

Praise for OpenGL® Programming Guide,
Eighth Edition

“Wow! This book is basically one-stop shopping for OpenGL information.
It is the kind of book that I will be reaching for a lot. Thanks to Dave,
Graham, John, and Bill for an amazing effort.”

—Mike Bailey, professor, Oregon State University

“The most recent Red Book parallels the grand tradition of OpenGL;
continuous evolution towards ever-greater power and efficiency. The
eighth edition contains up-to-the minute information about the latest
standard and new features, along with a solid grounding in modern
OpenGL techniques that will work anywhere. The Red Book continues to
be an essential reference for all new employees at my simulation
company. What else can be said about this essential guide? Ilaughed,

I cried, it was much better than Cats—I'll read it again and again.”

—Bob Kuehne, president, Blue Newt Software

“OpenGL has undergone enormous changes since its inception twenty
years ago. This new edition is your practical guide to using the OpenGL
of today. Modern OpenGL is centered on the use of shaders, and this
edition of the Programming Guide jumps right in, with shaders covered
in depth in Chapter 2. It continues in later chapters with even more
specifics on everything from texturing to compute shaders. No matter
how well you know it or how long you've been doing it, if you are going
to write an OpenGL program, you want to have a copy of the OpenGL®
Programming Guide handy.”

—Marc Olano, associate professor, UMBC

“If you are looking for the definitive guide to programming with the very
latest version of OpenGL, look no further. The authors of this book have
been deeply involved in the creation of OpenGL 4.3, and everything you
need to know about the cutting edge of this industry-leading API is laid
out here in a clear, logical, and insightful manner.”

—Neil Trevett, president, Khronos Group

This page intentionally left blank

OpenGL

Programming Guide
Eighth Edition

OpenGL Series

vv Addison-Wesley

Visit informit.com/opengl for a complete list of available products

he OpenGL graphics system is a software interface to graphics
Thardware. ("GL" stands for “Graphics Library.”) It allows you to
create interactive programs that produce color images of moving, three-
dimensional objects. With OpenGL, you can control computer-graphics
technology to produce realistic pictures, or ones that depart from reality
in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises
tutorial and reference books that help programmers gain a practical
understanding of OpenGL standards, along with the insight needed to
unlock OpenGL's full potential.

#Addison-Wesley Cisco Press ExaAv/cRAm IBM pQue 3 roRenmce g4Ams | Safari”

OpenGL

Programming Guide
Eighth Edition

The Official Guide to
Learning OpenGL®, Version 4.3

Dave Shreiner

Graham Sellers
John Kessenich
Bill Licea-Kane

The Khronos OpenGL ARB Working Group

vvAddison-Wesley

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris ® Madrid
Capetown e Sydney ® Tokyo @ Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

OpenGL programming guide : the official guide to learning OpenGL, version 4.3 /
Dave Shreiner, Graham Sellers, John Kessenich, Bill Licea-Kane ; the Khronos OpenGL
ARB Working Group.—Eighth edition.
pages cm

Includes index.

ISBN 978-0-321-77303-6 (pbk. : alk. paper)

1. Computer graphics. 2. OpenGL. I. Shreiner, Dave. II. Sellers, Graham.

III. Kessenich, John M. IV. Licea-Kane, Bill. V. Khronos OpenGL ARB Working Group.

T385.0635 2013

006.6'63—dc23 2012043324

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may
fax your request to (201) 236-3290.

ISBN-13: 978-0-321-77303-6

ISBN-10: 0-321-77303-9

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor,
Michigan.

First printing, March 2013

For my family—Vicki, Bonnie, Bob, Cookie, Goatee, Phantom, Squiggles,
Tuxedo, and Toby.
—DRS

To Emily: welcome, we're so glad you're here! Chris and].: you still rock!
—GJAS

In memory of Phil Karlton, Celeste Fowler, Joan Eslinger, and Ben Cheatham.

This page intentionally left blank

Contents

FIQUIES « ..ttt xXxiii
Tables.coooiiiiii XXix
EXAMPIES xxxiii
About This GUIdE . ..o xli
What This Guide Containsc.cccceoviiiiiiiiiiniiiiieccecee e xli
What'’s New in This Editionccccoooviiiiiiiicc, xliii
What You Should Know Before Reading This Guide.cccccovunneeeenn. xliii
How to Obtain the Sample Codeccoocoiiiiiiniiiiiiiiiiiiiiiieieeeeeee xliv
EITAata. ..o xlv
Style CONVentions.cceiiiiiiiiiiiiiic e xlv
Introduction 10 OPenGL.ouuiiiiiiieiiii e 1
What IS OPEenIGL? . .ccoiiiiiiiiiiiiee e e e e e 2
Your First Look at an OpenGL Program...........cccceeeveiiieeeinniiieeeeeniiieeeeeennne 3
OPENGL SYNtAX . ciiiiiiiiii e 8
OpenGL’s Rendering Pipeline.cccceeevviiiiiiiinniiiiieeiiiiieee e 10
Preparing to Send Data to OpenGL.ccccooviiiiiiiiiiiiiiiiiiic e, 11
Sending Data to OPenGL.cccccviiiiiiiiiiiiiiiiececc e 11
VerteX Shading . ..ccceeeeiiiiiiiiiiiiii e 12
Tessellation Shadingcccccceiiiiiiiiiiiiiiiieee e 12
Geometry Shading.ccccovvviiiiiiiiiii 12
Primitive ASSemDIycccoiiiiiiiiiiii 12
CLPPING - cevvieeiiiiii e 13
RASETIZATION « .eeeiiiiiiiiiiiiiiii e 13
Fragment Shadingceeeviiiiiiiiiiiii e 13

Per-Fragment OPerationsccccccuuereiiiieriireeeeeeeineieneeeeeeeeeeee e 13

Our First Program: A Detailed DiSCUSSIONccccovviiiieieiiniiiiieeenniiieeeeeene 14
Entering main()ooeeemieeeiiniiiieeeeiee e 14
OpenGL INitializationcccovioiiieieiiiiiiiee e 16
Our First OpenGL Renderingccoovcvvveeieriiiiieeeiiniiiieeeeeniieeee e 28

Shader Fundamentalscccccccoiiiiiiiiiiiec e 33

Shaders and OpenGL.ccccciiiiiiiiiiii s 34

OpenGL's Programmable Pipeline.ccccoovuiiiiiiiiiiiiiiiiiiinnnniniiieieees 35

An Overview of the OpenGL Shading Languageccccccceeeveeeniereennnneen. 37

Creating Shaders with GLSLccccccciiiiiiiiis 37

Storage QUALIIETSvveeeeiiiiiiieee et 45

STATEIMICIIES - oeeiiiiiiiie e e e e e e 49

Computational INVATianCecceeeiiiiiiiiiiiiiiiieeeeeeeeeee e 54

Shader PIePIOCESSOTeeeiiiiiiiieeeeiiiiiiieeeeeeiiteeeeseibtreeeeseaibeeteeeesibeeeeeesnnnes 56

Compiler CONIOL.uiiiiiiiiiiiiieei it e e e s 58

Global Shader-Compilation OPptionoccueeeeeiiiiiiiieeeiniiiiiee e 59

Interface BIOCKSccouiiiiiiiiiiic e 60

Uniform BIOCKScoooiiiiiiiiiiii e 61

Specifying Uniform Blocks in Shaderscccccovviieeiiiniieiiiinniieeeeenne 61

Accessing Uniform Blocks from Your Application.......cccccceeeeevveiiieeennnnnnns 63

Buffer BIOCKSoiiiiiiiii e 69

IN/OUL BIOCKS « ceviiiiiiiiiiiiiiee et 70

Compiling SNAAETS.veiiiiiiiiiiiiiie et 70
Our LoadShaders() FUNCHON . ..o 76

Shader SUDTOULINESccoiiiiiiiiiiiiiiiiie e 76

GLSL Subroutine Setup.......cccceeeiiiviiiiiiiiniiiiciiicc e 77

Selecting Shader SUDTOUINESoccvviiiiiiiiiiiiiiiiic e 78

Separate Shader ODJeCtSoeiiiiiiiiiiiiiiie e 81

Drawing With OPenGLoooiiiiiieee e 85

OpenGL Graphics Primitives.oocuvveeeeinriiiiieiiiiiieceeneeeeeeeeee e 86

POINTS oo 87

Lines, Strips, and LOOPS . «.cccvvviiiiiiiiiiiiiiiiiicceeeieec e 88

Triangles, Strips, and Fans.cccccovviiiiiiiniiiieccc e 89

Data in OpenGL Butfers.........ccccooviiiiiiiiiiiiiiiieccececs 92
Creating and Allocating Bufferscccccccceiiiiiniiiiiiiiieecceeeeeeee, 92
Getting Data into and out of Buffers.cccccccoiviiiiiiiiiiiiiiiicceeen, 95

Contents

Accessing the Content of Buffers........ccccooviiiiiiiiiiiiiiiinieeeeee 100

Discarding Buffer Datacooovviiiiiiiiiiiiiciic e 107
VerteX SPecifiCationccoociieeeiiiiiiiieee e 108
VertexAttribPointer in Depthoccoiviiiiiiiiiii e, 108
Static Vertex-Attribute Specification.ccccovvviiiiiiiniiiiiiiiieeeeee 112
OpenGL Drawing Commandscceeovvuereeeeinniieeeeeeniieeeeeeeiieeeeesneneees 115

Restarting Primitivescccccooiiiiiiiiiiiiiiiiiiiiieeceeeeeeeeeee e 124
Instanced Renderingccceeeevviiiiiiiniiiiiccicc e 128

Instanced Vertex Attributesccccoviiiiiiiiiiii 129

Using the Instance Counter in Shaders.ccccoveiiiiiiiniiiiceinnnne. 136

Instancing RedUX . «..occcvviiiiiiiiiiiiiiiii e 139
Color, Pixels, and Framebufferscoooiiiiiiiiiiiic e, 141
Basic ColOr TREOTYccciiiiiiiiiiiiiiiieceee e 142
Buffers and Their Usesccooooiiiiiiiiiiiiiiiiiiic e 144
Clearing BUfferscoiiiiiiiiiiiiieeeeec e 146
Masking BUufferscoooeviiiiiiiiiiiiiiicceee e 147
Color and OPenGL . ..ccooiiiiiiiiiic e 148
Color Representation and OpenGL.ccccovviiiiiiniiiiiiiieeeee, 149
VerteX COLOTS. ..ooviiiiiiiiiiiiiiiiiii 150
RASTErizationccccviiiiiiiiiiiii 153
MUultiSAmMPIIIG. .oeeeeiiiiiiiiiiiiiiieece e 153

Sample Shadingccoooiiiiiiiii e 155
Testing and Operating on Fragments.cccccccevviiiiiiiinniiiiiiinnn. 156
SCISSOT TSt . et e e e e e e e 157
Multisample Fragment Operationsccceevvuieeiiiiiiieeeeeeeeeennninneeeeee 158
SEENCIL TOSE. et 159
StencCil EXamPIeseeeeiiiiiiiiiiiiiiiiiiieeeee e 161
DEPR TSt . weeeiieeiiiiieee et e e 163
BIENAING . coeeeiiieeeieeee e e e e s 166
Blending FACtOTSueeiiiiiiiiiiiieiiiieeeeeeee et 167
Controlling Blending FaCtOTs.ceeiiviiiieiiiiiiiiieeeieieeeeeeeeee e 167
The Blending EQUAtiON.ccccuiiiiiiiiiiiiiiiiieceec e 170
DItRETINIZ « e e e 171
Logical OPerationsccoovuviiiieiriiiiieeeeniiieee e e e 171
OCCIUSION QUETY . .eeeiiieeeiiiiiiiiee ettt e et e e e s e e e s 173
Conditional ReNdering.ccccoevovvveiiiiniiiieeiiniieceereeee e 176
Per-Primitive AntialiaSing.coocvveeiiimiiiiieiiinceieeeeec e 178

Contents

Xi

xii

Antialiasing LINeS. ..cc.eeeeiiiiiiiiiiieiiiiieee et 179

Antialiasing POIYGONS. ...coovvuiiiiiiiiiiiieee e 180
Framebuffer ODJECTS . .ocooviiiiiiiiiiiiiiieeec e 180
Renderbufferscocooiiiiiiiii 183
Creating Renderbuffer Storageccovveiieeiiiiiiiiieee e 185
Framebuffer Attachmentscccoooiiiiiiiiiiiii e, 187
Framebuffer COmpPIeteness.ccccvveeiiiiiiiieeiiiiiiieeeeeee e 190
Invalidating Framebufferscccccovniiiiiiiiiiiicee e 192
Writing to Multiple Renderbuffers Simultaneously.............cccccocoinin. 193
Selecting Color Buffers for Writing and Readingccccceeeiveeernnnnne. 195
Dual-Source Blending.........cccceovveiiiiiiiiniiiiiciiiiiec e 198
Reading and Copying Pixel Datacccccceeiiniiiiiiiiiniiiieiiiieceeee 200
Copying Pixel Rectanglescoccocviiiiiiiiiiiiiiiiiiieeceieece e 203
Viewing Transformations, Clipping, and Feedback.cccccuee. 205
VIEWIILG « ceeiiiiiiiiiiiii et et e 206
VIEWIng MOdel . .ooooiiiiiiiiiiiiiicec e 207
Camera Modelcooiiiiiiiiiiiiii 207
Orthographic Viewing Modelccccoooiiiiiiiiiiiiiiiieccccee, 212
User Transformationsccccoeviiiiiiiiiiiiii e, 212
Matrix Multiply Refresher.ccooooiiiiiiiiiee 214
Homogeneous Coordinatescoeeeueeiiiiiiiiieieeeeeeeeeeeeeeieeeeeeeeeeee 215
Linear Transformations and MatriCescccoccceieiiiiiiiiiiiiniiiiieeiinnnnnee. 219
Transforming NOrmalscccccciiiiiiiiiiiiiiiii e 231
OPenGL MatTiCescoiiiiiiiiiiiiiiiiiiiciiiii e 232
OpenGL Transformationscocueeevceeeiniiieeiiiieerieceeeeeeee e 236

Advanced: User CLHPPING. «.ccooeeeeeiiiiiiiiieeieeeeeeeeee e eeeeeeeeeeeee e 238
Transform Feedbackccooviiiiiiiiiiiiiiiicc e 239

Transform Feedback Objects.........ceeeiriiiiiiiiiiiiiieeeeiiieee e 239

Transform Feedback Buffers.coccceiviiiiniiiiniiicccece 241

Configuring Transform Feedback Varyings.cccccccceeeinniiiieeeennnnneen. 244

Starting and Stopping Transform Feedbackcccceeeirniiiiieennnnnnen. 250

Transform Feedback Example—Particle Systemc.ccccceevviiieeeennnnns 252
TEXTUIES . ..o 259
Texture Mappingccoovvviiiiiiiiiiiiiiii 261
Basic TeXture TYPES . ..euueieiiiiiiiiiiiiiiieeeeeeee et 262
Creating and Initializing TeXtuIesccccveveiiiiiiiiiiiiiiiiinecceeeeeee, 263

Contents

TeXtUIe FOTIIALS . ..oveniieeiiie e e e e e eans 270

PrOXY TEXTUTES. .ttt e e e e e e e 276
Specifying Texture Dataccoooovieieiimiiiieeiiniece e 277
Explicitly Setting Texture Data.ccccouvoiiieeiiiiiiieiiinieeeeeeeeee e 277
Using Pixel Unpack BUffersccceeeiimiiiieiiiniicieeeeceecc e 280
Copying Data from the Framebufferccccocooiiiiiniiiiniie 281
Loading Images from Filesccccciiimiiiiiiiiinieecceeeec e 282
Retrieving Texture Dataccccccceiiiiiiiiiiiiiiiieeeeee 287
Texture Data Layoutcccccoviiiiiiiiiiiiiiiiii, 288
SAMPIETr ODJECES. eeeiiiiiiiiiiiiiie et 292

