CS352H: Computer Systems Architecture

Topic 11: Memory Hierarchy - Caches

October 13, 2009

o EEmmImEEZ

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Memory Technology

m Static RAM (SRAM)
m (0.5ns — 2.5ns, $2000 — $5000 per GB

® Dynamic RAM (DRAM)
® 50ns — 70ns, $20 — $75 per GB

® Magnetic disk
® Sms — 20ms, $0.20 — $2 per GB

® [deal memory
® Access time of SRAM
m Capacity and cost/GB of disk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Principle of Locality

® Programs access a small proportion of their address space
at any time

® Temporal locality
® [tems accessed recently are likely to be accessed again soon

® c.g., instructions in a loop, induction variables

m Spatial locality
® [tems near those accessed recently are likely to be accessed soon

m E.g., sequential instruction access, array data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Taking Advantage of Locality

® Memory hierarchy
m Store everything on disk

®m Copy recently accessed (and nearby) items from disk to
smaller DRAM memory

® Main memory

® Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

® Cache memory attached to CPU

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Memory Hierarchy Levels

® Block (aka line): unit of copying
® May be multiple words

®m [faccessed data is present in upper level

Processor m Hit: access satisfied by upper level
\ B Hit ratio: hits/accesses

m [faccessed data is absent

|| m Miss: block copied from lower level

B Time taken: miss penalty

B Miss ratio: misses/accesses
= 1 — hit ratio

Data is transferred ,
{ ®m Then accessed data supplied from upper level

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Cache Memory

® Cache memory

® The level of the memory hierarchy closest to the CPU

® (Given accesses X, ..

a. Before the reference to X,

b. After the reference to X,,

o X s Xy

How do we know if the data
1s present?
Where do we look?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Direct Mapped Cache

B [ocation determined by address

B Direct mapped: only one choice
® (Block address) modulo (#Blocks in cache)

(@)
Y
[e)
=
@

N #Blocks 1s a power
of 2
>< Use low-order
address bits
y J \ .
00001 00101 01001 01101 10001 10101 11001 11101
Memory

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Tags and Valid Bits

® How do we know which particular block 1s stored in a
cache location?
m Store block address as well as the data
® Actually, only need the high-order bits
m Called the tag

B What if there 1s no data in a location?
® Valid bit: 1 = present, 0 = not present
® Initially O

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Cache Example

m 8-blocks, 1 word/block, direct mapped

m Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

z|\Zz|Z2|Z|Z|Z2|Z|Z|<

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Cache Example

Word addr

Binary addr

Hit/miss

Cache block

22

10 110

Miss

110

Index

Tag Data

000

001

010

011

100

101

<|lZ|Z|Z|z2|Z2|Z2]|<

110

10 Mem|[10110]

111

Z

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

10

Hxample

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem|[11010]

<|Z|Z|Z|=<|z|z|<

10 Mem([10110]

Z

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Cache Example

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 4 10 Mem[10110]

111 N

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell = 12

ache Example
Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000
3 00011 Miss 011
16 10 000 Hit 000

Index V Tag Data

000 Y 10 Mem|[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem|[00011]

100 N

101 N

110 4 10 Mem[10110]

111 N

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

13

Hxample

Word addr Binary addr Hit/miss Cache block
18 10010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem|[10010]

011 A 00 Mem[00011]

100 N

101 N

110 4 10 Mem[10110]

111 N

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

14

Address Subdivision

Address (showing bit positions)

313 --- 131211---2 10
Byte
offset
Hit 420 410
\ Tag B
Index Data
Index Valid Tag Data
0
1
2
® []
1021
1022
1023
J4.20 d .32
(=

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Example: Larger Block Size

®m 64 blocks, 16 bytes/block

® To what block number does address 1200 map?

