was recognized that this does
not scale as matrix sizes become huge (or when memory
is relatively small). This is overcome by partitioning the
matrix by rows and columns, with the simplest case corre-
sponding to submatrices being square tiles (except perhaps
for submatrices on the fringe when the matrix size is not an
integer multiple of the tile size). In a nutshell, the reason
is that the size of the tile brought into memory can always
be kept constant, and therefore the ratio between the com-
putation and I/O overhead can be fixed. Starting from a
square partitioning, an OOC algorithm-by-blocks brings a
few tiles in-core (usually, to fill a considerable part of the
RAM), computes with these, and stores back the results on
disk to release space for the data involved in future opera-
tions. Optimizing such an OOC implementation becomes
a matter of carefully orchestrating the computation so as to
bring data into memory for computation while (nearly) min-
imizing the amount of reads and writes (I/O) and/or overlap-
ping I/O and computation. It is particularly the overlapping
of I/O with computation (so-called double buffering) that
has negatively affected programmability, turning otherwise
manageable code into spaghetti code.

In the remainder of this section we present a series of

1Many practical implementations still use this partitioning, especially
on clusters with very large memories.

OOC algorithms, that start with a basic implementation and
culminate in an advanced one that manages all I/O via a run-
time system that hides details from the library developer.

3.1 A traditional OOC algorithm

An OOC algorithm-by-tiles for the Cholesky factoriza-
tion is directly obtained from the algorithm-by-blocks in the
previous section by just considering the tile to be the unit of
computation: The routines in Figures 2 (left) together with
those in Figure 3 are the OOC implementation.

Given a SPD matrix, created on disk as an OOC ma-
trix of tiles (of dimension t × t), a direct OOC im-
plementation of the Cholesky factorization can be eas-
ily obtained from the algorithm-by-tiles by inserting calls
to the routine FLAOOC Copy to bring the necessary
data into auxiliary workspaces in-core just before the
calls to FLA Chol blk var1, FLA Syrk, FLA Trsm,
FLA Gemm; after the operations, calls to FLAOOC Copy
could be inserted to store the results back to disk. Provided
the tile size is very large, the cost of moving the data in-
volved in a task between disk and main memory is negligi-
ble compared with its computational cost. Some data reuse
is possible to avoid repeated data transfers.

Unfortunately, low performance can be expected from
this implementation as, e.g., there is no overlap between
I/O and computation. In the next two subsections we de-
scribe techniques and tools to improve performance and
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void FLASH_Syrk_ln( FLA_Obj alpha, FLA_Obj A,
FLA_Obj beta, FLA_Obj C )

/* Special case with mode parameters
FLASH_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

... )
Assumption: A is a row of blocks (row panel) */

{
FLA_Obj AL, AR, A0, A1, A2;

FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );

while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){

FLA_Repart_1x2_to_1x3(
AL, /**/ AR, &A0, /**/ &A1, &A2,
1, FLA_RIGHT );

/*---------------------------------------------*/
FLA_Syrk( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

alpha, FLASH_MATRIX_AT( A1 ),
beta, FLASH_MATRIX_AT( C ) );

/*---------------------------------------------*/

FLA_Cont_with_1x3_to_1x2(
&AL, /**/ &AR, A0, A1, /**/ A2,
FLA_LEFT );

}
}

void FLASH_Trsm_rltn( FLA_Obj alpha, FLA_Obj L,
FLA_Obj B )

/* Special case with mode parameters
FLASH_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
... )

Assumption: L consists of one block and
B consists of a column of blocks */

{
FLA_Obj BT, B0,

BB, B1,
B2;

FLA_Part_2x1( B, &BT,
&BB, 0, FLA_TOP );

while ( FLA_Obj_length( BT ) < FLA_Obj_length( B ) ) {
FLA_Repart_2x1_to_3x1( BT, &B0,

/* ** */ /* ** */
&B1,

BB, &B2, 1, FLA_BOTTOM );
/*---------------------------------------------*/
FLA_Trsm( FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
alpha, FLASH_MATRIX_AT( L ),

FLASH_MATRIX_AT( B1 ) );
/*---------------------------------------------*/
FLA_Cont_with_3x1_to_2x1( &BT, B0,

B1,
/* ** */ /* ** */

&BB, B2, FLA_TOP );
}

}

void FLASH_Gemp_nt( FLA_Obj alpha, FLA_Obj A,
FLA_Obj B,

FLA_Obj beta, FLA_Obj C )
/* Special case with mode parameters

FLASH_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
... )