Sampler Parametersccoooviiiiiiiniiiiiiiiiieeeeee e 294
USING TEXTUIES . ..eeiiiiiiiiiiiiiiiiiiiiiiii e 295
Texture CoOTdinates.ccocviiiiiiiiiiiiiiii e, 298
Arranging Texture Dataccccccccciiiiiiiii, 302
Using Multiple TeXtures.cccccevvviiiiiiiiiiiiiiiiicc e 303
CompleX TeXture TYPeS. ...cuuviiiiiiiiiiiiiieeeeereeeeeeee e 306
3D TOXLUTES . oottt et ettt et e e e e e e e e e e s e e nsseneeeeeeee 307
ATTAY TEXEUTES . ceiiiiiiiiee et e e e e e e e e e e e 309
CUDE-MaP TEXEUTCS . ..eeveiiiiiiiieeieieiieit ettt e e e e e e e 309
ShadOW SAMIPLETSeviiiiiiiiiiiiee et e e e 317
Depth-Stencil TeXtUTIES . ..oceeeieieiiiiiiieeeiiieeeeree et e e 318
BUuffer TeXTUTES. ...coociiiiiiiiiiiii e 319
TeXtUTe VIEWS. ...oiiiiiiiiiiiiiiiiii i 321
CompPressed TeXTUTES . «eceovuruiiiieriiiiieeeeeriiieeeeeriiieeeeesiirre e e e s eireeeeeesannee 326
FIIETINIE .« oottt e e e e e 329
Linear FIltering . «ooooovveeeiiiiiiei et 330
Using and Generating Mipmaps.cccoveeiieeeiiniiiieeeinniieeeeeniieeee e 333
Calculating the Mipmap Level.cccccovveiiiiiiiieceeeec e 338
Mipmap Level-of-Detail Controlccccoovviiiiiiiiiiiiiiiiniiieeccinieeecene 339
Advanced Texture Lookup FUNCHONS.cocccvveiiiiiiiiiiiiiiiiiecciiieeeeene 340
Explicit Level of Detailcooiiiiiiiiiiiiiii e 340
Explicit Gradient Specificationccccocccviiiiniiiiiiinie 340
Texture Fetch with Offsetsccccoiiiiiii 341
Projective TeXtUIING.coiiiiiiiiiiiiiiiiiiiiiii e 342
Texture Queries in SNAAETScviiviiiiiiiiiee e 343
Gathering TeXELSuueeeiiiiiiiiiiiiieeiei e 345
Combining Special FUNCtions.cccoociiiiiiiiiiiiiiiiiiecccs 345
POINt SPIItes . .oooiiiiiiiiiiiiiiii s 346

Contents

xiii

xiv

Textured POInt SPIites . ..ooooeeiiieiieeeee e 347

Controlling the Appearance of POINtScccovviiiieierniiiereeniiiieeeeeee 350
Rendering tO TeXture Mapscoccuvveeeeiniiiieeeeiniiieee et e e ee e 351

Discarding Rendered Data.ccccoevemiieeeiiniiiiieeiniiieieeeeieeee e 354
Chapter SUMIMATYceiiiiiiiiiiieeiiiieeeeeree et e e e e s 356

Texture RedUX. ...cooooiiiiiiiiiiiiiiii 356

Texture Best Practices.ccccovviiiiiiiiiiiii 357
Light and Shadowccooiiiiiiiiiii e 359
Lighting INtroduction.ccooviiiiiiiiiniiicce e 360
Classic Lighting Modelcccooiiiiiiiiiiiiieeiinieeeeeeeee e 361
Fragment Shaders for Different Light Styles.cccccovviiiiiiiiniiieeeinnnnnee. 362
Moving Calculations to the Vertex Shadercccccceeevviiieeiiiniieeeenne 373
Multiple Lights and MaterialS.cccceeeimniiiieiinniiiciieee e 376
Lighting Coordinate SySteIms.ceeiivriiieeiiniiiiieeeeniieeee e 383
Limitations of the Classic Lighting Model.cccceeiiiiiininiieiinnnnne. 383
Advanced Lighting Modelsccoocoviiiiiiiiiiiiiiiiieee e 384
Hemisphere Lightingccccccovviiiiiiiiiiiiieccecc e 384
Image-Based Lighting.ccccovviiiiiiiiiiiiiiiiicecc 389
Lighting with Spherical Harmomnicsccccoooviiiiiniiiiiiiiiniiiicciine, 395
ShadOW MapPing. ...eeeeeeiiiiiiiiiiieiiiiiieee e 400

Creating a Shadow Map.cccciiiiiiiiiiiiiiiii 401
Procedural TEXTUNINGcoiieeeiiiiicerre e 411
Procedural TeXtUIingccceviiiiiiiiiiiiiiiiiccee e 412
Regular PatteInisoeiiiiiiiiiiiiiiiiicccic e 414
TOY Ball . coeviiiiiiiieee e 422
LattiCe . wooiiiiiiiiii 431
Procedural Shading SUmMmMarycccceeeviiiiiiiiiiiiiiiiniieeec e 432
BUump Mapping . .ecoeeeeeiiiiiiiiiiie e 433
Application SEtUP. ...ccccciiiiiiiiiiiiiiiii 436
VertexX SHader . ..oooooee e 438
Fragment Shaderccocoiiiiiiiiiiiiii 439
INOTINAL MAPS. it e e e e e e e e e 441
Antialiasing Procedural TeXtures.ooeveeeiimiiiiiiiiiieeeeeeeeee e 442

Sources Of ALASITIZ. «.eeovuvveeieieiiiiieee et 442

Avoiding AASING . «eeeeveeiiiiiiiiiiiieeeeee e 444

Contents

Increasing ReSOIULION . «..oocueviiiiiiiiiiiiieeicc e 445

Antialiasing High Frequenciesccccooniiiiiiiniiiiiiiiiieecceeeee e 447
Frequency CIamPing.oooveeeeieiriiiiieeeiniiieeee et e e sireee e e sireeeee s 457
Procedural Antialiasing SUMMATY.cccoceeeiiniiiiieieiniieeeeeeee e 459
INOISE . ettt 460
Definition of NOIS€.cccoiiiiiiiiiiiiii e 461
NOISE TEXTUIES . .ooviiiiiiiiiiiiiiiiii e 468
Trade-Offs.ooiiiiiiii 471
A Simple NOise Shaderoccouviiiiiiiiiiiiiiiice e 472
Turbulence. ... 475
Marble. ... 477
Granite. ... 478
WOOA ...t 478
NOISE SUIMIMATY. cooiiiiiiiiiiiiiiiiiiiiiie e 483
Further Informationccccoeeiiiiiiiiniiiiecc 483
Tessellation Shaders.cccccoiiiii 485
Tessellation Shaders.ccccoiiiiiiiiiiiiiiiii e, 486
Tessellation Patches. ..., 487
Tessellation Control Shadersccccceeiviiiiiiiiiiiiiii e 488
Generating Output-Patch Verticesccccovviiiiiiiiniiiiiiiiiiiicciee, 489
Tessellation Control Shader Variables.ccccccoiiiiiiiiiiiiiiiinin, 490
Controlling Tessellationcccccoiiiiiiiiiiiiiiiii e 491
Tessellation Evaluation Shaderscccccccciiiiiiiiiiiiiiiiieeeeececeeee, 496
Specifying the Primitive Generation Domaincccccceeeviinniiieeeennnnnee. 497
Specifying the Face Winding for Generated Primitivesccccceennnnee. 497
Specifying the Spacing of Tessellation Coordinates.cccceccuvveeeernnnnnee. 498
Additional Tessellation Evaluation Shader layout Options 498
Specifying a Vertex’s POSItiONceeeiviiiiieeiiniiiiiieieeeeeeeee e 498
Tessellation Evaluation Shader Variables..............ccocciiiiiiiiniiiiininnnne. 499
A Tessellation Example: The Teapotccceeeeeviiiiiiiiiiiiiiiiieeiiiiieeeeee 500
Processing Patch Input Vertices.cooocoveeeeimiiiiieiiniiieeeeiiieee e 501
Evaluating Tessellation Coordinates for the Teapot.cccccoeeviveeernnnnneee. 501
Additional Tessellation Techniquesccccceeeevriiiiiieiiiiiie e 504

View-Dependent Tessellation.cocccceeeiiniiiiiiiniiiieieeinieee e, 504

Shared Tessellated Edges and Crackingcccccevveiieeeeinncieeeeennnnne. 506

Displacement Mappingcccoveeeeiriiieeeiiniiieeeeniieeee e 507

Contents

XV

xvi

10. Geometry Shaders.c..oviiiiiiiiiiiiiie e 509

11.

Creating a Geometry Shadercceeiiviiiiieiiiiiiece e 510
Geometry Shader Inputs and OUtPULScceeerriiieiernniiireiiriieeeeee 514
Geometry Shader INPULS.eeiiiiiiiiiiiiiiec e 514
Special Geometry Shader Primitives.cccccovvviiiiiiniiiiiinieeeeeee 517
Geometry Shader OULPULS . ..ocoovriiiiiiiiiiiiieceiec e 523
Producing Primitivescc.eeeiiiiiiiiiiiiiccceec e 525
CUulling GEOMIELTY . ..eeeeiiriiiiiiiieiiiieee et 525
Geometry AmMplficationcccoovviiiiiiiniiii e 527
Advanced Transform Feedbackccccooooiiiiiiiiiiiii, 532
Multiple Output Streamscccoovviiiiiiiiiiiiiiicece e 533
Primitive QUETIESivrniiiiiieeieee e e e e eeans 537
Using Transform Feedback Results.cccccceivviiiiiiiiiniiiiiiiene 539
Geometry Shader INStancing.ccccoveiiiiiiiiiiiiiiiiinieecc e 549
Multiple Viewports and Layered Renderingccccceeeeviieiiininniennnnnns 550
VIEWPOTT INACX . oot e e e e 550
Layered Rendering.c.cccceeiiiiiiiiiiiiniiiiiiiiiicceceecceee e 556
Chapter SUMMATYcoooiiiiiiiiiiiiiiicc e 559

Geometry Shader ReduXcccceiiviiiiiiiiiniineccc, 560

Geometry Shader Best PractiCescccccceeiiiiiiiiiiiiiiiiiiiiiiccceeeceeeee e 561
(11T 1 To] o USRS 563
Using Textures for Generic Data Storagecccococeeeiiiiiiiiiiiiiiiiiieeennnan. 564
Binding Textures to Image Unitscccccceiiiiniiiiiiiiniiiiiiinececeee, 569
Reading from and Writing to Imagesccccoecciiiiiniiiiiiiiiiiiiee, 572
Shader Storage Buffer ObjJects.cooevvumiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 576

Writing Structured Data.coccoviiiiiiiiiiiiii 577
Atomic Operations and Synchronizationcccceviin 578
Atomic Operations on Imagescccccevriiiiiiiiiiiiiiieeeeee e 578
Atomic Operations on Buffers.ccceevviiiiiiiiniiiiiiiiinieeeeeeeeeeee 587
SYNC ODJECES. weeeiiiiiiiiiiee ittt e st e e e s 589
Image Qualifiers and Barriers.cceoovvuiieeeiiiiiiiieeeiniieeeeeeeeee e 593
High Performance Atomic COUNTETSccueveeeerriiiiieeeiniiiieeeeeriieeee e 605
EXQMPIE. e s 609

Order-Independent TranSparenCy.cccceeevveveeeeeeeniiieeeeeennirieeeeenneneees 609

Contents

12. Compute SRAAEIS. ... 623

OVEIVIEW. ittt e 624
Workgroups and DispatChlccoovoiiieiiiiiiiiiiiiiceeec e 625
Knowing Where YOU AT€ . c.cceeviiiiiiiiiiiieeiieeeceeeee e 630
Communication and Synchronization........cccccccccceivviiieiiiinniieeeennnnee. 632
CommuNICAtIONoiiiiiiiiiiiiiiiii 633
SYNChIoNIiZationcccooviiiiiiiiii e 634
EXQIMPIES. et 636
Physical SImulationcccccciiiiiiiiiiii e 636
Image ProCeSSINGcccuviiiiiiiiiiiiiiiiiiiiiiiiie e 642
Chapter SUIMMATYccooiiiiiiiiiiiiiiiieccceeee e 647
Compute Shader ReduXcccceeiiiiiiiiiiiiiiiiiiiiiiiieccce, 647
Compute Shader Best Practicescccccceeeeiiiiiiiiiiiiiiiiiiieiieecceeeeeeeeenn 648
A. Basics of GLUT: The OpenGL Utility Toolkit.cc.ccccoeoiiiiiiiiniiiiinnnnnnn. 651
Initializing and Creating a Windowccccoovviiiiiiiniieiinnieceeeene 652
Accessing FUNCHIONS . .o 654
Handling Window and Input Eventsccccoeeiiiiiiniiiiiiniiiceeene 655
Managing a Background ProCess.ccccoevviiieiiiniiiiiiiiniiiiiece e 658
Running the Programccccovviiiiiiiiniiiiiiiiie e 658
B. OpenGLES and WebGLoooooiriiiiiiiiiiieeee e 659
OPENGL ES ..o 660
WEDGL ..o 662
Setting up WebGL within an HTMLS pageccccoeceveeeeiniiieeceenninneen. 662
Initializing Shaders in WebGLccccccivviiiiiiiniiiceee, 664
Initializing Vertex Data in WebGL.ccccoccoiiiiiiiiiiiiiiiciiee, 667
Using Texture Maps in WebGL.cccccceiviiiiiiiiniiiciiiieceeee, 668
C. Built-in GLSL Variables and Functionsc...cccooiiiiinne 673
Built-in Variablesccoooiiiiiiiiiiii e 674
Built-in Variable Declarationscccocciiiiiiiiiiiiiiiiiiiiiiiiccee e 674
Built-in Variable Descriptionscceeivviiiiiiiiiiicciiieeceeiecee e 676
Built-in COnStaANTS.veiiiiiiiiiiiiiiiieceeeee e 684
Built-in FUNCHONS « .evvieiiiiiiiiiicciec e 686
Angle and Trigonometry FUNCtionsccccoeevieeiiniiiiiiiiiniiiiecceenns 688
Exponential FUNCHONScooooiiiiiiiiiiiiiiiiicecc e 690
Common FUnctions. ..o 692
Floating-Point Pack and Unpack Functions..........ccccccceevvniiiiinnnnnee. 698

Contents Xvii

Geometric FUNCHIONS . covuiieeiie e 700

Matrix FUNCHOMNS. .oveeiiiiiiiiee e 702
Vector Relational FUNCHONScooiiiiiiiiiiiiciieeee e 703
Integer FUNCHONS . «oioiiiieeeeeee e 705
Texture FUNCHOMS.oivviiieieieiiee e e e e e e e e e e e 708
Atomic-Counter FUNCHONS.covvieiiiiiiiiee e 722
Atomic Memory FUNCHONS . ..cooooiiiiiiiiiiiiiieeeeeeeeeeeeee 723
Image FUNCLIONS . «.oooiiiiieeeeeee e 725
Fragment Processing FUNCHONScceeeiiiiiiiiiiiiiiiiiiiiiiiiiicnccceeeee, 729
NOISE FUNCHONS . cevviiiiiiiiiiieee e e e e e s 731
Geometry Shader FUNCHIONSccooveiiiiiiiiiiiiiiiiiiicciecccce 732
Shader Invocation Control FUNctionscccceeeveeeeeeeeeiiienieenniininennnn. 734
Shader Memory Control FUNCtions.ccccoecvvvieiiniiiiiiiiniiiiceeeiee, 734
D. State Variables. ..o 737
The Query COmmands.oooeuvveeeeerniieeeeeniieeeeeeriieeeeeeniereeeeeesanreeeeens 738
OpenGL State Variables.ccooviiiiiiiniiiiiiieeeeeeeeee e 745
Current Values and Associated Data.........ccccvvveiciieeeeeeeiiiiieeeeeieiien, 746
Vertex Array Object Stateooccvveeiiiviiiiieiiiniic e 747
VertexX Array Data.cciiiiiiiiiiiiiiie 749
Buffer Object State.ccevviiiiiiiiiiiii e 750
Transformation State...........ooiiiiiiiiiiiiiiiireee e 751
COlOTING StALE. ..ooeiiiiiiiiiiiiii e 752
Rasterization Statecooooiiiiiiiiiiiiiie e 753
MUltiSAMPIIIG . ..evvviiiiiiiiiiieeiic e 755
TOXEUT@S . 1ttt ettt ettt e e ettt e e e e eeaie s e eeebaasseeeabanaeaaans 756
TOXEUTCS . ettt ettt ettt e e ettt e e e eeaae e e e e et ba e e e eeabaaneeaees 759
TOXEUT@S . ettt e e ettt e e e et e e eeebae s e eeeaaaneeaees 762
O XEUT @S . cetieiiie ettt et e et e et e e e te e e et e e et e e e aaaeeeaaaeaaanns 764
Texture ENVIrONMEentccoouiiiiiiiiiiiii et eaaees 766
Pixel Operations.ccceeiiiiiiiiiiiiiiiiiiii 767
Framebuffer CONtIOLS.veiiiiieeiiiiiiiieeeeeicccee e 770
Framebuffer Stateouuviiiiiiieeii e 771
Framebuffer Stateouviiiiiiiiei e 772
Frambuffer State. ... 773
Renderbuffer Stateuuuuiiiiiieeii e 775
Renderbuffer Stateuvvuiiiiiieieeeeieeeeeeerrre e 776
PiXEl STAte . oo e e e e e e e e e 778