® Block address = [1200/16] = 75
B Block number = 75 modulo 64 =11

31 10 9 4 3 0

Tag Index | Offset
22 bits 6 bits 4 bits

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

16

Block Size Considerations

m Larger blocks should reduce miss rate

® Due to spatial locality

® But in a fixed-sized cache
m Larger blocks = fewer of them
® More competition = increased miss rate
®m Larger blocks = pollution
B Larger miss penalty
®m Can override benefit of reduced miss rate
m Early restart and critical-word-first can help

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Cache Misses

® On cache hit, CPU proceeds normally

® On cache miss
m Stall the CPU pipeline
® Fetch block from next level of hierarchy

®m Instruction cache miss
B Restart instruction fetch

®m Data cache miss
®m Complete data access

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Write-Through

® On data-write hit, could just update the block in cache
® But then cache and memory would be inconsistent

® Write through: also update memory

® But makes writes take longer

m e.g., if base CPI =1, 10% of instructions are stores, write to memory takes
100 cycles

m Effective CPI=1+0.1x100=11
®m Solution: write buffer
® Holds data waiting to be written to memory

® CPU continues immediately
® Only stalls on write if write buffer is already full

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Write-Back

B Alternative: On data-write hit, just update the block in
cache
m Keep track of whether each block 1s dirty

® When a dirty block 1s replaced
®m Write it back to memory
® Can use a write buffer to allow replacing block to be read first

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Write Allocation

® What should happen on a write miss?

B Alternatives for write-through
m Allocate on miss: fetch the block

® Write around: don’t fetch the block
® Since programs often write a whole block before reading it (e.g.,
initialization)
B For write-back
® Usually fetch the block

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Example: Intrinsity FastMATH

B Embedded MIPS processor
m |2-stage pipeline
® Instruction and data access on each cycle
®m Split cache: separate I-cache and D-cache
®m Each 16KB: 256 blocks % 16 words/block
® D-cache: write-through or write-back
® SPEC2000 miss rates
m [-cache: 0.4%

® D-cache: 11.4%
m Weighted average: 3.2%

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell =~ 22

Example: Intrinsity FastMATH

Address (showing bit positions)

31 -+ 1413:--65--:210
, 418 J8 44 Byte Data
"‘"'t Tag offset
Index Block offset
18 bits 512 bits
V Tag Data
A
256
? ? entries
!
J18 \\32 \\32 \\32
(=
~
Mux
(Cmax)
4.32

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Main Memory Supporting Caches

® Use DRAMs for main memory
® Fixed width (e.g., 1 word)

® Connected by fixed-width clocked bus
® Bus clock is typically slower than CPU clock

m Example cache block read
® | bus cycle for address transfer
® 15 bus cycles per DRAM access
®m | bus cycle per data transfer
® For 4-word block, 1-word-wide DRAM
B Miss penalty = 1 + 4x15 + 4x1 =65 bus cycles
® Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Increasing Memory Bandwidth

Processor Processor Processor
/Multiplexor
Cache Cache
Cache
//\\ D e //\\
Bus Bus Bus
\\/’ ‘\/’ \\ /’
Memory Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3
b. Wider memory organization c. Interleaved memory organization
Memory 4-word wide memory

Miss penalty =1+ 15+ 1 =17 bus cycles

Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
4-bank interleaved memory

Miss penalty =1 + 15 + 4x1 =20 bus cycles

Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

a. One-word-wide
memory organization

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

25

Advanced DRAM Organization

® Bits in a DRAM are organized as a rectangular array
m DRAM accesses an entire row

® Burst mode: supply successive words from a row with reduced
latency

® Double data rate (DDR) DRAM

® Transfer on rising and falling clock edges

B Quad data rate (QDR) DRAM
m Separate DDR inputs and outputs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

DRAM Generations

Year Capacity | $/GB
1980 64Kbit $1500000
1983 256Kbit | $500000
1985 1 Mbit $200000
1989 | 4Mbit $50000
1992 16Mbit $15000
1996 64Mbit $10000
1998 128Mbit | $4000
2000 | 256Mbit | $1000
2004 | 512Mbit | $250
2007 1Gbit $50

University of Texas at Austin CS352H - Computer Systems Architecture

300

250 -

200

150 -

100

50

——Trac
-8 Tcac

‘80 '83 '85 '89 92 '96 "98 '00 '04 '07

Fall 2009 Don Fussell 27

Measuring Cache Performance

B Components of CPU time

B Program execution cycles
® Includes cache hit time

® Memory stall cycles
B Mainly from cache misses

® With simplifying assumptions:

Memory stall cycles

Memory accesses

x Miss rate x Miss penalty
Program

Instructions>< Misses
Program Instruction

x Miss penalty

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Cache Performance Example

B Given

B [-cache miss rate = 2%

B D-cache miss rate = 4%

® Miss penalty = 100 cycles

®m Base CPI (ideal cache) =2

B Load & stores are 36% of instructions
B Miss cycles per instruction

®m J-cache: 0.02 x 100 =2

® D-cache: 0.36 x 0.04 x 100 =1.44
m Actual CPI=2+2+1.44=5.44

®m Ideal CPU i1s 5.44/2 =2.72 times faster

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

Average Access Time

®m Hit time 1s also important for performance
B Average memory access time (AMAT)
® AMAT = Hit time + Miss rate X Miss penalty

B Example

m CPU with Ins clock, hit time = 1 cycle, miss penalty = 20 cycles,
I-cache miss rate = 5%

B AMAT=1+0.05x20=2ns

m 2 cycles per instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Performance Summary

® When CPU performance increased

B Miss penalty becomes more significant
B Decreasing base CPI

m Greater proportion of time spent on memory stalls
B Increasing clock rate

B Memory stalls account for more CPU cycles

®m Can’t neglect cache behavior when evaluating system
performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Associative Caches

®m Fully associative
® Allow a given block to go in any cache entry
m Requires all entries to be searched at once

® Comparator per entry (expensive)

B n-way set associative
m Each set contains n entries

® Block number determines which set

B (Block number) modulo (#Sets in cache)
m Search all entries in a given set at once

® n comparators (less expensive)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ad 2 I 12 = 2

Search T Search N search 1111111

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Spectrum of Associativity

m For a cache with 8 entries

One-way set associative
(direct mapped)

Block Tag Data

0

) Two-way set associative

> Set Tag Data Tag Data
0

3

4 1
2

5

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Associativity Example

B Compare 4-block caches

® Direct mapped, 2-way set associative,
fully associative

® Block access sequence: 0, 8, 0, 6, 8

B Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss Mem|[0]
8 0 miss Mem|8]
0 0 miss Mem|0]
6 2 miss Mem|[0] Mem|6]
8 0 miss Mem|8] Mem|[6]

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

35

Associativity Example

m 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss Mem|0]
8 0 miss Mem][0] Mem|8]
0 0 hit Mem|[0] Mem|8]
6 0 miss Mem[0] Mem|6]
8 0 miss Mem|8] Mem[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem[0]
0 hit Mem|[0] Mem|8]
6 miss Mem[0] Mem[8]
8 hit Mem|[0] Mem|8] Mem|6]

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

How Much Associativity

B Increased associativity decreases miss rate

® But with diminishing returns

® Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
m [-way: 10.3%
m 2-way: 8.6%
® 4-way: 8.3%
m 8-way: 8.1%

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Set Associative Cache Organization

Address
3130---12111098---3210

422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
[] [] [] [] ® p ® [] [] [] [] []
253
254
255
J22 32
(= (= (= (=

Hit

ﬁ-toJ multiplex@
!

Data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

38

Replacement Policy

® Direct mapped: no choice

m Set associative

® Prefer non-valid entry, if there is one

®m Otherwise, choose among entries in the set
m [east-recently used (LRU)

® Choose the one unused for the longest time
®m Simple for 2-way, manageable for 4-way, too hard beyond that

B Random

® Gives approximately the same performance as LRU for high
associativity

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 39

3C Model of Cache Behavior

® Compulsory misses: These are caused by the first access to a new
block. They are also called cold-start misses.

®m Conflict misses: These occur in non-full-associative caches when
multiple blocks compete for the same set. These are also called
collision misses. They are the misses that would be eliminated by use
of a fully associative cache.

m Capacity misses: These are caused when the cache is too small to
contain all the blocks needed during execution. They are non-conflict
misses that occur when blocks are replaced and later retrieved.