Assumption: A is a matrix and
B is a row of blocks (row panel)
C is a column of blocks (column panel) */

{
FLA_Obj AT, A0, CT, C0,

AB, A1, CB, C1,
A2, C2;

FLA_Part_2x1( A, &AT,
&AB, 0, FLA_TOP );

FLA_Part_2x1( C, &CT,
&CB, 0, FLA_TOP );

while ( FLA_Obj_length( AT ) < FLA_Obj_length( A ) ){

FLA_Repart_2x1_to_3x1( AT, &A0,
/* ** */ /* ** */

&A1,
AB, &A2,
1, FLA_BOTTOM );

FLA_Repart_2x1_to_3x1( CT, &C0,
/* ** */ /* ** */

&C1,
CB, &C2,
1, FLA_BOTTOM );

/*---------------------------------------------*/
FLASH_Gepp( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

alpha, A1,
B,

beta, C1 );
/*---------------------------------------------*/
FLA_Cont_with_3x1_to_2x1( &AT, A0,

A1,
/* ** */ /* ** */
&AB, A2, FLA_TOP );

FLA_Cont_with_3x1_to_2x1( &CT, C0,
C1,

/* ** */ /* ** */
&CB, C2, FLA_TOP );

}
}

void FLASH_Gepp_nt( FLA_Obj alpha, FLA_Obj A,
FLA_Obj B,

FLA_Obj beta, FLA_Obj C )
/* Special case with mode parameters

FLASH_Gepp( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,
... )

Assumption: C is a block and
B, C are rows of blocks (row panels) */

{
FLA_Obj AL, AR, A0, A1, A2;

FLA_Obj BL, BR, B0, B1, B2;

FLA_Part_1x2( A, &AL, &AR, 0, FLA_LEFT );

FLA_Part_1x2( B, &BL, &BR, 0, FLA_LEFT );

FLA_Scal( beta, FLASH_MATRIX_AT( C ) );

while ( FLA_Obj_width( AL ) < FLA_Obj_width( A ) ){

FLA_Repart_1x2_to_1x3(
AL, /**/ AR, &A0, /**/ &A1, &A2,
1, FLA_RIGHT );

FLA_Repart_1x2_to_1x3(
BL, /**/ BR, &B0, /**/ &B1, &B2,
1, FLA_RIGHT );

/*---------------------------------------------*/
FLA_Gemm( FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

alpha, FLASH_MATRIX_AT( A1 ),
FLASH_MATRIX_AT( B1 ),

FLA_ONE, FLASH_MATRIX_AT( C ) );
/*---------------------------------------------*/
FLA_Cont_with_1x3_to_1x2(

&AL, /**/ &AR, A0, A1, /**/ A2,
FLA_LEFT );

FLA_Cont_with_1x3_to_1x2(
&BL, /**/ &BR, B0, B1, /**/ B2,
FLA_LEFT );

}
}

Figure 3. FLASH implementation of the kernels appearing in the FLASH implementation of algorithm-
by-blocks for the Cholesky factorization.

programmability, including a run-time system that manages
tiles transparent to the programmer. As a result, the code
does not change: the different schemes that we describe
simply change the policy that the run-time system uses to
move tiles to and from disk.

3.2 Software cache

The first technique to reduce the amount of I/O is to im-
plement a logical cache of tiles in-core. The idea is that,
every time an operation is to proceed, a run-time system
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inspects the software cache to check whether the tiles in-
volved in the operation are already present in-core (cache
hit). Thus, actual data transfers only occur for cache misses.
An LRU replacement policy decides which tile is moved
back to disk in case there is no place left in the cache to
read a new tile, and this is also handled by the run-time.

This simple run-time system handles all I/O transpar-
ently to the user, improving the programmability as no ex-
plicit I/O calls need to be inserted in the OOC codes. De-
pending on the cache hit rate, it can also improve perfor-
mance by reducing the number of transfers between RAM
and disk. However, it does yet not overlap I/O with compu-
tation.

3.3 Overlap I/O and computation

The software cache knows what tiles are present in-core
and therefore can exploit some level of temporal data lo-
cality. We next propose going one step further and looking
ahead into the future. The domain-specific feature that facil-
itates the required fortune-telling is that, for linear algebra
codes, the operations that will be executed in the future can
be known in advance at little cost.