Xviii

Contents

Shader Object State.coeviviiiiiiiiiiieeeeeeeeee e 781

Shader Program Pipeline Object Statecccceeevriiiiiiiiinniiiieeeeiee 782
Shader Program Object Stateocecvieeeiiiniiiieeeiiiieeee e 783
Program Interface Statecccccceeviviiiieiiiiiiiecee e 793
Program Object Resource State.ccccceeevvviiiiieenniiiieieenniieeee e 794
Vertex and Geometry Shader Statecccooocoieiiiniiiiiiniiiieeecee 797
QUETY ODJECE StAte . coeeeiiiiiiiiiiieeeecc e 797
IMage STAte . ..ooooiiiiiiiiiiii e 798
Transform Feedback Stateccoooiiiii 799
Atomic Counter State.cocoviiiiiiiiiiiiii 800
Shader Storage Buffer State.cccoeeeiiiiiiiiiiiiiiiiiicece 801
SYNC ODbjJect STate . cooooceviiiiiiiiiiiiiii 802
HINES . oo 803
Compute Dispatch Statecccccevviiiiiiiiiiiiii 803
Implementation-Dependent Valuesc.occccceeiiiiiiiiiinniiiiiiiinnnne. 804
Tessellation Shader Implementation-Dependent Limits.................... 810
Geometry Shader Implementation-Dependent Limits.c..ccc......... 813
Fragment Shader Implementation-Dependent Limits.cccc......... 815
Implementation-Dependent Compute Shader Limits. 816
Implementation-Dependent Shader Limitscccccciiniiiiiiinnnnn. 818
Implementation-Dependent Debug Output State.cccceeeeeeennnnnn. 823
Implementation-Dependent Valuesccccccoeviiiiiiiiiiiiiiiiiiiieeeeeeeennnn. 824
Internal Format-Dependent Values.ccoccueeeeirniiiiiieinniiieeeeennineeen. 826
Implementation-Dependent Transform Feedback Limits 826
Framebuffer-Dependent Values.ccccoovviiiiiiiiniiiiiiinniiiiiee e, 827
MiSCEIIANEOUS . ..o e 827
Homogeneous Coordinates and Transformation Matrices..................... 829
Homogeneous Coordinates.............cccevvviiiiiiiiiiiiiiiiiiiiiciieccceees 830
Transforming VertiCesoccveeeiiiriiiiiieeeiiiiiiee ettt 830
Transforming NOTmalsoccvveiiiiiiiiiiiiiii e 831
Transformation MatriCesccooeviiiiiiiiiiiiiiiiece e 831
Translation. ...o.coooiiiiiii e 832
SCALINIE « oevveeeeeeiee e e e e 832
ROTAtiON ...ooiiiiiiiiiiii 832
Perspective PrOjeCtion . ..oocooeociiiiiiiiiiiiiiieeecccceeeeeeeeeeeeee e 834
Orthographic Projectioncceeivviiiiiiinniiiiecciiecc e 834

Contents

Xix

XX

F. OpenGL and Window SyStemsccccceeiiniiiiiiiiiiiiiiceeeeeec e 835

Accessing New OpenGL FUNCHONS . ..coooeviiiiiiiiiiiiiiiieeeeeeeceeeeeeeees 836
GLEW: The OpenGL Extension Wranglerccccoccceeeeenniieeeeennnnne. 837
GLX: OpenGL Extension for the X Window System.cceccvveeeennnnne. 838
Initializationccccoiiiiiiiii 839
Controlling Renderingcccoovviiiiiiiniiiiiiiiiiiceeeee e 840
GLX PrOtOtYPES « eeeeiiiiiiiiiiiiiiiiiiiiiicee e 842
WGL: OpenGL Extensions for Microsoft Windowscccccoveieiinnnn. 845
INitializationcccccoiiiiiiii 846
Controlling Renderingc.cccccoovviiiiiiiiniiiiiiiiieeccc 846
WGL PIOtOLYPES. ..ttt 848
OpenGL in Mac OS X: The Core OpenGL (CGL) APl and the NSOpenGL
CLASSES . ittt 850
Mac OS X's Core OpenGL LiDraryccooccveeeeenniiieeeeniniieeeeeniieeeeeee 851
INitializationcoooiiiiiii e 851
Controlling ReNAeringccoovvviiieeiiiniiiieeeeiiieeeeeieee e 852
CGL PIOtOYPES. ettt 852
The NSOPENGL ClaSSeS ...cceeivumiiiiieiriiiiireeeriiieeee e e eeeiireeeeeeeirreeeeens 854
Initialization 854

Floating-Point Formats for Textures, Framebuffers, and

Renderbuffers. ... 857
Reduced-Precision Floating-Point Values.cccccoveiiiiiiininiiecennnnnee. 858
16-bit Floating-Point Values.cccocoieiiiniiiiiiiiiniiicieeecceeeeen 858
10- and 11-bit Unsigned Floating-Point Values.cccccocoeviiinvnneceen. 860
Debugging and Profiling OpenGLccccccceiiiiiiiiiiiiinieeeeeeieeeee 865
Creating a Debug Contextcoovvviieeeiiiiiiieeeiiieeeeeeeee e 866
Debug OULPUL . ceooiiiiiiiiiiieeeee e e e 868
DEDUZ MESSAZES . c.eevvvieeeiiiiiieeeeiiieee ettt e et e e s e e e 869
FIltering MESSAZES . ..eeeeerriiiiiiiiiiiiieee ettt sreee e e e 872
Application-Generated MeSSAZESccoovvuriiiiirriiiieeeiiiiiieee e 874
DEDUZ GTOUPS . ceiiiiiiiiiiiiiiieeeeircc e 875

NamMiNgG ODJECES . ..evviiiiiiiiiiiiiiiiieeeee e 877
ProfiliNg . oot 879

Profiling TOOIScciiiiiiiiiiiiiiiiiiciiic e 879

In-Application Profiling.ccccccceeeeiiiiniiiiiniiiiiceiecceeceee e 881

Contents

Buffer Object Layoutscceeiiiiiiiiiiiiiiiieceeeceeeece e 885

Using Standard Layout QuUalifiers.ccoveeeeinniiiieieinniiieeeeeniieeee e 886
The std140 Layout RUIeS. ..cooocuviiiiiiiiiiiiiiicceec e 886
The std430 Layout RUlesS.coeiiiiiiiiiiiiiiiiecc e 887
GIOSSAIYoeiiiiiiiiiiiiie ettt e ettt e e e ettt e e e e ettt e e e s bbaeees 889
INAEX . ..o 919

Contents

xxi

This page intentionally left blank

Figure 1.1
Figure 1.2
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
attribute.
Figure 3.4
attribute.
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
frustum.
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figures

Image from our first OpenGL program: triangles.cpp. 5
The OpenGL pipelineccccocoviiiiiiiiiiiiiiiii 10
Shader-compilation command sequence.c.cccceeeeennnns 71
Vertex layout for a triangle Stripcccccceveviiiiiiiiiniiinnn. 89
Vertex layout for a triangle fan.ccccovvviiiinnninnn. 90
Packing of elements in a BGRA-packed vertex

112
Packing of elements in a RGBA-packed vertex

112
Simple example of drawing commands.cccccuveeeeeennnne 124
Using primitive restart to break a triangle strip. 125
Two triangle strips forming a cubecccoeiiiiiiiiieeeeen. 127
Result of rendering with instanced vertex attributes. 134
Result of instanced rendering using g1 _InstancelID..... 139
Region occupied by a pixelcccooooviiiiiiiiiiiiceiiniiiiecennns 144
Polygons and their depth slopes.cccceeeieeiiiniiiiieiennnnns 165
Aliased and antialiased linescccccccooeiiiiiiiininnnnn 178
Close-up of RGB color elements in an LCD panel. 199

Steps in configuring and positioning the viewing
207

Coordinate systems required by OpenGL. 209
User coordinate systems unseen by OpenGL. 210
A VIeW fTUSTUIML . .oooiiiiiiiiiiiiic e 211

Pipeline subset for user/shader part of transforming
COOTAINALES . ..eoiiviiiiiiiiiiiiiieii 212

xxiii

xxiv

Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
buffers .
Figure 5.18

Figure 5.19
Figure 5.20
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19

Figures

Translating by skewingccccovvviiieeeiiiiiiieceiniieeeeee 218
Translating an object 2.5 in the x direction. 220
Scaling an object to three times its size..........cccccccceeini. 221
Scaling an object in place.ccccoeviiiiiiiiiiiiiiiiniiiii, 223
ROtationoccvviiiiiiiii 225
Rotating in placecceovvviiiiiiiniiiieieeieeceeeee e 225
Frustum projectioncccccccccceeeeeiiiiiiiniiniiieeeeeeeeee 228
Orthographic projectionccccceeeeeeemniiieeeeinniieeeeenne 230
Z PICCISION . ceviiiiiiiiiiiiiiieeeeeee e 237
Transform feedback varyings packed in a single buffer.... 246
Transform feedback varyings packed in separate

246

Transform feedback varyings packed into multiple

DUEFRTS « oo 250
Schematic of the particle system simulator. 253
Result of the particle system simulator.ccccoecveeeeennn. 258
Byte-swap effect on byte, short, and integer data. 289
SUDIMAge . .ooooiii e 290
*IMAGE_HEIGHT pixel storage mode.ccceeeeeeeeeeeennnn. 291
*SKIP_IMAGES pixel storage mode.ccccceeevvnnnnieinnnn. 292
Output of the simple textured quad example. 299
Effect of different texture wrapping modes. 301
Two textures used in the multitexture example............... 306
Output of the simple multitexture example..................... 306
Output of the volume texture example......cccoccvveeeennnnnee 308
A SKY DOX .« et 312
A golden environment mapped torusccceeeeriveeeeenn. 315
A visible seam in a cube Mapcooeoeveeiiiniiiiieiiie, 316
The effect of seamless cube-map filteringcc..cce.... 317
Effect of texture minification and magnification 330
Resampling of a signal in one dimensionccc....... 330
Bilinear resamplingcccccoovieiiniiiiiiiniiie 331
A pre-filtered mipmap pyramidccccovviiiiiiiniinineenn. 334
Effects of minification mipmap filters.cccccoeeeveeeernnnnne 335
[lustration of mipmaps using unrelated colors 336

Figure 6.21
Figure 6.22
Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4

Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8

Figure 8.9

Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13

Figure 8.14
Figure 8.15
Figure 8.16

Figure 8.17
Figure 8.18

Analytically calculated point sprites.....cc.cccccceeeeviuveeeeenn. 349
Smooth edges of circular point spritescccceccveeeernnnnne 349
Elements of the classic lighting model.cccceeeeennne 361
A sphere illuminated using the hemisphere lighting
MOAEL. ..oiiiiiiii e 386
Analytic hemisphere lighting functionccccocceeeennn. 387
Lighting model comparison.ccccccevveiiiiiiiiiiiiieinnn. 388
Light probe image.cccccoocviiiiiiiiiiiiiiiiiiiicecee 391
Lat-Iong mMap . ..ccoovveviiiiiiiiiiieeeiiee e 391
CUDE AP, .eevviiiiiiiiiiieeee e 392
Effects of diffuse and specular environment maps 394
Spherical harmonics lightingcccceevviiieeiinniiiiieeine 400
Depth renderingccccceevveeeiieeeiieiiiiiiiiieeeeeeeeeee e, 405
Final rendering of shadow mapcccccciiiiiiiiiniiiinnnnnn. 409
Procedurally striped tOrus.ccoccvviiiiiiiiiiiiiiiiicceins 415
SErIPes ClOSE-UP. ciovveiiiiiiiiiiiiceeeic e 419
Brick patteIns. ...coovooiiiiiiiiiiiieiie e 420
Visualizing the results of the half-space distance
calculationsccccoiiiiiiiiii 427
Intermediate results from the toy ball shader. 428
Intermediate results from “in”’ or “out” computation.. 429
The lattice shader applied to the cow model. 432
Inconsistently defined tangents leading to large lighting
100 (0] £ PSPPI 437
Simple box and torus with procedural bump mapping ... 441
Normal Mmappingcccccceeeiviiiiiiiiiiiiiicee 442
Aliasing artifacts caused by point sampling 444
SUPersampPling . .ccooeovvveiiiiiiiiieeii e 446
Using the s texture coordinate to create stripes on
A SPRETE «ceiiiiiiiiii e 448
Antialiasing the stripe pattern.cccccccoivviiiiiiiiiiiieeeen. 449
Visualizing the gradientcccccooeviiiiininiiiiiiininin. 451
Effect of adaptive analytical antialiasing on striped
TEAPOLS .ttt 452
Periodic step function.cccccovviiiiiiiiiiiii, 454
Periodic step function (pulse train) and its integral 454
Figures

XXV

XXVi

Figure 8.19
Figure 8.20
Figure 8.21
Figure 8.22
Figure 8.23
function.
Figure 8.24
Figure 8.25
Figure 8.26
Figure 8.27
Figure 8.28
Figure 8.29
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
example .
Figure 10.7
Figure 10.8
Figure 10.9
Figure 10.10
Figure 11.1
Figure 11.2

Figure 11.3
Figure 11.4

Figures

Brick shader with and without antialiasing. 456

Checkerboard pattern.cccccceeeeeeiiiiiiiiiiiiiieeeeeeeeee. 458
A discrete 1D noise function.cceeeeveeviieeeeiiieiiiieeeeinnnns 462
A continuous 1D noise function........cccccoveeeiviieiiiieeeinnnnen. 463

Varying the frequency and the amplitude of the noise
464

Summing noise functions.cceccveeeeiiieiieeeeiniiiieeeennnnne 465
Basic 2D noise, at frequencies 4, 8, 16, and 32 467
Summed noise, at 1, 2, 3, and 4 octavesS..........cccceeeeeeeennne. 467
Teapots rendered with noise shaderscccccuvviiieeeeeee. 475
Absolute value noise or “turbulence”.cccceeeeeeeee. 476
A bust of Beethoven rendered with the wood shader. 482
Quad tessellationccccovviiiiiiiiiiiiiiiiii 492
Isoline tessellationccocccieiiiiiiiiiiiiniiiiii s 494
Triangle tessellationcccccoveiiiiiiiiiiiiiiiiiiiiiiiieee e 495
Even and odd tessellation.ccccccceeeiinviiieeeiiniiiieieennnn, 496
The tessellated patches of the teapotcccccevviiieeennnn. 502
Tessellation Crackingcccceeevveeeiiniiieeeinieeeeeieeeeenn 507
Lines adjacency SEQUENCE.ccovvuvreeeeernrrrreeeenniirereeennnnne 518
Line-strip adjacency sequence.ccceeeveeeuememreeeeeeeeeeeenn. 519
Triangles adjacency SEqUEeNCE.eeeeeeeeeeeeeerrrrneeciennnnnes 520
Triangle-strip adjacency layout.ccccooviiiiiiinnnnnnn. 521
Triangle-strip adjacency sequence.ccccceeeeeeevvnnneenn. 522

Texture used to represent hairs in the fur rendering
530

The output of the fur rendering examplecccccceeeeee. 531
Schematic of geometry shader sorting example............... 546
Final output of geometry shader sorting example.. 548
Output of the viewport-array example.ccccoecvveeeeennnnne 555
Output of the simple load-store shader..........ccccueeeeeennnn. 575
Timeline exhibited by the naive overdraw counter

Shader. ..o 579
Output of the naive overdraw counter shader. 580
Output of the atomic overdraw counter shader............... 582

Figure 11.6

Data structures used for order-independent

ELANSPATEIICY . .eeiiiiiiiiiiiiiiieee e 610
Figure 11.7 Inserting an item into the per-pixel linked lists............... 616
Figure 11.8 Result of order-independent transparency incorrect
order on left; correct order on right.ccccevviiiiiiiiiniie 621
Figure 12.1 Schematic of a compute workloadccccoeevvveieennnnneee. 626
Figure 12.2 Relationship of global and local invocation ID. 632
Figure 12.3 Output of the physical simulation program as simple

POINES . oottt 640
Figure 12.4 Output of the physical simulation program..................... 642
Figure 12.5 Image ProCessingccccceeerriiiieeeemnniiieeeeeniieeeeeeeiieeees 646
Figure 12.6 Image processing artifacts.ccccccceeerviiieeeeinnniieeeeennnnnee. 647
Figure B.1 Our WebGL demo.cccevviiiiiiiiiiiiiiiiiiieeeeceeeeee e 671
Figure H1 AMD’s GPUPerfStudio2 profiling Unigine Heaven 3.0 880
Figure H.2 Screenshot of Unigine Heaven 3.0ccccoviiiieernnnneeen. 880

Figures

XXvii

This page intentionally left blank

Table 1.1
Table 1.2

Table 1.3
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 2.12
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 4.1

Table 4.2
Table 4.3

Tables

Command Suffixes and Argument Data Typescc......... 10
Example of Determining Parameters for

glVertex AttribPointer()cccccovvvieeiiiniiieieinnieeeeeee 26
Clearing Buffers.ceeieviiiiiiiiiniieeeirieeeee e 28
Basic Data Types in GLSL ...t 38
Implicit Conversions in GLSLccccoviiiiiiiiiniiiiinnnnn, 39
GLSL Vector and Matrix Types . ..ccccoeeviviiiiiiiiiiiiiieeeeeeeeeenn. 40
Vector Component ACCESSOISuuviiiiiiiiiiiiiiiiiiiniiiiiiiinnnnns 43
GLSL Type MOdifiersccoovvoiiiiiiiiiiiiiiiiiiiieeeeiieeeeeee 46
GLSL Operators and Their Precedenceccccoeevvveeeennnnns 50
GLSL Flow-Control Statements.cccccoeeviiiniiiiniiiinnnn. 52
GLSL Function Parameter Access Modifiers. 54
GLSL Preprocessor Directivescccccevvvviiiiiiiniiiiieeeeeeeeeeenn. 57
GLSL Preprocessor Predefined Macros.........cccceeveuveeeeeennnnne 58
GLSL Extension Directive Modifiersccccceevriurieeeeennnne 60
Layout Qualifiers for Uniform.ccccccccevviiinniiiinnicennnne. 62
OpenGL Primitive Mode ToKens.ooeeecuummrriiiieeeeeeeeennn. 90
Buffer Binding Targetscccccovviiiiiiiiniiiiiiiiniiiceeeens 93
Buffer Usage TOKENSccoovviiiiiiiniiiiiiiiiiiiiccevieeeeeee 96
Access Modes for giMapBuffer()cccoceveeeeiiniiiieennnn. 101
Flags for Use with giMapBufferRange()............cccccceeennee. 104
Values of Type for glVertexAttribPointer(). 109
Converting Data Values to Normalized Floating-Point
Values. ..o 150
Query Values for the Stencil Testcccoceviieiiniiiiiennnn. 161
Source and Destination Blending Factorsccce...... 169