10%

9%

8% - Possible negative
7% Two-way Design change Effect on miss rate performance effect

6% - Increase cache size | Decreases capacity misses May increase access time
Miss rate . Four-way Increase associativity | Decreases miss rate due to conflict May increase access time
5% 1 :
per type misses
4% A Increase block size Decreases miss rate for a wide range of Increases miss penalty. Very large
block sizes due to spatial locality block could increase miss rate

3% -

2% A
Capacity

1% A

0%

4 8 16 32 64 128 256 512 1024
Cache size (KB)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

Cache Control

m Example cache characteristics
®m Direct-mapped, write-back, write allocate
®m Block size: 4 words (16 bytes)
®m Cache size: 16 KB (1024 blocks)
®m 32-bit byte addresses
®m Valid bit and dirty bit per block

® Blocking cache
®m CPU waits until access is complete

31 10 9 4 3 0

Tag Index | Offset
18 bits 10 bits 4 bits

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Interface Signals

Read/Write J Read/Write J
Valid d Valid d
Address %2 | Address %2 |
CPU Write Data 2 x Cache Write Data 12¢8, Memory
<«Read Data 2 <« Read Data 125
 Ready « Ready

Multiple cycles
per access

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Finite State Machines

® Use an FSM to sequence control

steps
m Set of states, transition on each
clock edge
. Combinational
B State Values arc blnary encoded control logic Datapath control outputs

®m Current state stored in a register

®m Next state
= f, (current state,
current inputs)

® Control output signals ‘ E—
= f, (current state) [T I T T T _

‘ State register

Outputs <

Inputs
A .

J

Inputs from cache
datapath 1]

F

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 43

Cache Controller FSM

Cache Hit

Idle -
Mark Cache Ready (

Compare Tag

If Valid && Hit,
Set Valid, SetTag,
if Write Set Dirty

Valid CPU request

Cache

Miss Miss

and and

Old Block Old Block
is Clean is Dirty

Write-Back

Write Old
Block to

Allocate

Read new block
from Memory

Memory Ready

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 44

Multilevel Caches

® Primary cache attached to CPU
® Small, but fast

®m Level-2 cache services misses from primary cache

m Larger, slower, but still faster than main memory
B Main memory services L-2 cache misses

B Some high-end systems include L-3 cache

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

45

Multilevel Cache Example

® Given
® CPU base CPI =1, clock rate = 4GHz
m Miss rate/instruction = 2%

B Main memory access time = 100ns

® With just primary cache
® Miss penalty = 100ns/0.25ns = 400 cycles
m Effective CPI=1+0.02 x400=9

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 46

Example (cont.)

®m Now add L-2 cache

B Access time = 5ns

® Global miss rate to main memory = 0.5%
® Primary miss with L-2 hit
® Penalty = 5ns/0.25ns = 20 cycles

® Primary miss with L-2 miss
® Extra penalty = 500 cycles

mCPI=1+0.02 x20+0.005x400=34

® Performance ratio =9/3.4=2.6

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 47

Multilevel Cache Considerations

® Primary cache
® Focus on minimal hit time

m [-2 cache
® Focus on low miss rate to avoid main memory access
® Hit time has less overall impact

®m Results

® -1 cache usually smaller than a single cache
m -1 block size smaller than L-2 block size

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 48

Interactions with Advanced CPUs

B Out-of-order CPUs can execute instructions during cache
miss
® Pending store stays in load/store unit
B Dependent instructions wait in reservation stations

® Independent instructions continue

m Effect of miss depends on program data flow

® Much harder to analyze Instruction feh Inomenet

and decode unit

® Use system simulation

\ Y \ A

Reservation | | Reservation Reservation | [Reservation
station station " station station

Functional | | 0o Integer . Floating Load- | out-of-order execute
units point store
\

Commit In-order commit
unit

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

49

Interactions with Software

1200

Radix Sort
1000 ~

B Misses depend on memory
access patterns

Instructions/item
(2]
o
o

Quicksort

. Algorithm behaVior .y 8 16 32 64 128 256 512 1024 2048 4096

a. Size (K items to sort)

B Compiler optimization for

Radix Sort
1600
Q
memory access 5
% 1200 -
@
o
3
x 800
[53
o
(&)
400 4 Quicksort
0 T T T T T T T T T T
4 8 16 32 64 128 256 512 1024 2048 4096
b. Size (K items to sort)
5
Radix Sort
4 -
£
£
591
8
£
221
o
©
(&)
1
Quicksort
o
4 8 16 32 64 128 256 512 1024 2048 4096
c Size (K items to sort)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 50