The idea is to perform an initial execution of the code,
generating a list of tasks (operations on tiles) to be eventu-
ally executed (this is the extra cost we have to pay). Gener-
ating a list of tasks for dense linear algebra codes has been
used earlier to expose a higher degree of parallelism at run-
time for multi-core processors (see, e.g., [11]). The differ-
ence here is that we are proposing to use it with a different
goal, namely that of reducing the amount of data transfers
and overlapping computation with I/O for OOC algorithms,
in effect prefetching with perfect knowledge.

Let us elaborate on the description of this sophisticated
run-time system. The codes in Figures 2 (right) and 3, are
symbolically executed to generate a list of tasks (pending
list). Each time a call to routines FLA Chol blk var1,
FLA Syrk, FLA Trsm, or FLA Gemm is encountered, the
run-time simply creates an entry in the list with data to iden-
tify the given operation (e.g., operation name and parame-
ters). The order in which the tasks appear in the list together
with the directionality of the operands (input or output) de-
fines the order and direction in which blocks will be trans-
ferred between memory and disk. Therefore, the future is
known in advance!

The real execution can now begin. A single thread,
known as the scout or prefect thread, inspects the pending
list in (FIFO) order. For each entry of the list, provided
there are enough empty (tile) slots in the software cache,
the scout thread brings the necessary tiles into the RAM,
moving the entry into a second list which contains the tasks
which are ready for execution (ready list). A second thread,
the worker, runs over the ready list executing tasks as they

are encountered in order. Now, as all data for the computa-
tions that are performed by the worker thread are guaranteed
to be in-core, we can employ an in-core library for these
operations (to be addressed in the next subsection). When a
task is completed, the corresponding entry is removed from
the ready list, and any tile used within it, which is not used
by any other task in the ready list, is marked as a candi-
date for removal from the cache. When new space needs to
be allocated in the software cache, the scout thread moves
marked tiles back to disk, if they correspond to data that was
modified, or simply overwrites them with new data other-
wise. When there are no candidates for removal, the scout
thread blocks and waits until more tasks are completed.

Probably the most important feature of this approach is
how it supports programmability. No change is needed in
the routines for the algorithm-by-tiles. The run-time system
is in charge of all data transfers and automatically overlaps
I/O with computation. The extra cost for this, creating and
managing a couple of lists, is more than paid back by the
benefits of reducing idle times due to I/O.

4 Parallel In-Core Kernels for Multi-core
Processors

The worker thread is in charge of computing the opera-
tions on tiles which have been already brought in-core by
the scout thread. Thus, the types of operations that the
worker will encounter are symmetric rank-k updates, trian-
gular system solves, matrix-matrix products, and the com-
putation of the in-core Cholesky factorization of the diago-
nal tiles (invocations in Figure 3 to FLA Syrk, FLA Trsm,
FLA Gemm, and FLA Chol blk var1, respectively).

Now, the target architecture is a processor with several
cores (or any other shared-memory platform with multi-
ple processors). For these architectures there exist highly
tuned multithreaded implementations of the former three
operations, e.g. as part of MKL or GotoBLAS, which ef-
ficiently exploit the hardware parallelism. For example,
when kernel syrk from MKL is invoked from within rou-
tine FLA Syrk to compute a symmetric rank−k update,
multiple threads (as many as the user requests) are spawn
to compute the operation in parallel, using one core per
thread. (Note that in case computation is overlapped with
I/O, in our OOC algorithms these threads will run concur-
rently with the scout thread.) The parallel execution of these
three BLAS operations is therefore transparent to the OOC
programmer, who only observes a more reduced execution
time.

MKL also includes a multithreaded version of the
Cholesky factorization which can, in principle, be
used to factorize the diagonal tiles using the multiple
cores/processors of the architecture. However, for an oper-
ation with complex dependencies like this, it may be more
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efficient to employ a parallelization approach restricted only
by the data dependencies (data-flow parallelism). In partic-
ular, this second alternative employs the SuperMatrix dy-
namic scheduling mechanism to improve the scalability of
the operation: a scheduling run-time system, different from
the one that deals with OOC data transfers and overlap de-
scribed in the previous section, is in charge of the paral-
lel factorization of the diagonal tiles. In this case, when
FLA Chol blk var1 is invoked, the scheduling run-time
system inspects the code for this routine, detecting data de-
pendencies among the blocks of the tile, and issuing to exe-
cution those operations (tasks) which have all its dependen-
cies fulfilled. The result is a data-flow parallel execution.
Details on dynamic out-of-order scheduling in the context
of a parallel execution on multi-core processors can be con-
sulted, e.g., in [11]. In our experiments, we will evaluate
the performance of both alternatives: MKL and dynamic
scheduling for the factorization of the diagonal tiles. We
will refer to the second one as “data-flow” in the experi-
ments.