XXix

XXX

Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4

Table 6.5
Table 6.6
Table 6.7
Table 7.1

Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 10.1

Table 10.2

Table 10.3
Table 10.4
Table 11.1
Table 11.2
Table B.1
Table B.2
Table C.1
Table C.2
Table D.1
Table D.2

Tables

Blending Equation Mathematical Operations. 171
Sixteen Logical Operationscccccccceeveieriiiiiiiiiiiiieieeeeeeee. 172
Values for Use with gIHINt() . ..ccooovivieeeiiiiiiiieiiiiiiieeeens 179
Framebuffer Attachments.c.ccoccuveeeiiiiiiiiieininiiiieeeene 187
Errors Returned by glCheckFramebufferStatus() 191
glReadPixels() Data Formatsccccovvviiiiiiiniiiiinnnnn. 201
Data Types for glReadPixels().ccccevvemiieieiiniiiiiieennnn. 202
Drawing Modes Allowed During Transform Feedback. 251
Texture Targets and Corresponding Sampler Types. 263
Sized Internal Formatsccoeoiiiiiiiiiiiiiiiieee, 271
External Texture Formats.cccccovviiiniiiiniiiiiiieenne 274
Example Component Layouts for Packed Pixel

Formats. ... 276
Texture Targets and Corresponding Proxy Targets. 276
Target Compatibility for Texture Views..........ccccerrveeeenn. 322
Internal Format Compatibility for Texture Views. 323
Spherical Harmonic Coefficients for Light Probe

IMages . ..oooviiiiiiiii 397
Tessellation Control Shader Input Variables..................... 490
Evaluation Shader Primitive Typescccooviimmrriiieieeeeeen. 497
Options for Controlling Tessellation Level Effects. 498
Tessellation Control Shader Input Variables..................... 500
Geometry Shader Primitive Types and Accepted Drawing
MOAES. ceiiiiiieiiiiiiie e 513
Geometry Shader Primitives and the Vertex Count for
EaCh oo 515
Provoking Vertex Selection by Primitive Mode.. 524
Ordering of Cube-Map Face Indices.ccccoecuveernneennnne 559
Generic Image Types in GLSL.ccooviiiiiiiiiiiiiin. 565
Image Format Qualifiers.........ccccoeeviiiiiiniiiiiiiinniiiiiieinn, 566
Type Strings for WebGL Shadersccccoeeiiieiinnnnneeen. 664
WebGL Typed AITayS . ..cccovveiieeeiiniiieeeeiniiieeeeeniieeee e 667
Cube-Map Face Targetscccceevvemiveeeeiniiiiieeeenieeeee e 679
Notation for Argument or Return Type.......cccccovuvveeeennnnne 687
Current Values and Associated Dataccccceeeeieenne. 746
State Variables for Vertex Array Objects.ccccovvuveeeeennnne 747

Table D.3

Table D.4
Table D.5
Table D.6
Table D.7
Table D.8
Table D.9
Table D.10
Table D.11
Table D.12
Table D.13
Table D.14
Table D.15

Table D.16
Table D.17
Table D.18
Table D.19
Table D.20
Table D.21
Table D.22
Table D.23
Table D.24
Table D.25
Table D.26
Table D.27
Table D.28
Table D.29
Table D.30
Table D.31
Table D.32
Table D.33
Table D.34
Table D.35

State Variables for Vertex Array Data (Not Stored in a

Vertex Array ODjJeCt)cceeevviiiiiiiiniiiieeiiiieeee e 749
State Variables for Buffer Objectsccccoeevieeeeiniiiieeeennnnn. 750
Transformation State Variablesccccccoeviiininnne 751
State Variables for Controlling Coloring.........cc.cceeeeeennee. 752
State Variables for Controlling Rasterization. 753
State Variables for Multisamplingccccccccceiiniiiiiiinn. 755
State Variables for Texture Units.ccccoeeeveeeiiniiiiiieennnn. 756
State Variables for Texture Objectsccecevveeeiriiiieeeennnn. 759
State Variables for Texture Imagescccceevveeeeniinineeeennnne 762
State Variables Per Texture Sampler Objectccc....... 764
State Variables for Texture Environment and Generation 766
State Variables for Pixel Operations.c..ccccceevueeeneeeeennen. 767
State Variables Controlling Framebuffer Access

and Values. ..o 770
State Variables for Framebuffers per Target 771
State Variables for Framebuffer Objectscccccuvveeeeeeeeee. 772
State Variables for Framebuffer Attachments. 773
Renderbuffer State.ccocoiiiiii 775
State Variables per Renderbuffer Objectccccccvveeeennne. 776
State Variables Controlling Pixel Transfers.ccc....... 778
State Variables for Shader Objectscccccouveeeiirniiiieeeennnn. 781
State Variables for Program Pipeline Object State. 782
State Variables for Shader Program Obijects.ccceee... 783
State Variables for Program Interfaces.ccccooceveeennn. 793
State Variables for Program Object Resources. 794
State Variables for Vertex and Geometry Shader State. 797
State Variables for Query Objectscccccoevviveeeirniiieeeeennnn. 797
State Variables per Image Unit.ccceeevviiiieeeiniiiiieeeennnne 798
State Variables for Transform Feedbackccccoccueeeeennnn. 799
State Variables for Atomic Countersccccovvviiieeennnns 800
State Variables for Shader Storage Buffers 801
State Variables for Sync Objectsccccovvvveeeiiniciiceennnnne 802
HINtS . oo 803
State Variables for Compute Shader Dispatch. 803

Tables

XXXi

xxxii

Table D.36

Table D.37

Table D.38

Table D.39

Table D.40

Table D.41

Table D.42
Table D.43
Table D.44
Table D.45

Table D.46
Table D.47
Table G.1
Table 1.1
Table 1.2

Tables

State Variables Based on Implementation-Dependent

Values. ...oooiiiiiiiiiiiii 804
State Variables for Implementation-Dependent

Tessellation Shader Valuescccocoiiiviiiiiiiine, 810
State Variables for Implementation-Dependent Geometry
Shader Values.ccccovviiiiiiiiini 813
State Variables for Implementation-Dependent Fragment
Shader Values.cccoooiiiiiiiieeeeeeeeeeeee 815
State Variables for Implementation-Dependent Compute
Shader LIMitscooooiiiiiiiiiiiiecccec e 816
State Variables for Implementation-Dependent Shader
LIMIts . oo 818
State Variables for Debug Output Stateccccoccveeeeennnne 823
Implementation-Dependent Values.ccccevnveeeeennnn. 824
Internal Format-Dependent Valuescc.cccceevviiiieeeennn. 826
Implementation-Dependent Transform Feedback

LIMIts . oo 826
Framebuffer-Dependent Valuescccccoooveiiinniiiiieannnnn. 827
Miscellaneous State Valuesocccveeeeinniiiieeeinniiieeeennnnne 827
Reduced-Precision Floating-Point Formats.ccccc..... 858
std140 Layout Rules.cooeiiiimiiiiiiiiiiiiiie e, 886
std430 Layout Rules.cccocciiiiiiiniiiiiiiiiieee, 887

Example 1.1
Example 1.2
Example 1.3
Example 2.1
Example 2.2

Example 2.3
Example 2.4

Example 2.5
Example 2.6
Example 3.1
Example 3.2
Example 3.3

Example 3.4

Example 3.5
Example 3.6
Example 3.7

Example 3.8
Example 3.9

Example 3.10
Example 3.11

Examples

triangles.cpp: Our First OpenGL Program S
Vertex Shader for triangles.cpp: triangles.vert............... 23
Fragment Shader for triangles.cpp: triangles.frag. 25
A Simple Vertex Shadercccoocoveeiiiniiiiiinniiiieeeenns 36
Obtaining a Uniform Variable’s Index and Assigning
Values . ..ooooiiiiiiiiiii 48
Declaring a Uniform BIOCK.ccccovviiiiiiiiniiiiiiieiieee. 61
Initializing Uniform Variables in a Named Uniform
BLOCK. ciiiiiiiiiiii i 65
Static Shader Control FIow.cccccoviiiiiiiiiiiniinnne. 77
Declaring a Set of Subroutinescccccovvviiieeernnnnnen. 78
Initializing a Buffer Object with glBufferSubData() 98
Initializing a Buffer Object with giMapBuffer() 103
Declaration of the DrawArraysIndirectCommand
SEFUCEUTE . oo 118
Declaration of the DrawElementsindirectCommand
SEFUCEUTE . .eeviiiiiiiii 119
Setting up for the Drawing Command Example......... 122
Drawing Commands Exampleccccevnviieeeennnnns 123
Intializing Data for a Cube Made of Two Triangle

LIPS - e 125
Drawing a Cube Made of Two Triangle Strips Using
Primitive Restart.c.ccccoiiiiiiiiiis 127
Vertex Shader Attributes for the Instancing

EXamplecooooviiiiiiiies 130
Example Setup for Instanced Vertex Attributes 130
Instanced Attributes Example Vertex Shader............... 132

xxxiii

XXXiv

Example 3.12
Example 3.13
Example 3.14
Example 4.1

Example 4.2
Example 4.3
Example 4.4
Example 4.5
Example 4.6

Example 4.7
Example 4.8
Example 4.9

Example 4.10
Example 4.11
Example 4.12
Example 4.13

Example 5.1
Example 5.2
Example 5.3

Example 5.4

Example 5.5
Example 5.6

Example 5.7
Example 5.8
Example 5.9

Example 5.10

Examples

Instancing Example Drawing Code.ccccvveeeennnnne. 132

gl VertexID Example Vertex Shader.ccceenneee. 136
Example Setup for Instanced Vertex Attributes 138
Specifying Vertex Color and Position Data:

GOUTAUA.CPP « weveeeeeeeeeeeiiiiiiirireerrereeeeeeeeeeeee s e eeeeannees 150
A Simple Vertex Shader for Gouraud Shading. 152
A Simple Fragment Shader for Gouraud Shading. 152
A Multisample-Aware Fragment Shader 155
Using the Stencil Test: stencil.C.cccccceeeeiiiiiniiiiinnnnns 161
Rendering Geometry with Occlusion Query:

OCCQUETY.C. teririinniiiiiiiiieetiiie e eetiii e etiiii e e etaaaa e eeaaans 174
Retrieving the Results of an Occlusion Query 175
Rendering Using Conditional Rendering 177
Setting Up Blending for Antialiasing Lines:

antilines.CPP. coovviiiiiiiii 180
Creating a 256 x 256 RGBA Color Renderbuffer......... 187
Attaching a Renderbuffer for Rendering. 188

Specifying layout Qualifiers for MRT Rendering 194

Layout Qualifiers Specifying the Index of Fragment
Shader OULPULS . ..ceeiviiiiiiiiiiieceeee e 198

Multiplying Multiple Matrices in a Vertex Shader. 233

Simple Use 0f g1 _ClipDiStanceccccomevveeeernnnnne 238
Example Initialization of a Transform Feedback

BUfferocoooiiiiiiiii 243
Example Specification of Transform Feedback

Varyings . ..ccooocviiiiiiiiiiii 245
Leaving Gaps in a Transform Feedback Buffer. 247
Assigning Transform Feedback Outputs to Different
BUffers. ..o 248
Assigning Transform Feedback Outputs to Different
BUFEETS . e 249
Vertex Shader Used in Geometry Pass of Particle

System SImulator.cc.eeeeeiiniiiiieiiiniieeeeeee e 254
Configuring the Geometry Pass of the Particle System
SIMUIAtOr ..o 254
Vertex Shader Used in Simulation Pass of Particle

System SImulator.ccvveeeiiniiiiiiiiinieee e 255

Example 5.11
Example 5.12

Example 6.1
Example 6.2
Example 6.3
Example 6.4
Example 6.5
Example 6.6
Example 6.7

Example 6.8

Example 6.9

Example 6.10
Example 6.11
Example 6.12
Example 6.13
Example 6.14
Example 6.15
Example 6.16
Example 6.17
Example 6.18
Example 6.19
Example 6.20
Example 6.21

Example 6.22

Example 6.23
Example 6.24
Example 6.25
Example 6.26
Example 6.27
Example 6.28
Example 6.29

Configuring the Simulation Pass of the Particle

System SImulator.ccvveeiiiniiiiiiiinieecee 257
Main Rendering Loop of the Particle System

SImulator ... 257
Direct Specification of Image Datain C...................... 278
Loading Static Data into Texture Objects 279
Loading Data into a Texture Using a Buffer Object 280
Definition of the vgllmageData Structure 283
Simple Image Loading Examplecccccoeviiiieeannnns 284
Loading a Texture Using loadlmagec.cccccceeeennneee 285
Simple Texture Lookup Example

(Fragment Shader)coooouveeeiiniiiieiiniiieeeeeeeeeene 297
Simple Texture Lookup Example (Vertex Shader). 297
Simple Texturing Exampleccccevviiiieeeeeiiiiiinnnnnnnn. 298
Setting the Border Color of a Samplerccce..... 301
Texture Swizzle Example......cccoooviiiiiviiiiiciiinniniecenn. 302
Simple Multitexture Example (Vertex Shader). 304
Simple Multitexture Example (Fragment Shader). 305
Simple Multitexture Exampleccccceeeeerniiiieeeennnnne 305
Simple Volume Texture Vertex Shader. 307
Simple Volume Texture Fragment Shader. 308
Initializing a Cube-Map Textureccceeevveeiinnnnnne. 310
Initializing a Cube-Map Array Texture.ccccouuneee. 311
Simple Skybox Example—Vertex Shader..................... 313
Simple Skybox Example—Fragment Shader 313
Cube-Map Environment Mapping Example—Vertex
Shader. ..o 314
Cube-Map Environment Mapping Example—Fragment
Shader. ..., 314
Creating and Initializing a Buffer Texture 320
Texel Lookups from a Buffer Texturecccoeeeeeennns 321
Creating a Texture View with a New Format............... 324
Creating a Texture View with a New Target 325
Simple Point Sprite Vertex Shader.ccccceeeeennnnneen. 347
Simple Point Sprite Fragment Shadercc.c.cc.eeeee 347
Analytic Shape Fragment Shaderc..cccoiiis 348

Examples

XXXV

XXXVi

Example 6.30

Example 7.1
Example 7.2
Example 7.3
Example 7.4
Example 7.5
Example 7.6
Example 7.7
Example 7.8
Example 7.9
Example 7.10

Example 7.11
Example 7.12
Example 7.13
Example 7.14
Example 7.15

Example 7.16

Example 7.17
Example 7.18

Example 7.19
Example 7.20
Example 7.21
Example 8.1
Example 8.2
Example 8.3
Example 8.4
Example 8.5

Example 8.6
Example 8.7
Example 8.8

Examples

Attaching a Texture Level as a Framebuffer

Attachment: fbotexture.Cppcccceevvveiveeerniiiieeeennns 353
Setting Final Color Values with No Lighting............... 363
Ambient Lightingoccoeviiiiiiiiiiiiiiieeiiieeeeee 364
Directional Light Source Lighting.cccccccoevviiiinnnins 366
Point-Light Source Lighting.cccccccivviiiiiiinnnne. 369
Spotlight Lightingccccoviiiiiiiiniiiii 371
Point-light Source Lighting in the Vertex Shader. 374
Structure for Holding Light Properties.ccc......... 376
Multiple Mixed Light Sourcesccceeeeernviiieeeennnnns 377
Structure to Hold Material Propertiescccceeennnee 380
Code Snippets for Using an Array of Material

Properties.cccccciiiiiiiiiiiiii 380
Front and Back Material Propertiesc...cecceeennee. 382
Vertex Shader for Hemisphere Lighting 388
Shaders for Image-based Lightingccccoecieeeennnnnes 394
Shaders for Spherical Harmonics Lighting. 398
Creating a Framebuffer Object with a Depth

Attachment . ..o 401
Setting up the Matrices for Shadow Map

Generation.ccooovviiiiiiiiiii 402
Simple Shader for Shadow Map Generation. 403
Rendering the Scene From the Light’s Point

Of VIBW . oottt 404
Matrix Calculations for Shadow Map Rendering 406
Vertex Shader for Rendering from Shadow Maps. 406
Fragment Shader for Rendering from Shadow Maps... 407
Vertex Shader for Drawing Stripescccccevvviiieeennnns 416
Fragment Shader for Drawing Stripesccccccceeueennee. 417
Vertex Shader for Drawing Brickscccccccceeeiiinnnnn. 420
Fragment Shader for Drawing Brickscccoennnine. 421
Values for Uniform Variables Used by the Toy Ball
SRAET . oo 423
Vertex Shader for Drawing a Toy Ball 424
Fragment Shader for Drawing a Toy Ball 429