Cache Coherence Problem

m Suppose two CPU cores share a physical address space
® Write-through caches

Time | Event CPU A’s CPUB’s Memory
step cache cache

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 51

Coherence Defined

® Informally: Reads return most recently written value

® Formally:

m P writes X; P reads X (no intervening writes)
=> read returns written value

m P, writes X; P, reads X (sufficiently later)
= read returns written value

m c.f. CPU B reading X after step 3 in example

m P, writes X, P, writes X
=> all processors see writes in the same order

® End up with the same final value for X

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

52

Cache Coherence Protocols

®m Operations performed by caches in multiprocessors to
ensure coherence

® Migration of data to local caches
®m Reduces bandwidth for shared memory

m Replication of read-shared data
® Reduces contention for access

B Snooping protocols
m Each cache monitors bus reads/writes

® Directory-based protocols
® Caches and memory record sharing status of blocks in a directory

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 53

Invalidating Snooping Protocols

m Cache gets exclusive access to a block when it 1s to be
written
® Broadcasts an invalidate message on the bus

® Subsequent read in another cache misses
® Owning cache supplies updated value

CPU activity Bus activity CPU A’s CPUB’s Memory
cache cache
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPUB read X Cache miss for X 1 1 1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 54

Memory Consistency

® When are writes seen by other processors
B “Seen” means a read returns the written value
®m Can’t be instantaneously
® Assumptions
® A write completes only when all processors have seen it
®m A processor does not reorder writes with other accesses
m (Consequence

m P writes X then writes Y
=> all processors that see new Y also see new X

® Processors can reorder reads, but not writes

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 55

Multilevel On-Chip Caches

Intel Nehalem 4-core processor

= T
hannel (128
R M 1 R

$8sny B 0/I'UsD

e
3

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 256KB L2 cache

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 56

3-Level Cache Organization

Intel Nehalem AMD Opteron X4
L1 caches L1 I-cache: 32KB, 64-byte blocks, | L1 I-cache: 32KB, 64-byte blocks,
(per core) 4-way, approx LRU replacement, | 2-way, LRU replacement, hit time
hit time n/a 3 cycles
L1 D-cache: 32KB, 64-byte L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU blocks, 2-way, LRU replacement,
replacement, write-back/allocate, | write-back/allocate, hit time 9
hit time n/a cycles
L2 unified 256KB, 64-byte blocks, 8-way, 512KB, 64-byte blocks, 16-way,
cache approx LRU replacement, write- approx LRU replacement, write-
(per core) back/allocate, hit time n/a back/allocate, hit time n/a
L3 unified 8MB, 64-byte blocks, 16-way, 2MB, 64-byte blocks, 32-way,
cache replacement n/a, write- replace block shared by fewest
(shared) back/allocate, hit time n/a cores, write-back/allocate, hit time

32 cycles

n/a: data not available

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 57

Miss Penalty Reduction

B Return requested word first
® Then back-fill rest of block

® Non-blocking miss processing
® Hit under miss: allow hits to proceed

® Miss under miss: allow multiple outstanding misses
® Hardware prefetch: instructions and data
®m Opteron X4: bank interleaved L1 D-cache

®m Two concurrent accesses per cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 58

Pitfalls

® Byte vs. word addressing

m Example: 32-byte direct-mapped cache,
4-byte blocks

® Byte 36 maps to block 1
® Word 36 maps to block 4
B [gnoring memory system effects when writing or
generating code
m Example: iterating over rows vs. columns of arrays

® Large strides result in poor locality

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 59

Pitfalls

® In multiprocessor with shared L2 or L3 cache
® Less associativity than cores results in conflict misses

B More cores = need to increase associativity

® Using AMAT to evaluate performance of out-of-order
Processors
m Ignores effect of non-blocked accesses

® Instead, evaluate performance by simulation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

60

Concluding Remarks

®m Fast memories are small, large memories are slow

m We really want fast, large memories ®

m Caching gives this illusion ©
B Principle of locality

® Programs use a small part of their memory space frequently
B Memory hierarchy

® L1 cache <= L2 cache <= ... <= DRAM memory
<> disk

B Memory system design is critical for multiprocessors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

61