5 Experimental Results

The target platform used in the experiments was a work-
station with two Intel Xeon QuadCore E5405 processors (8
cores) at 2.0 GHz with 8 GBytes of DDR2 RAM. The Intel
5400 chipset provides an I/O interface with a peak band-
width of 1.5 Gbits/second. The disk is a SATA-I with a
total capacity of 160 Gbytes. MKL 10.0.1 and single pre-
cision were employed in the experiments. Performance is
measured in terms of GFLOPS (that is, billions of floating-
point arithmetic operations –flops– per second), with the
usual count of n3/3 flops for the Cholesky factorization.

Figure 4 reports the performance of several (in-core
and OOC) routines for the Cholesky factorization. All
OOC implementations correspond to the (left-looking)
algorithm-by-tiles FLASH Chol by blocks var3 in
Figure 2 (left). Unless otherwise stated, the enhancements
described for the OOC variants are incremental so that a
variant includes a new strategy plus those of all previous
ones. Several executions were performed to tune the tile
size; only the results corresponding to the best case are
shown.

In-core MKL: The (in-core) implementation of the
Cholesky factorization in MKL 10.0.1.

In-core data-flow: Our (in-core) algorithm-by-blocks
with dynamic scheduling described in [11].

OOC Traditional: Traditional OOC implementation as
described in subsection 3.1.

OOC Cache: OOC implementation with a software cache

in place to reduce the number of I/O transfers (see sub-
section 3.2).

OOC Reordered + data-flow: Reordered operations to
access tiles following a snake-like pattern to improve
locality in the access to the software cache. The factor-
ization of the diagonal tiles is addressed by using the
SuperMatrix dynamic scheduling run-time described
in [11].

OOC Overlap I/O: Use of a run-time with scout and
worker threads to overlap computation and I/O, and
manage the software cache transparently to the user
(see subsection 3.3).
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Figure 4. Performance of the Cholesky factor-
ization codes.

The results in the figure show a practical peak perfor-
mance for the in-core Cholesky factorization (based on the
algorithm-by-blocks, AB) that is slightly over 90 GFLOPS.
Combining all the OOC techniques mentioned above (vari-
ant OOC Overlap I/O) yields a performance which is basi-
cally similar to that of the in-core algorithm, but it does not
require a modification of the library codes. Although a com-
parison with other OOC solvers is possible, note that one
cannot expect OOC codes to deliver higher performance
than the corresponding in-core solvers. Thus, by compar-
ing the results of our OOC solver with the in-core code we
are explicitly demonstrating the efficiency of our approach.

Table 1 reports the execution time required to compute
the Cholesky factorization using variant OOC Overlap I/O
and the amount of memory that is needed to store the full
dense matrix:
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Matrix size Time MBytes of
required RAM

10,240 4.9sec 400
51,200 8min 49.9sec 10,000

102,400 1h 4min 52.0sec 40,000

Table 1. Execution time (in hours, minutes,
and seconds) of the Cholesky factorization
codes using variant OOC Overlap I/O.

6 Concluding Remarks

We have described an approach to easily develop OOC
algorithms for dense linear algebra operations. A run-time
system in charge of I/O transfers inspects the code before
the actual execution begins to bring data from disk before
it is needed thus completely hiding I/O latency. As an ad-
ditional benefit, the run-time system also unburdens the li-
brary developer from having to adapt the codes to include
routines to explicitly handle the I/O. Thus, all computa-
tional routines in libflame can be fundamentally trans-
formed into OOC codes without having to change the con-
tents of the library.

Results for an operation like the Cholesky factorization
show that the overhead introduced by run-time is com-
pletely blurred by the gains delivered by the overlap of
computation and communication (I/O). Using the new run-
time system, the FLAME code for the left-looking vari-
ant of the Cholesky factorization allows us to decompose a
100, 000 × 100, 000 dense matrix on a multi-core platform
with 8 cores in slightly more than one hour.
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