Fragment Shader for Procedurally Discarding Part of
an ODbjeCtoooiviiiiiiiiii 431

Example 8.9

Example 8.10
Example 8.11

Example 8.12
Example 8.13

Example 8.14
Example 8.15
Example 8.16
Example 8.17
Example 8.18
Example 8.19
Example 8.20
Example 8.21
Example 9.1

Example 9.2

Example 9.3
Example 9.4
Example 9.5

Example 9.6
Example 9.7

Example 9.8
Example 9.9

Example 9.10
Example 9.11

Example 9.12

Vertex Shader for Doing Procedural Bump

MaAPPING - ceveiiiiiiiiiiiiiiiiiiiieeee s 438
Fragment Shader for Procedural Bump Mapping 440
Fragment Shader for Adaptive Analytic

Antialiasing . ..cooooevviiiiiiniiiiii 451
Source Code for an Antialiased Brick Fragment

Shader. ... 456
Source Code for an Antialiased Checkerboard

Fragment Shadercccooeviiiiiini, 458
C function to Generate a 3D Noise Texture.. 469
A Function for Activating the 3D Noise Texture.......... 471
Cloud Vertex Shadercccccciiviiiiiiiiiiniiiiiine, 473
Fragment Shader for Cloudy Sky Effect.cc.......... 474
Sun Surface Fragment Shader.cccceevviiiieeiennnnnee. 477
Fragment Shader for Marblecccceeiiiniiiiiiinnnnne. 477
Granite Fragment Shadercccccccceiiiiiiiiniiiinnnnns 478
Fragment Shader for Wood.cccccviiiiiiiiiiiiiinnnnnne. 480
Specifying Tessellation Patchesccccoeceiiiinnnnnne 488
Passing Through Tessellation Control Shader Patch
VEITICES. ittt 490
Tessellation Levels for Quad Domain Tessellation
Hlustrated in Figure 9.1 . ..o 492
Tesslation Levels for an Isoline Domain Tessellation
Shown in Figure 9.2ccovviiiiiiiniiiieeeeieeee e 493
Tesslation Levels for a Triangular Domain

Tessellation Shown in Figure 9.3cocoiiviiiniiineeenn. 494
A Sample Tessellation Evaluation Shader 499
gl in Parameters for Tessellation Evaluation

Shaders. ... 499
Tessellation Control Shader for Teapot Example......... 501
The Main Routine of the Teapot Tessellation

Evaluation Shader.cccoeoiiiiiin, 502
Definition of B(i, u) for the Teapot Tessellation

Evaluation Shader.cccooiiiiiii, 503
Computing Tessellation Levels Based on

View-Dependent Parameters.ccocccvveeiiniiiiiiinnnnn, 504

Specifying Tessellation Level Factors Using Perimeter
Edge Centersccooviiiiiiiiiiiiiiiiiieeeeeeeeeee e 506

Examples

XXXvii

xxxviii

Example 9.13

Example 10.1
Example 10.2
Example 10.3
Example 10.4
Example 10.5
Example 10.6

Example 10.7
Example 10.8
Example 10.9

Example 10.10
Example 10.11

Example 10.12

Example 10.13
Example 10.14
Example 10.15
Example 10.16

Example 10.17

Example 10.18
Example 10.19
Example 10.20
Example 10.21

Example 10.22
Example 10.23
Example 10.24

Example 10.25

Example 11.1

Examples

Displacement Mapping in main Routine of the Teapot

Tessellation Evaluation Shader.cccccceeevniiiiiennnnns 508
A Simple Pass-Through Geometry Shader 511
Geometry Shader Layout Qualifierscccccovvnnneeeen. 512

Implicit Declaration of g1_in[]
Implicit Declaration of Geometry Shader Outputs. 523

A Geometry Shader that Drops Everything. 526
Geometry Shader Passing Only Odd-Numbered
Primitives. ..., 526
Fur Rendering Geometry Shader.........cccccoevuiieeeennnnne. 528
Fur Rendering Fragment Shadercccccccoiine. 529
Global Layout Qualifiers Used to Specify a Stream

MaAD e 533
Example 10.9 Rewritten to Use Interface Blocks.......... 534
Incorrect Emission of Vertices into Multiple

SEF@AIMS. w.eviiiiiiiiiiiii i 535
Corrected Emission of Vertices into Multiple

SEreAMS. ..vvviiiiiiiiiii 536
Assigning Transform Feedback Outputs to Buffers 537
Simple Vertex Shader for Geometry Sorting. 541
Geometry Shader for Geometry Sorting.cccco....... 542
Configuring Transform Feedback for Geometry

SOTHING oot 543
Pass-Through Vertex Shader used for Geometry Shader
SOTHING « oo 544
OpenGL Setup Code for Geometry Shader Sorting. 545
Rendering Loop for Geometry Shader Sorting. 547

Geometry Amplification Using Nested Instancing. 550
Directing Geometry to Different Viewports with

a Geometry Shaderccoooiiiiiiiiiiiieeeeeee s 552
Creation of Matrices for Viewport Array Example. 553
Specifying Four VIieWpOrts.ceeeeeeeeiiiiiiiiniiiiiinnnnns 554
Example Code to Create an FBO with an Array

Texture Attachmentccoeoiiiiiii 556
Geometry Shader for Rendering into an Array

TeXTUIe . .oooiiiiii 557
Examples of Image Format Layout Qualifiers. 568

Example 11.2
Example 11.3
Example 11.4

Example 11.5
Example 11.6
Example 11.7
Example 11.8
Example 11.9
Example 11.10
Example 11.11
Example 11.12

Example 11.13

Example 11.14
Example 11.15
Example 11.16
Example 11.17
Example 11.18
Example 11.19
Example 11.20

Example 11.21
Example 11.22

Example 11.23
Example 11.24
Example 11.25

Example 11.26

Example 11.27

Creating, Allocating, and Binding a Texture to an

Image Unit.ccccocciiiiiiiiiieeeeeeeee 571
Creating and Binding a Buffer Texture to an Image

UNIE . i 572
Simple Shader Demonstrating Loading and Storing

INtO IMAZesccooviiiiiiiiiii 574
Simple Declaration of a Buffer Blockccoc... 576
Creating a Buffer and Using it for Shader Storage 577
Declaration of Structured Data.c..ccoecceiiiiinnnn. 577
Naively Counting Overdraw in a Sceneccc....... 578
Counting Overdraw with Atomic Operations 581
Possible Definitions for IMAGE PARAMS.cccecueennne 583
Equivalent Code for imageAtomicAdd.cccceevuininne 584
Equivalent Code for imageAtomicExchange and
imageAtOMICCOMP .« wuueuiieeeeeieeeeeeeeiiiiriiiieee e e e e eeeeeenee 585
Simple Per-Pixel Mutex Using

imageAtomiCCOMPSWAD « . eeeeerrrrneeeerrrrrnaeeererannaeeeeenennnns 585
Example Use of a Sync Object.ccceeeeeevviiieieinninneen. 592
Basic Spin-Loop Waiting on Memorycccccuunniiis 594
Result of Loop-Hoisting on Spin-Loop.ccceeuuunee. 594
Examples of Using the volatile Keyword................ 595
Examples of Using the coherent Keyword................ 598

Example of Using the memoryBarrier () Function... 599
Using the early fragment tests Layout

QUALITIET e 604
Counting Red and Green Fragments Using General
ALOIMICS « .evviiiiiiiiiii 605
Counting Red and Green Fragments Using Atomic
COUNTETS. ..ooiiiiiiiiiiiii e 606
Initializing an Atomic Counter Buffer 608
Initializing for Order-Independent Transparency 611
Per-Frame Reset for Order-Independent

TransSParenCyccccccvvviiiiiiiiiiiiiiineeeee 613
Appending Fragments to Linked List for

Later SOTHING.ccooiviiiiiiiiiiiiii e, 614
Main Body of Final Order-Independent Sorting

Fragment Shaderccccooiiiiiiiiiiies 617

Examples

XXXiX

Example 11.28 Traversing Linked-Lists in a Fragment Shader 618

xI

Example 11.29 Sorting Fragments into Depth Order for OIT 619
Example 11.30 Blending Sorted Fragments for OIT.cccccceeveieen. 619
Example 12.1 Simple Local Workgroup Declarationcc.......... 626

Example 12.2

Example 12.3
Example 12.4

Creating, Compiling, and Linking a Compute
Shader.cccoovviiiiiiii 627

Dispatching Compute Workloads.ccccceeeeinnnnne. 629
Declaration of Compute Shader Built-in Variables. 630

Example 12.5 Operating on Data.cccccoeeviiiiiiniiiiiiinniiiieceeeee, 631
Example 12.6 Example of Shared Variable Declarations 633
Example 12.7 Particle Simulation Compute Shader.............cccce...... 637
Example 12.8 Initializing Buffers for Particle Simulation. 638
Example 12.9 Particle Simulation Fragment Shader..............c............ 640
Example 12.10 Particle Simulation Rendering Loop.........cccccccceeeieeen. 641

Example 12.11

Example 12.12

Central Difference Edge Detection Compute
Shader.oooiiiiii 643

Dispatching the Image Processing Compute Shader... 644

Example B.1 An Example of Creating an OpenGL ES Version 2.0

Rendering ContexXtceeeeeriviiieeeeiniiiieieeeniieeee e 661
Example B.2 Creating an HTMLS Canvas Elementccccoeuneeee. 662
Example B.3 Creating an HTMLS Canvas Element that Supports

WEDGL . oo 663
Example B.4 Our WebGL Applications Main HTML Page. 664
Example B.5 Our WebGL Shader Loader: InitShaders.js. 666
Example B.6 Loading WebGL Shaders Using InitShaders(). 667
Example B.7 Initializing Vertex Buffers in WebGL........................... 668
Example B.8 Our demo.js WebGL Application........cccecceeeeevvenneeeen. 669
Example H.1 Creating a Debug Context Using WGL.c...cc... 866
Example H.2 Creating a Debug Context Using GLX.ccccoveuveeeeen. 867
Example H.3 Prototype for the Debug Message Callback

Function 868
Example H.4 Creating Debug Message Filters.ccccooveiveeiinnnnne. 873
Example H.5 Sending Application-Generated Debug Messages. 875
Example H.6 Using an Elapsed Time QUeTY . ..ccoovevvveeeinniiieeeeennnnnen. 882

Examples

About This Guide

The OpenGL graphics system is a software interface to graphics hardware.
(The GL stands for Graphics Library.) It allows you to create interactive
programs that produce color images of moving three-dimensional objects.
With OpenGL, you can control computer-graphics technology to produce
realistic pictures, or ones that depart from reality in imaginative ways. This
guide explains how to program with the OpenGL graphics system to
deliver the visual effect you want.

What This Guide Contains

This guide contains the following chapters:

e Chapter 1, “Introduction to OpenGL”, provides a glimpse into what
OpenGL can do. It also presents a simple OpenGL program and
explains the essential programming details you need to know for the
subsequent chapters.

e Chapter 2, “Shader Fundamentals”, discusses the major feature of
OpenGL, programmable shaders, demonstrating how to initialize and
use them within an application.

e Chapter 3, “Drawing with OpenGL”, describes the various methods for
rendering geometry using OpenGL, as well as some optimization
techniques for making rendering more efficient.

e Chapter 4, “Color, Pixels, and Framebuffers”, explains OpenGL'’s
processing of color, including how pixels are processed, buffers are
managed, and rendering techniques focused on pixel processing.

e Chapter 5, “Viewing Transformations, Clipping, and Feedback”, details
the operations for presenting a three-dimensional scene on a
two-dimensional computer screen, including the mathematics and
shader operations for the various types of geometric projection.

e Chapter 6, “Textures”, discusses combining geometric models and
imagery for creating realistic, high-detailed three-dimensional models.

e Chapter 7, “Light and Shadow”, describes simulating illumination
effects for computer graphics, focusing on implementing those
techniques in programmable shaders.

xli

xlii

Chapter 8, “Procedural Texturing”, details the generation of textures
and other surface effects using programmable shaders for increased
realism and other rendering effects.

Chapter 9, “Tessellation Shaders”, explains OpenGL’s shader facility for
managing and tessellating geometric surfaces.

Chapter 10, “Geometry Shaders”, describe an additional technique for
modifying geometric primitives within the OpenGL rendering pipeline
using shaders.

Chapter 11, “Memory”’, demonstrates techniques using OpenGL’s
framebuffer and buffer memories for advanced rendering techniques
and nongraphical uses.

Chapter 12, “Compute Shaders”, introduces the newest shader stage
which integrates general computation into the OpenGL rendering
pipeline.

Additionally, a number of appendices are available for reference.

Appendix A, “Basics of GLUT: The OpenGL Utility Toolkit”, discusses
the library that handles window system operations. GLUT is portable
and it makes code examples shorter and more comprehensible.

Appendix B, “OpenGL ES and WebGL", details the other APIs in the
OpenGL family, including OpenGL ES for embedded and mobile
systems, and WebGL for interactive 3D applications within Web
browsers.

Appendix C, “Built-in GLSL Variables and Functions”’, provides a
detailed reference to OpenGL Shading Language.

Appendix D, “State Variables”, lists the state variables that OpenGL
maintains and describes how to obtain their values.

Appendix E, “Homogeneous Coordinates and Transformation
Matrices”, explains some of the mathematics behind matrix
transformations.

Appendix F, “OpenGL and Window Systems"’, describes the various
window-system-specific libraries that provide the binding routines
used for allowing OpenGL to render with their native windows.

Appendix G, “Floating-Point Formats for Textures, Framebuffers, and
Renderbuffers”, provides an overview of the floating-point formats
used within OpenGL.

Appendix H, “Debugging and Profiling OpenGL”, discusses the latest
debug features available within OpenGL.

About This Guide

e Appendix I, “Buffer Object Layouts”, provides a reference for use with
uniform buffers using the standard memory layouts defined in
OpenGL.

What’s New in This Edition

Virtually everything! For those familiar with previous versions of the
OpenGL Programming Guide, this edition is a complete rewrite focusing on
the latest methods and techniques for OpenGL application development.
It combines the function-centric approach of the classic Red Book, with
the shading techniques found in the OpenGL Shading Language (commonly
called the “Orange Book”’).

In this edition, the author team was expanded to include major
contributors to OpenGL’s evolution, as well as the OpenGL Shading
Language specification editor. As such, this edition covers the very latest
version of OpenGL, Version 4.3, including compute shaders. It also
describes every stage of the programmable rendering pipeline. We
sincerely hope you find it useful and educational.

What You Should Know Before Reading This Guide

This guide assumes only that you know how to program in the C language
(we do use a little bit of C++, but nothing you won't be able to figure out
easily) and that you have some background in mathematics (geometry,
trigonometry, linear algebra, calculus, and differential geometry). Even if
you have little or no experience with computer graphics technology, you
should be able to follow most of the discussions in this book. Of course,
computer graphics is an ever-expanding subject, so you may want to
enrich your learning experience with supplemental reading:

e Computer Graphics: Principles and Practice, Third Edition, by John F.
Hughes et al. (Addison-Wesley, forthcoming 2013)—This book is an
encyclopedic treatment of the subject of computer graphics. It includes
a wealth of information but is probably best read after you have some
experience with the subject.

e 3D Computer Graphics by Andrew S. Glassner (The Lyons Press,
1994)—This book is a nontechnical, gentle introduction to computer
graphics. It focuses on the visual effects that can be achieved, rather
than on the techniques needed to achieve them.

Another great place for all sorts of general information is the OpenGL Web
site. This Web site contains software, sample programs, documentation,

About This Guide

xliii

xliv

FAQs, discussion boards, and news. It is always a good place to start any
search for answers to your OpenGL questions:

http://www.opengl.org/

Additionally, full documentation of all the procedures and shading
language syntax that compose the latest OpenGL version are documented
and available at the official OpenGL Web site. These Web pages replace the
OpenGL Reference Manual that was published by the OpenGL Architecture
Review Board and Addison-Wesley.

OpenGL is really a hardware-independent specification of a programming
interface, and you use a particular implementation of it on a particular
kind of hardware. This guide explains how to program with any OpenGL
implementation. However, since implementations may vary slightly—in
performance and in providing additional, optional features, for example—
you might want to investigate whether supplementary documentation is
available for the particular implementation you're using. In addition, the
provider of your particular implementation might have OpenGL-related
utilities, toolkits, programming and debugging support, widgets, sample
programs, and demos available at its Web site.

How to Obtain the Sample Code

This guide contains many sample programs to illustrate the use of
particular OpenGL programming techniques. As the audience for this
guide has a wide range of experience, from novice to seasoned veteran,
with both computer graphics and OpenGL, the examples published in
these pages usually present the simplest approach to a particular rendering
situation, demonstrated using the OpenGL Version 4.3 interface. This is
done mainly to make the presentation straightforward and accessible to
those readers just starting with OpenGL. For those of you with extensive
experience looking for implementations using the latest features of the
API, we first thank you for your patience with those following in your
footsteps, and ask that you please visit our Web site:

http://www.opengl-redbook.com/

There, you will find the source code for all examples in this text,
implementations using the latest features, and additional discussion
describing the modifications required in moving from one version of
OpenGL to another.

All of the programs contained within this book use the OpenGL Utility
Toolkit (GLUT), originally authored by Mark Kilgard. For this edition, we

About This Guide

http://www.opengl.org/
http://www.opengl-redbook.com/

use the open-source version of the GLUT interface from the folks
developing the freeglut project. They have enhanced Mark’s original work
(which is thoroughly documented in his book, OpenGL Programming for the
X Window System, Addison-Wesley, 1997). You can find their open-source
project page at the following address:

http://freeglut.sourceforge.net/
You can obtain code and binaries of their implementation at this site.

The section “OpenGL-Related Libraries” in Chapter 1 and Appendix A give
more information about using GLUT. Additional resources to help
accelerate your learning and programming of OpenGL and GLUT can be
found at the OpenGL Web site’s resource pages:

http://www.opengl.org/resources/

Many implementations of OpenGL might also include the code samples
as part of the system. This source code is probably the best source for your
implementation, because it might have been optimized for your system.
Read your machine-specific OpenGL documentation to see where those
code samples can be found.

Errata

Unfortunately, it is likely this book will have errors. Additionally, OpenGL
is updated during the publication of this guide: errors are corrected and
clarifications are made to the specification, and new specifications are
released. We keep a list of bugs and updates at our Web site,
http://www.opengl-redbook.com/, where we also offer facilities for
reporting any new bugs you might find. If you find an error, please accept
our apologies, and our thanks in advance for reporting it. We'll get it
corrected as soon as possible.

Style Conventions

These style conventions are used in this guide:
e Bold—Command and routine names and matrices

e [talics—Variables, arguments, parameter names, spatial dimensions,
matrix components, and first occurrences of key terms.

e Regular—Enumerated types and defined constants

Code examples are set off from the text in a monospace font, and
command summaries are shaded with gray boxes.

About This Guide

xlv

http://freeglut.sourceforge.net/
http://www.opengl.org/resources/
http://www.opengl-redbook.com/

xlvi

In a command summary, we sometimes use braces to identify options
among data types. In the following example, glCommand() has four
possible suffixes: s, i, f, and d, which stand for the data types GLshort,
GLint, GLfloat, and GLdouble. In the function prototype for
glCommand(), TYPE is a wildcard that represents the data type indicated
by the suffix.

void glCommand(sifd}(TYPE x1, TYPE yI, TYPE x2, TYPE y2);

We use this form when the number of permutations of the function
becomes unruly.

About This Guide

Chapter 1

Introduction to OpenGL

Chapter Objectives
After reading this chapter, you'll be able to do the following:

e Describe the purpose of OpenGL, what it can and cannot do in
creating computer-generated images.

e Identify the common structure of an OpenGL application.

e Enumerate the shading stages that compose the OpenGL rendering
pipeline.

This chapter introduces OpenGL. It has the following major sections:

e “What Is OpenGL?” explains what OpenGL is, what it does and doesn’t
do, and how it works.

e “Your First Look at an OpenGL Program” provides a first look at what
an OpenGL program looks like.

e “OpenGL Syntax” describes the format of the command names that
OpenGL uses.

e “OpenGLs Rendering Pipeline” discusses the processing pipeline that
OpenGL uses in creating images.

e “Our First Program: A Detailed Discussion” dissects the first program
presented and provides more detail on the activities of each section of
the program.

What Is OpenGL?

OpenGL is an application programming interface—"AP1" for short—which is
merely a software library for accessing features in graphics hardware.
Version 4.3 of the OpenGL library (which this text covers) contains over
500 distinct commands that you use to specify the objects, images, and
operations needed to produce interactive three-dimensional computer-
graphics applications.

OpenGL is designed as a streamlined, hardware-independent interface
that can be implemented on many different types of graphics hardware
systems, or entirely in software (if no graphics hardware is present in the
system) independent of a computer’s operating or windowing system. As
such, OpenGL doesn’t include functions for performing windowing tasks
or processing user input; instead, your application will need to use the
facilities provided by the windowing system where the application will
execute. Similarly, OpenGL doesn’t provide any functionality for describ-
ing models of three-dimensional objects, or operations for reading image
files (like JPEG files, for example). Instead, you must construct your three-
dimensional objects from a small set of geometric primitives—points, lines,
triangles, and patches.

Since OpenGL has been around a while—it was first developed at Silicon
Graphics Computer Systems with Version 1.0 released in July of 1994—
there are both many versions of OpenGL, as well as many software libraries

Chapter 1: Introduction to OpenGL

built on OpenGL for simplifying application development, whether you're
writing a video game, creating a visualization for scientific or medical
purposes, or just showing images. However, the more modern version of
OpenGL differs from the original in significant ways. In this book, we
describe how to use the most recent versions of OpenGL to create those
applications.

The following list briefly describes the major operations that an OpenGL
application would perform to render an image. (See “OpenGLs Rendering
Pipeline” for detailed information on these operations.)

e Specify the data for constructing shapes from OpenGL’s geometric
primitives.

e Execute various shaders to perform calculations on the input primitives
to determine their position, color, and other rendering attributes.

e Convert the mathematical description of the input primitives into
their fragments associated with locations on the screen. This process is
called rasterization.

e [Finally, execute a fragment shader for each of the fragments generated
by rasterization, which will determine the fragment’s final color and
position.

e Possibly perform additional per-fragment operations such as deter-
mining if the object that the fragment was generated from is visible, or
blending the fragment’s color with the current color in that screen
location.

OpenGL is implemented as a client-server system, with the application you
write being considered the client, and the OpenGL implementation pro-
vided by the manufacturer of your computer graphics hardware being the
server. In some implementations of OpenGL (such as those associated

with the X Window System), the client and server will execute on different
machines that are connected by a network. In such cases, the client will
issue the OpenGL commands, which will be converted into a window-
system specific protocol that is transmitted to the server via their shared
network, where they are executed to produce the final image.

Your First Look at an OpenGL Program

Because you can do so many things with OpenGL, an OpenGL program
can potentially be large and complicated. However, the basic structure of

Your First Look at an OpenGL Program

all OpenGL applications is usually similar to the following:
e Initialize the state associated with how objects should be rendered.

e Specity those objects to be rendered.

Before you look at some code, let’s introduce some commonly used
graphics terms. Rendering, which we've already used without defining
previously, is the process by which a computer creates an image from
models. OpenGL is just one example of a rendering system; there are
many others. OpenGL is a rasterization-based system, but there are other
methods for generating images as well, such as ray tracing, whose tech-
niques are outside the scope of this book. However, even a system that uses
ray tracing may employ OpenGL to display an image, or compute
information to be used in creating an image.

Our models, or objects—we’ll use the terms interchangeably—are
constructed from geometric primitives—points, lines, and triangles—
that are specified by their vertices.

Another concept that is essential to using OpenGL is shaders, which are
special functions that the graphics hardware executes. The best way to
think of shaders is as little programs that are specifically compiled for your
graphics processing unit—commonly called a graphics processing unit (GPU).
OpenGL includes all the compiler tools internally to take the source code
of your shader and create the code that the GPU needs to execute. In
OpenGL, there are four shader stages that you can use. The most common
are vertex shaders, which process vertex data, and fragment shaders, which
operate on the fragments generated by the rasterizer. Both vertex and
fragment shaders are required in every OpenGL program.

The final generated image consists of pixels drawn on the screen; a pixel is
the smallest visible element on your display. The pixels in your system are
stored in a framebuffer, which is a chunk of memory that the graphics
hardware manages, and feeds to your display device.

Figure 1.1 shows the output of a simple OpenGL program, which renders
two blue triangles into a window. The source code for the entire example is
provided in Example 1.1.

Chapter 1: Introduction to OpenGL

L

1] C\Cygwin\home\Dave\Trees\Books\Vermilion-Book\trunk\Code\01\Tri.. [E=EER

Figure 1.1 Image from our first OpenGL program: triangles.cpp

Example 1.1 triangles.cpp: Our First OpenGL Program

L1770 0007777770007 7 7070007777700 0777770007777 77 7707777777777

//
// triangles.cpp

/7
L1777 0700077

#include <iostream>
using namespace std;

#include "vgl.h"
#include "LoadShaders.h"

enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0 };

GLuint VAOs[NumVAOs] ;
GLuint Buffers[NumBuffers];

const GLuint NumVertices = 6;

Your First Look at an OpenGL Program

//
// init
//
void
init (void)
{
glGenVertexArrays (NumVAOs, VAOs) ;
glBindVertexArray (VAOs [Triangles]) ;
GLfloat vertices[NumVertices][2] = {
{ -0.90, -0.90 }, // Triangle 1
{ 0.85, -0.90 1},
{ -0.90, 0.85 1},
{ 0.90, -0.85 1}, // Triangle 2
{ 0.90, 0.90 1},
{ -0.85, 0.90 }
}i
glGenBuffers (NumBuffers, Buffers);
glBindBuffer (GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
glBufferData (GL_ARRAY_BUFFER, sizeof (vertices),
vertices, GL_STATIC_DRAW) ;
ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, "triangles.vert" },
{ GL_FRAGMENT_SHADER, "triangles.frag" },
{ GL_NONE, NULL }
}i
GLuint program = LoadShaders (shaders) ;
glUseProgram (program) ;
glVertexAttribPointer (vPosition, 2, GL_FLOAT,
GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray (vPosition) ;
}
[m e -
//
// display
//
void
display (void)
{
glClear (GL_COLOR_BUFFER_BIT) ;
glBindVertexArray (VAOs [Triangles]) ;
glDrawArrays (GL_TRIANGLES, 0, NumVertices);
glFlush() ;
}

Chapter 1: Introduction to OpenGL

int

main (int argc, charxx argv)

{
glutInit (&argc, argv) ;
glutInitDisplayMode (GLUT_RGBA) ;
glutInitWindowSize (512, 512);
glutInitContextVersion (4, 3);
glutInitContextProfile (GLUT_CORE_PROFILE) ;
glutCreateWindow (argv([0]) ;

if (glewInit()) {
cerr << "Unable to initialize GLEW ... exiting" << endl;
exit (EXIT_FAILURE) ;

}

init () ;
glutDisplayFunc (display) ;

glutMainLoop () ;
}

While that may be more code than you were expecting, you'll find that
this program will be the basis of just about every OpenGL application you
write. We use some additional software libraries that aren’t officially part of
OpenGL to simplify things like creating a window, or receiving mouse or
keyboard input—those things that OpenGL doesn’t include. We've also
created some helper functions and small C++ classes to simplify our exam-
ples. While OpenGL is a “C’-language library, all of our examples are in
C++, but very simple C++. In fact, most of the C++ we use is to implement
the mathematical constructs vectors and matrices.

In a nutshell, here’s what Example 1.1 does. We'll explain all of these
concepts in complete detail later, so don’t worry.

e In the preamble of the program, we include the appropriate header files
and declare global variables! and other useful programming constructs.

e The init() routine is used to set up data for use later in the program.
This may be vertex information for later use when rendering

1. Yes; in general we eschew global variables in large applications, but for the purposes of
demonstration, we use them here.

Your First Look at an OpenGL Program

primitives, or image data for use in a technique called texture mapping,
which we describe in Chapter 6.

In this version of init(), we first specify the position information for
the two triangles that we render. After that, we specify shaders we're
going to use in our program. In this case, we only use the required
vertex and fragment shaders. The LoadShaders() routine is one that
we've written to simplify the process of preparing shaders for a GPU.
In Chapter 2 we'll discuss everything it does.

The final part of init() is doing what we like to call shader plumbing,
where you associate the data in your application with variables in
shader programs. This is also described in detail in Chapter 2.

The display() routine is what really does the rendering. That is, it calls
the OpenGL functions that request something be rendered. Almost all
display() routines will do the same three steps as in our simple
example here.

1. Clear the window by calling glClear().
2. Issue the OpenGL calls required to render your object.
3. Request that the image is presented to the screen.

Finally, main() does the heavy lifting of creating a window, calling
init(), and finally entering into the event loop. Here you also see func-
tions that begin with “gl” but look different than the other functions
in the application. Those, which we’'ll describe momentarily, are from
the libraries we use to make it simple to write OpenGL programs across
the different operating and window systems: GLUT, and GLEW.

Before we dive in to describe the routines in detail, let us explain OpenGL

labels functions, constants, and other useful programming constructs.

OpenGL Syntax

As you likely picked up on, all the functions in the OpenGL library begin
with the letters “g1”, immediately followed by one or more capitalized
words to name the function (glBindVertexArray(), for example). All

functions in OpenGL are like that. In the program you also saw the func-
tions that began with “glut”, which are from the OpenGL Utility Toolkit
(GLUT), a library written by Mark J. Kilgard. It’s a popular cross-platform

Chapter 1: Introduction to OpenGL

toolkit for opening windows and managing input, among other
operations. We use a version of GLUT named Freeglut, originally written by
Pawel W. Olszta with contributions from Andreas Umbach and Steve Baker
(who currently maintains the library), which is a modern variant of the
original library. Similarly, you see a single function, glewInit(), which
comes from the OpenGL Extension Wrangler written by Milan Ikits and
Marcelo Magallon. We describe both of those libraries in more detail in
Appendix A.

Similar to OpenGL'’s function-naming convention, constants like
GL_COLOR_BUFFER_BIT, which you saw in display(), are defined for the
OpenGL library. All constant tokens begin with GL_, and use underscores
to separate words. Their definitions are merely #defines found in the
OpenGL header files: glcorearb.h and glext.h.

To aid in moving OpenGL applications between operating systems,
OpenGL also defines various types of data for its functions, such as
GLfloat, which is the floating-point value type we used to declare
vertices in Example 1.1. OpenGL defines typedefs for all of the data
types accepted by its functions, which are listed in Table 1.1. Additionally,
since OpenGL is a “C”-language library, it doesn’t have function over-
loading to deal with the different types of data; it uses a function-naming
convention to organize the multitude of functions that result from that
situation. For example, we’ll encounter a function named glUniform*() in
Chapter 2, “Shader Fundamentals”, which comes in numerous forms, such
as glUniform2£() and glUniform3fv(). The suffixes at the end of the
“core’” part of the function name provide information about the
arguments passed to the function. For example, the “2” in glUniform2£()
represents that two data values will be passed into the function (there are
other parameters as well, but they are the same across all 24 versions of the
glUniform*() * function—In this book, we’ll use glUniform*() * to
represent the collection of all glUniform*() functions). Also note the “f”
following the ““2”. This indicates that those two parameters are of type
GLfloat. Finally, some versions of the functions’ names end with a “v”,
which is short for vector, meaning that the two floating-point values (in
the case of glUniform2fv()) are passed as a one-dimensional array of
GLfloats, instead of two separate parameters.

To decode all of those combinations, the letters used as suffixes are des-
cribed in Table 1.1, along with their types.

OpenGL Syntax

Table 1.1 Command Suffixes and Argument Data Types

Suffix Data Type Typical OpenGL Type Definition
Corresponding
C-Language Type

b 8-bit integer signed char GLbyte

s 16-bit integer signed short GLshort

i 32-bit integer int GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int GLuint, GLenum, GLbitfield

Note: Implementations of OpenGL have leeway in selecting which “C"
data types to use to represent OpenGL data types. If you resolutely
use the OpenGL-defined data types throughout your application,
you will avoid mismatched types when porting your code between
different implementations.

OpenGL’s Rendering Pipeline

OpenGL implements what’s commonly called a rendering pipeline, which is
a sequence of processing stages for converting the data your application
provides to OpenGL into a final rendered image. Figure 1.2 shows the

OpenGL pipeline associated with Version 4.3. The OpenGL pipeline has
evolved considerably since its introduction.

N Vertex Tessellation Tessellation R
Shader Control Evaluation Shader

Data Shader Shader
.\4.\4-

e
Fragment
shader 4

Figure 1.2 The OpenGL pipeline

10 Chapter 1: Introduction to OpenGL

OpenGL begins with the geometric data you provide (vertices and geo-
metric primitives) and first processes it through a sequence of shader
stages: vertex shading, tessellation shading (which itself uses two shaders),
and finally geometry shading, before it’s passed to the rasterizer. The
rasterizer will generate fragments for any primitive that’s inside of the
clipping region, and execute a fragment shader for each of the generated
fragments.

As you can see, shaders play an essential role in creating OpenGL applica-
tions. You have complete control of which shader stages are used, and
what each of them do. Not all stages are required; in fact, only vertex
shaders and fragment shaders must be included. Tessellation and geometry
shaders are optional.

Now, we'll dive in a little deeper into each stage to provide you a bit more
background. We understand that this may be somewhat overwhelming at
this point, but please bear with us. It will turn out that understanding just
a few concepts will get you very far along with OpenGL.

Preparing to Send Data to OpenGL

OpenGL requires that all data be stored in buffer objects, which are just
chunks of memory managed by the OpenGL server. Populating these
buffers with data can occur in numerous ways, but one of the most
common is using the glBufferData() command like in Example 1.1. There
is some additional setup required with buffers, which we’ll cover in
Chapter 3.

Sending Data to OpenGL

After we've initialized our buffers, we can request geometric primitives
be rendered by calling one of OpenGL’s drawing commands, such as
glDrawArrays(), as we did in Example 1.1.

Drawing in OpenGL usually means transferring vertex data to the OpenGL
server. Think of a vertex as a bundle of data values that are processed
together. While the data in the bundle can be anything you'd like it to be
(i.e., you define all the data that makes up a vertex), it almost always
includes positional data. Any other data will be values you’ll need to
determine the pixel’s final color.

Drawing commands are covered in detail in Chapter 3, “Drawing with
OpenGL".

OpenGL’s Rendering Pipeline

11

Vertex Shading

For each vertex that is issued by a drawing command, a vertex shader will
be called to process the data associated with that vertex. Depending on
whether any other pre-rasterization shaders are active, vertex shaders may
be very simple, perhaps just copying data to pass it through this shading
stage—what we'll call a pass-through shader—to a very complex shader that'’s
performing many computations to potentially compute the vertex’s screen
position (usually using transformation matrices, described in Chapter 5),
determining the vertex’s color using lighting computations described in
Chapter 7, or any multitude of other techniques.

Typically, an application of any complexity will have multiple vertex
shaders, but only one can be active at any one time.

Tessellation Shading

After the vertex shader has processed each vertex’s associated data, the
tessellation shader stage will continue processing those data, if it’s been
activated. As we'll see in Chapter 9, tessellation uses patchs to describe an
object’s shape, and allows relatively simple collections of patch geometry
to be tessellated to increase the number of geometric primitives providing
better-looking models. The tessellation shading stage can potentially use
two shaders to manipulate the patch data and generate the final shape.

Geometry Shading

The next shader stage—geometry shading—allows additional processing
of individual geometric primitives, including creating new ones, before
rasterization. This shading stage is also optional, but very powerful as
we'll see in Chapter 10.

Primitive Assembly

The previous shading stages all operate on vertices, with the information
about how those vertices are organized into geometric primitives being
carried along internal to OpenGL. The primitive assembly stage organizes
the vertices into their associated geometric primitives in preparation for
clipping and rasterization.

Chapter 1: Introduction to OpenGL

Clipping

Occasionally, vertices will be outside of the viewport—the region of the
window where you're permitted to draw—and cause the primitive associa-
ted with that vertex to be modified so none of its pixels are outside of the
viewport. This operation is called clipping and is handled automatically by
OpenGL.

Rasterization

Immediately after clipping, the updated primitives are sent to the rasterizer
for fragment generation. Consider a fragment a “candidate pixel”, in that
pixels have a home in the framebuffer, while a fragment still can be rejec-
ted and never update its associated pixel location. Processing of fragments
occurs in the next two stages, fragment shading and per-fragment
operations.

Fragment Shading

The final stage where you have programmable control over the color of a
screen location is during fragment shading. In this shader stage, you use a
shader to determine the fragment’s final color (although the next stage,
per-fragment operations can modify the color one last time), and poten-
tially its depth value. Fragment shaders are very powerful as they often
employ texture mapping to augment the colors provided by the vertex
processing stages. A fragment shader may also terminate processing a
fragment if it determines the fragment shouldn’t be drawn; this process is
called fragment discard.

A helpful way of thinking about the difference between shaders that deal
with vertices and fragment shaders is: vertex shading (including tessella-
tion and geometry shading) determine where on the screen a primitive is,
while fragment shading uses that information to determine what color
that fragment will be.

Per-Fragment Operations
Additional fragment processing, outside of what you can currently do in a
fragment shader is the final processing of individual fragments. During

this stage a fragment’s visibility is determined using depth testing (also
commonly known as z-buffering) and stencil testing.

OpenGL’s Rendering Pipeline

13

If a fragment successfully makes it through all of the enabled tests, it may
be written directly to the framebuffer, updating the color (and possibly
depth value) of its pixel, or if blending is enabled, the fragment’s color will
be combined with the pixel’s current color to generate a new color that is
written into the framebuffer.

As you saw in Figure 1.2, there’s also a path for pixel data. Generally, pixel
data comes from an image file, although it may also be created by rending
using OpenGL. Pixel data is usually stored in texture map for use with
texture mapping, which allows any texture stage to look up data values
from one or more texture maps. Texture mapping is covered in depth in
Chapter 6.

With that brief introduction to the OpenGL pipeline, we'll dissect
Example 1.1 and map the operations back to the rendering pipeline.

Our First Program: A Detailed Discussion

Entering main()

Starting at the beginning, of how our program would execute, we first look
at what’s going on in main(). The first six lines use the OpenGL Utility
Toolkit to configure and open window for us. While the details of each of
these routines is covered in Appendix A, we'll discuss the flow of the
commands here.
int
main (int argc, charxx argv)
{
glutInit (&argc, argv);
glutInitDisplayMode (GLUT_RGBA) ;
glutInitWindowSize (512, 512);
glutInitContextVersion (4, 3);
glutInitCOntextProfile(GLUT_CORE_PROFILE);
glutCreateWindow (argv([0]) ;

if (glewInit()) {
cerr << "Unable to initialize GLEW ... exiting" << endl;
exit (EXIT_FAILURE) ;

}

init();
glutDisplayFunc (display) ;

glutMainLoop () ;

14 Chapter 1: Introduction to OpenGL

The first function, glutInit(), initializes the GLUT library. It processes the
command-line arguments provided to the program, and removes any that
control how GLUT might operate (such as specifying the size of a window).
glutInit() needs to be the first GLUT function that your application calls,
as it sets up data structures required by subsequent GLUT routines.

glutInitDisplayMode() configures the type of window we want to use
with our application. In this case, we only request that the window use the
RGBA color space (which we discuss more in Chapter 4). There are other
options that we'll add to configure windows with more OpenGL features,
such as depth buffers, or to enable animation.

glutlnitWindowSize() specifies the size of the window, as you might
expect. While we don’t do it here, you can also query the size of the display
device to dynamically size the window relative to your computer screen.

The next two calls: glutInitContextVersion() and
glutInitContextProfile() specify the type of OpenGL context—OpenGL's
internal data structure for keeping track of state settings and
operations—we want to use. Here, we request an OpenGL Version 4.3 core
profile for our context. Our profile selection controls whether we're using
only the latest features in OpenGL or the features that are compatible with
OpenGL versions all the way back to OpenGL Version 1.0.

The last call in this group is glutCreateWindow(), which does just what it
says. If it’s possible to create a window matching the display mode you
requested with glutlnitDisplayMode(), one will be created (by interfacing
with your computer’s windowing system). Only after GLUT has created a
window for you (which includes creating an OpenGL context) can you use
OpenGL functions.

Continuing on, the call to glewlInit() initializes another help library we
use: GLEW—the OpenGL Extension Wrangler. GLEW simplifies dealing
with accessing functions and other interesting programming phenomena
introduced by the various operating systems with OpenGL. Without
GLEW, a considerable amount of additional work is required to get an
application going.

At this point, we're truly set up to do interesting things with OpenGL. The
init() routine, which we’ll discuss momentarily, initializes all of our
relevant OpenGL data so we can use for rendering later.

The next routine, glutDisplayFunc(), sets up the display callback, which is
the routine GLUT will call when it thinks the contents of the window need
to be updated. Here, we provide the GLUT library a pointer to a function:
display(), which we'll also discuss soon. GLUT uses a number of callback

Our First Program: A Detailed Discussion

15

functions for processing things like user input, window resizing, and many
other operations. GLUT is fully described in Appendix A, “Basics of GLUT:
The OpenGL Utility Toolkit".

The final function in main() is glutMainLoop(), which is an infinite loop
that works with the window and operating systems to process user input
and other operations like that. It’s glutMainLoop() that determines that a
window needs to be repainted, for example, and will call the function
registered with glutDisplayFunc(). An important safety tip is that since
glutMainLoop() is an infinite loop, any commands placed after it aren’t
executed.

OpenGlL Initialization

The next routine that we need to discuss is init() from Example 1.1. Once
again, here’s the code to refresh your memory.
void
init (void)
{
glGenVertexArrays (NumVAOs, VAOs) ;
glBindVertexArray (VAOs [Triangles]) ;

I
~

GLfloat vertices[NumVertices][2]

{ -0.90, -0.90 1}, // Triangle 1
{ 0.85, -0.90 1},

{ -0.90, 0.85 1},

{ 0.90, -0.85 1}, // Triangle 2
{ 0.90, 0.90 1},

{ }

-0.85, 0.90
Y

glGenBuffers (NumBuffers, Buffers);

glBindBuffer (GL_ARRAY BUFFER, Buffers|[ArrayBuffer]);

glBufferData (GL_ARRAY_BUFFER, sizeof (vertices),
vertices, GL_STATIC_DRAW) ;

ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, "triangles.vert" },
{ GL_FRAGMENT_ SHADER, "triangles.frag" },
{ GL_NONE, NULL }

Y

GLuint program = LoadShaders (shaders) ;
glUseProgram (program) ;

glVertexAttribPointer (vPosition, 2, GL_FLOAT,
GL_FALSE, 0, BUFFER_OFFSET(O0)) ;
glEnableVertexAttribArray (vPosition) ;

16 Chapter 1: Introduction to OpenGL

Initializing Our Vertex-Array Objects

There’s a lot going on in the functions and data of init(). Starting

at the top, we begin by allocating a vertex-array object by calling
glGenVertexArrays(). This causes OpenGL to allocate some number

of vertex array object names for our use; in our case, NumvAOs, which we
specified in the global variable section of the code. glGenVertexArrays()
returns that number of names to us in the array provided, vAOs in this case.

Here’s a complete description of glGenVertexArrays():

void glGenVertexArrays(GLsizei n, GLuint *arrays);

Returns n currently unused names for use as vertex-array objects in the
array arrays. The names returned are marked as used for the purposes
of allocating additional buffer objects, and initialized with values
representing the default state of the collection of uninitialized vertex
arrays.

We'll see numerous OpenGL commands of the form glGen*, for allocating
names to the various types of OpenGL objects. A name is a little like a
pointer-type variable in C, in that until you allocate some memory and
have the name reference it, the name isn’t much help. In OpenGL, the
same holds true, and our allocation scheme is called binding an object, and
is done by a collection of functions in OpenGL that have the form
glBind*. For our example, we create and bind a vertex-array object using
glBindVertexArray().

void glBindVertexArray(GLuint array);

glBindVertexArray() does three things. When using the value array that
is other than zero and was returned from glGenVertexArrays(), a new
vertex-array object is created and assigned that name. When binding to a
previously created vertex-array object, that vertex array object becomes
active, which additionally affects the vertex array state stored in the
object. When binding to an array value of zero, OpenGL stops using
application-allocated vertex-array objects and returns to the default state
for vertex arrays.

A GL_INVALID_OPERATION error is generated if array is not a value
previously returned from glGenVertexArrays(), or if it is a value that has
been released by glDeleteVertexArrays().

Our First Program: A Detailed Discussion

17

18

In our example, after we generate a vertex-array object name, we bind it
with our call to glBindVertexArray(). Object binding like this is a very
common operation in OpenGL, but it may be immediately intuitive how
or why it works. When you bind an object for the first time (e.g., the first
time glBind*() is called for a particular object name), OpenGL will inter-
nally allocate the memory it needs and make that object current, which
means that any operations relevant to the bound object, like the vertex-
array object we're working with, will affect its state from that point on in
the program’s execution. After the first call to any glBind*() function, the
newly created object will be initialized to its default state and will usually
require some additional initialization to make it useful.

Think of binding an object like setting a track switch in a railroad yard.
Once a track switch has been set, all trains go down that set of tracks.
When the switch is set to another track, all trains will then travel that new
track. It is the same for OpenGL objects. Generally speaking, you will bind
an object in two situations: initially when you create and initialize the data
it will hold; and then every time you want to use it, and it’s not currently
bound. We'll see this situation when we discuss the display() routine,
where glBindVertexArray() is called the second time in the program.

Since our example is as minimal as possible, we don’t do some operations
that you might in larger programs. For example, once you're completed with
a vertex-array object, you can delete it by calling glDeleteVertexArrays().

void glDeleteVertexArrays(GLsizei n, GLuint *arrays);

Deletes the n vertex-arrays objects specified in arrays, enabling the names
for reuse as vertex arrays later. If a bound vertex array is deleted, the
bindings for that vertex array become zero (as if you had called
glBindBuffer() with a value of zero) and the default vertex array becomes
the current one. Unused names in arrays are released, but no changes to
the current vertex array state are made.

Finally, for completeness, you can also determine if a name is already been
reserved as a vertex-array object by calling glIsVertexArray().

GLboolean gllsVertexArray(GLuint array);

Returns GL_TRUE if array is the name of a vertex-array object that was
previously generated with glGenVertexArrays(), but has not been
subsequently deleted. Returns GL_FALSE if array is zero or a nonzero
value that is not the name of a vertex-array object.

Chapter 1: Introduction to OpenGL

You'll find many similar routines of the form glDelete* and glIs* for all the
different types of object in OpenGL.

Allocating Vertex-Buffer Objects

A vertex-array object holds various data related to a collection of vertices.
Those data are stored in buffer objects and managed by the currently
bound vertex-array object. While there is only a single type of vertex-array
object, there are many types of objects, but not all of them specifically deal
with vertex data. As mentioned previously, a buffer object is memory that
the OpenGL server allocates and owns, and almost all data passed into
OpenGL is done by storing the data in a buffer object.

The sequence of initializing a vertex-buffer object is similar in flow to that
of creating a vertex-array object, with an added step to actually populate
the buffer with data.

To begin, you need to create some names for your vertex-buffer objects. As
you might expect, you'll call a function of the form glGen*; in this case,
glGenBuffers(). In our example, we allocate NumvBOs (short for “Vertex-
Buffer Objects”) into our array buffers. Here is the full description of
glGenBuffers().

void glGenBuffers(GLsizei n, GLuint *buffers);

Returns n currently unused names for buffer objects in the array buffers.
The names returned in buffers do not have to be a contiguous set of
integers.

The names returned are marked as used for the purposes of allocating
additional buffer objects, but only acquire a valid state once they have
been bound.

Zero is a reserved buffer object name and is never returned as a buffer
object by glGenBuffers().

Once you have allocated names for your buffers, you bring them into
existence by calling glBindBuffer(). Since there are many different types of
buffer objects in OpenGL, when we bind a buffer, we need to specity
which type we’d like it to be. In our example, since we're storing vertex
data into the buffer, we use GL_ARRAY_BUFFER. There are currently eight
types of buffer objects, which get used for various features in OpenGL. We
will discuss each type’s operation in the relevant sections later in the book.
Here is the full detail for glBindBuffer().

Our First Program: A Detailed Discussion

19

20

void glBindBuffer(GLenum target, GLuint buffer);

Specifies the current active buffer object. target must be set to one of
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER. buffer
specifies the buffer object to be bound to.

glBindBuffer() does three things: 1. When using buffer of an unsigned
integer other than zero for the first time, a new buffer object is created
and assigned that name. 2. When binding to a previously created buffer
object, that buffer object becomes the active buffer object. 3. When
binding to a buffer value of zero, OpenGL stops using buffer objects for
that target.

As with other objects, you can delete buffer objects with glDeleteBuffers().

void glDeleteBuffers(GLsizei n, const GLuint *buffers);

Deletes n buffer objects, named by elements in the array buffers. The
freed buffer objects may now be reused (for example, by glGenBuffers()).

If a buffer object is deleted while bound, all bindings to that object are
reset to the default buffer object, as if glBindBuffer() had been called
with zero as the specified buffer object. Attempts to delete nonexistent
buffer objects or the buffer object named zero are ignored without
generating an error.

You can query if an integer value is a buffer-object name with glisBuffer().

GLboolean glIsBuffer(GLuint buffer);

Returns GL_TRUE if buffer is the name of a buffer object that has been
bound, but has not been subsequently deleted. Returns GL_FALSE if
buffer is zero or if buffer is a nonzero value that is not the name of a buffer
object.

Chapter 1: Introduction to OpenGL

Loading Data into a Buffer Object

After initializing our vertex-buffer object, we need to transfer the vertex
data from our objects into the buffer object. This is done by the
glBufferData() routine, which does dual duty: allocating storage for
holding the vertex data and copying the data from arrays in the
application to the OpenGL server’s memory.

As glBufferData() will be used many times in many different scenarios, it’s
worth discussing it in more detail here, although we will revisit its use
many times in this book. To begin, here’s the full description of
glBufferData().

void glBufferData(GLenum target, GLsizeiptr size,
const GLvoid *data, GLenum usage);

Allocates size storage units (usually bytes) of OpenGL server memory for
storing data or indices. Any previous data associated with the currently
bound object will be deleted.

target may be either GL_ARRAY_BUFFER for vertex attribute data;
GL_ELEMENT_ARRAY_BUFFER for index data;
GL_PIXEL_UNPACK_BUFFER for pixel data being passed into OpenGL;
GL_PIXEL_PACK_BUFFER for pixel data being retrieved from
OpenGLGL_COPY_READ_BUFFER and GL_COPY_WRITE_BUFFER for
data copied between buffers; GL_TEXTURE_BUFFER for texture data
stored as a texture buffer; GL_TRANSFORM_FEEDBACK_BUFFER for
results from executing a transform feedback shader; or
GL_UNIFORM_BUFFER for uniform variable values.

size is the amount of storage required for storing the respective data. This
value is generally number of elements in the data multiplied by their
respective storage size.

data is either a pointer to a client memory that is used to initialize the
buffer object or NULL. If a valid pointer is passed, size units of storage are
copied from the client to the server. If NULL is passed, size units of
storage are reserved for use but are left uninitialized.

usage provides a hint as to how the data will be read and written after
allocation. Valid values are GL_STREAM_DRAW, GL_STREAM_READ,
GL_STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ,
GL_STATIC_COPY, GL_DYNAMIC_DRAW, GL_DYNAMIC_READ,
GL_DYNAMIC_COPY.

Our First Program: A Detailed Discussion

21

22

glBufferData() will generate a GL_OUT_OF_MEMORY error if the
requested size exceeds what the server is able to allocate. It will generate a
GL_INVALID_VALUE error if usage is not one of the permitted values.

We know that was a lot to see at one time, but you will use this function so
much that it’s good to make it easy to find at the beginning of the book.

For our example, our call to glBufferData() is very straightforward. Our
vertex data is stored in the array vertices. While we've statically allo-
cated it in our example, you might read these values from a file containing
a model, or generate the values algorithmically. Since our data is vertex-
attribute data, we’ll make this buffer a GL_ARRAY_BUFFER by specifying
that value as the first parameter. We also need to specify the size of
memory to be allocated (in bytes), so we merely compute

sizeof (vertices) which does all the heavy lifting. Finally, we need to
specify how the data will be used by OpenGL. Since this data will be used
for drawing geometry, and won't change for the life of the program, we
choose GL_STATIC_DRAW for glBufferData()’s usage parameter.

There are a lot of options for usage, which we describe in detail in
Chapter 3.

If you look at the values in the vertices array, you'll note they are all in
the range [—1, 1] in both x and y. In reality, OpenGL only knows how to
draw geometric primitives into coordinate space. In fact, that range of
coordinates are known as normalized-device coordinates (commonly called
NDCs). While that may sound like a limitation, it’s really none at all.
Chapter 5 will discuss all the mathematics required to take the most
complex objects in a three-dimensional space, and map them into
normalized-device coordinates. We used NDCs here to simplify the
example, but in reality, you will almost always use more complex
coordinate spaces.

At this point, we've successfully created a vertex-array object and popu-
lated its buffer objects. Next, we need to set up the shaders that our appli-
cation will use.

Initializing Our Vertex and Fragment Shaders

Every OpenGL program that wants to use OpenGL Version 3.1 or greater
must provide at least two shaders: a vertex shader and a fragment shader.
In our example, we do that by using our helper function LoadShaders(),
which takes an array of ShaderInfo structures (all of the details for this
structure are included in the LoadShaders.h header file).

Chapter 1: Introduction to OpenGL

For an OpenGL programmer (at this point), a shader is a small function
written in the OpenGL Shading Language (OpenGL Shading Language
(GLSL)), a special language very similar to C++ for constructing OpenGL
shaders. GLSL is used for all shaders in OpenGL, although not every
teature in GLSL is usable in every OpenGL shader stage. You provide your
GLSL shader to OpenGL as a string of characters. To simplify our examples,
and to make it easier for you to experiment with shaders, we store our
shader strings in files, and use LoadShaders() to take care of reading the
tiles and creating our OpenGL shader programs. The gory details of
working with OpenGL shaders are discussed in detail in Chapter 2.

To gain an appreciation of shaders, we need to show you some without
going into full detail of every nuance. There’s the entire rest of the book
for all of the GLSL details, so right now, we'll suffice with showing our
vertex shader in Example 1.2.

Example 1.2 Vertex Shader for triangles.cpp: triangles.vert

#version 430 core
layout (location = 0) in wvec4d vPosition;

void
main ()
{

gl_Position = vPosition;

}

Yes; that’s all there is. In fact, this is an example of a pass-through shader
we eluded to earlier. It only copies input data to output data. That said,
there is a lot to discuss here.

The first line: “#version 430 core” specifies which version of the OpenGL
Shading Language we want to use. The “430" here indicates that we want
to use the version of GLSL associated with OpenGL Version 4.3. The
naming scheme of GLSL versions based on OpenGL versions works back to
Version 3.3. In versions of OpenGL before that, the version numbers
incremented differently (the details are in Chapter 2). The “core” relates to
wanting to use OpenGL'’s core profile, which corresponds with our request
to GLUT when we called glutlnitContextProfile(). Every shader should
have a “#version” line at its start, otherwise version “110” is assumed,
which is incompatible with OpenGL's core profile versions. We're going to
stick to shaders declaring version 330 or above, depending on what
teatures the shaders use; you get a bit more portability by not using the
most recent version number, unless you need the most recent features.

Next, we allocate a shader variable. Shader variables are a shader’s
connection to the outside world. That is, a shader doesn’t know where its

Our First Program: A Detailed Discussion

23

24

data comes from; it merely sees its input variables populated with data
every time it executes. It’s our responsibility to connect the shader plumb-
ing (this is our term, but you'll see why it makes sense) so that data in your
application can flow into and between the various OpenGL shader stages.

In our simple example, we have one input variable named vPosition,
which you can determine by the “in”’ on its declaration line. In fact, there’s
a lot going on in this one line.

layout (location = 0) in wvec4d vPosition;

It’s easier to parse the line from right to left.

e vPosition is, of course, the name of the variable. We’ll use the
convention of prefixing a vertex attribute with the letter “v”. So, in this
case, this variable will hold a vertex’s positional information.

e Next, you see vec4, which is vPositions type. In this case, it’s a GLSL
4-component vector of floating-point values. There are many data
types in GLSL, that we'll discuss in Chapter 2.

You may have noticed that when we specified the data for each vertex
in Example 1.1 we only specified two coordinates, but in our vertex
shader, we use a vec4. Where do the other two coordinates come
from? OpenGL will automatically fill in any missing coordinates with
default values. The default value for a vec4 is (0,0,0,1), so if we only
specify the x- and y-coordinates, the other values (z and w), are
assigned O and 1 respectively.

e Preceding the type is the in we mentioned before, which specifies
which direction data flows into the shader. If you're wondering if there
might be an out; yes, you're right. We don’t show that here, but will
soon.

e Finally, the layout (location = 0) partis called a layout qualifier,
and provides meta-data for our variable declaration. There are many
options that can be set with a layout qualifier, some of which are
shader-stage specific.

In this case, we just set vPosition attribute location to zero. We'll use
that information in conjunction with the last two routines in init().

Finally, the core of the shader is defined in its main() routine. Every shader
in OpenGL, regardless of which shader stage its used for, will have a
main() routine. For this shader, all it does is copy the input vertex position
to the special vertex-shader output gl_Position. You'll soon see there are
several shader variables provided by OpenGL that you'll use, and they all
begin with the g1_ prefix.

Chapter 1: Introduction to OpenGL

Similarly, we need a fragment shader to accompany our vertex shader.
Here’s the one for our example, shown in Example 1.3.

Example 1.3 Fragment Shader for triangles.cpp: triangles.frag
#version 430 core
out vec4 fColor;

void
main ()

{
fColor = vec4 (0.0, 0.0, 1.0, 1.0);

}

Hopefully, much of this looks very familiar, even if it's an entirely different
type of shader. We have the version string, a variable declaration, and our
main() routine. There are a few differences, but as you'll find, almost all
shaders will have this structure.

The highlights of our fragment shader are as follows:

e The variable declaration for £Color. If you guessed that there was an
out qualifier, you were right! In this case, the shader will output values
through fColor, which is the fragment’s color (hence the choice of “f”
as a prefix).

e Assigning the fragment’s color. In this case, each fragment is assigned
this vector of four values. In OpenGL, colors are represented in what's
called the RGB color space, with each color component (“R” for red, “G"”
for green, and “B” for blue) ranging from [0, 1]. The observant reader is
probably asking “Um, but there are four numbers there”. Indeed,
OpenGL really uses an RGBA color space, with the fourth color not
really being a color at all. It’s for a value called alpha, which is really a
measure of translucency. We'll discuss it in detail in Chapter 4, but for
now, we'll set it to 1.0, which indicates the color is fully opaque.

Fragment shaders are immensely powerful, and there will be many
techniques that we can do with them.

We're almost done with our initialization routine. The final two routines in
init() deal specifically with associating variables in a vertex shader with
data that we've stored in a buffer object. This is exactly what we mean by
shader plumbing, in that you need to connect conduits between the
application and a shader, and as we'll see, between various shader stages.

To associate data going into our vertex shader, which is the entrance all
vertex data take to get processed by OpenGL, we need to connect our

Our First Program: A Detailed Discussion

25

26

shader “in’’ variables to a vertex-attribute array, and we do that with the
glVertexAttribPointer() routine.

void glVertexAttribPointer(GLuint index, GLint size,
GLenum type, GLboolean normalized,
GLsizei stride, const GLvoid *pointer);

Specifies where the data values for index (shader attribute location) can be
accessed. pointer is the offset from the start of the buffer object (assuming
zero-based addressing) in basic-machine units (i.e., bytes) for the first set
of values in the array. size represents the number of components to be
updated per vertex, and can be either 1, 2, 3, 4, or GL_BGRA. type
specifies the data type (GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FIXED,
GL_HALF_FLOAT, GL_FLOAT, or GL_DOUBLE) of each element in the
array. normalized indicates that the vertex data should be normalized
before being stored (in the same manner as glVertexAttribFourN*()).
stride is the byte offset between consecutive elements in the array. If stride
is zero, the data is assumed to be tightly packed.

While that may seem like a lot of things to figure out, it’s because
glVertexAttribPointer() is a very flexible command. As long as your data
is regularly organized in memory (i.e., it’s in a contiguous array, and not
in some other node-based container like a linked list), you can use
glVertexAttribPointer() to tell OpenGL how to retrieve data from that
memory. In our case, vertices has all the information we need. Table 1.2
works through glVertexAttribPointer()’s parameters.

Table 1.2 Example of Determining Parameters for
glVertexAttribPointer()

Parameter Value Explanation
Name
index 0 This is the location value for the respective

vertex shader input variable—vPosition
in our case. This value can be specified by
the shader directly using the layout
qualifier, or determined after compilation
of the shader.

size 2 This is the number of values for each
vertex in our array. vertices was
allocated to have NumVertices
elements, each with two values.

type GL_FLOAT The enumerated value for the GLfloat type.

Chapter 1: Introduction to OpenGL

Parameter Value Explanation
Name

normalized GL_FALSE We set this to GL_FALSE for two reasons:
First, and most importantly, because
positional coordinates values can basically
take on any value, so we don’t want them
constrained to the range [—1, 1]; and
second, the values are not integer types
(e.g., GLint, or GLshort).

stride 0 As our data are “tightly packed”’, which
implies that one set of data values is
immediately contiguous in memory to the
next, we can use the value zero.

pointer BUFFER_OFFSET(0) We set this to zero because our data starts

at the first byte (address zero) of our buffer
object.

Hopefully that explanation of how we arrived at the parameters will help
you determine the necessary values for your own data structures. We will
have plenty more examples of using glVertexAttribPointer().

One additional technique we use is using our BUFFER_OFFSET macro in
glVertexAttribPointer() to specify the offset. There’s nothing special about
our macro; here’s its definition.

#define BUFFER_OFFSET (offset) ((void =*) (offset))

While there a long history of OpenGL lore on why one might do this,? we
use this macro to make the point that we're specifying an offset into a
buffer object, rather than a pointer to a block of memory as
glVertexAttribPointer()’s prototype would suggest.

At this point, we have one task left to do in init(), which is to enable our
vertex-attribute array. We do this by calling glEnableVertexAttribArray()
and passing the index of the attribute array pointer we initialized by
calling glVertexAttribPointer(). The full details for
glEnableVertexAttribArray() are provided below.

2. In previous versions of OpenGL (prior to Version 3.1) vertex-attribute data was permitted to
be stored in application memory, as compared to GPU buffer objects, so pointers made sense
in that respect.

Our First Program: A Detailed Discussion

27

28

void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Specifies that the vertex array associated with variable index be
enabled or disabled. index must be a value between zero and
GL_MAX_VERTEX_ATTRIBS — 1.

Now, all that’s left is to draw something.

Our First OpenGL Rendering

With all that setup and data initialization, rendering (for the moment) will
be very simple. While our display() routine is only four lines long, its
sequence of operations is virtually the same in all OpenGL applications.
Here it is once again.

void

display (void)

{
glClear (GL_COLOR_BUFFER_BIT) ;

glBindVertexArray (VAOs [Triangles]) ;
glDrawArrays (GL_TRIANGLES, 0, NumVertices);

glFlush () ;
}

First, we begin rendering by clearing our framebuffer. This is done by
calling glClear().

void glClear(GLbitfield mask);

Clears the specified buffers to their current clearing values. The mask
argument is a bitwise logical OR combination of the values listed in
Table 1.3.

Table 1.3 Clearing Buffers

Buffer Name

Color Buffer GL_COLOR_BUFFER_BIT
Depth Buffer GL_DEPTH_BUFFER_BIT
Stencil Buffer =~ GL_STENCIL_BUFFER_BIT

Chapter 1: Introduction to OpenGL

We discuss depth and stencil buffering, as well as an expanded discussion
of color in Chapter 4, “Color, Pixels, and Framebuffers”.

You may be asking yourself how we set the color that glClear() should use.
In this first program, we used OpenGL’s default clearing color, which is
black. To change the clear color, call glClearColor().

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current clear color for use in clearing color buffers in RGBA mode.
(See Chapter 4 for more information on RGBA mode.) The red, green,
blue, and alpha values are clamped if necessary to the range [0, 1]. The
default clear color is (0,0,0,0), which is the RGBA representation of black.

The clear color is an example of OpenGL state, which are values that
OpenGL retains in its context. OpenGL has a large collection of state
variables (which is fully described in Appendix D), all of which is initialized
to default values when a context is created. Since OpenGL retains any state
changes you update, you can reduce the number of times you set values.

Using the clear color as an example, let’s say you always want to

clear the background of the viewport to white. You would call
glClearColor(l, 1, 1, 1).Butwhereshould you make this function
call? Of course, you could set the value right before you call glClear() in
display(), but all but the first call would be redundant—OpenGL would be
changing the clear color from white to white each time you rendered. A
more efficient solution would be to set the clear color in init(). In fact, this
is the technique we use to minimize redundant state changes; any values
that will be constant over the execution of a program are set in init(). Of
course, there’s no harm in making redundant calls; it may just make your
application execute slower.

Try This

Add a call to glClearColor() into triangles.cpp.

Drawing with OpenGL

Our next two calls select the collection of vertices we want to draw and
request that they be rendered. We first call glBindVertexArray() to select
the vertex array that we want to use as vertex data. As mentioned before,
you would do this to switch between different collections of vertex data.

Our First Program: A Detailed Discussion

29

30

Next, we call glDrawArrays(), which actually sends vertex data to the
OpenGL pipeline.

void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Constructs a sequence of geometric primitives using the elements from
the currently bound vertex array starting at first and ending at

first + count — 1. mode specifies what kinds of primitives are constructed
and is one of GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP,
GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, and
GL_PATCHES.

In our example, we request that individual triangles are rendered by
setting the rendering mode to GL_TRIANGLES, starting at offset zero with
respect to the buffer offset we set with glVertexAttribPointer(), and
continuing for NumVertices (in our case, 6) vertices. We describe all of
the rendering shapes in detail in Chapter 3.

Try This

Modify triangles.cpp to render a different type of geometric
primitive, like GL_POINTS or GL_LINES. Any of the above listed
primitives can be used, but some of the results may not be
what you expect, and for GL_PATCHES, you won't see anything
as it requires use of tessellation shaders, which we discuss in
Chapter 9.

Finally, the last call in display() is glFlush(), which requests that any
pending OpenGL calls are flushed to the OpenGL server and processed.
Very soon, we'll replace glFlush() with a command that aids in smooth
animation, but that requires a bit more setup than we do in our first
example.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus
guaranteeing that they complete in finite time.

Advanced

At some point in your OpenGL programming career, you'll be asked (or ask
yourself), “How much time did that take?”, where “that” may be the time

Chapter 1: Introduction to OpenGL

to render an object, draw a full scene, or any other operations that
OpenGL might do. In order to do that accurately, you need to know when
OpenGL is completed with whatever operations you want to measure.

While the aforementioned command, glFlush(), may sound like the right
answetr, it’s not. In particular, glFlush() merely requests all pending
commands be sent to the OpenGL server, and then it returns immediately—
it doesn’t wait until everything pending is completed, which is really

what you want. To do that, you need to use the glFinish() function, which
waits until all OpenGL operations in flight are done, and then returns.

void glFinish(void);

Forces the completion of all pending OpenGL commands and waits for
their completion.

Note: Only use glFinish() while you're developing your application—
remove calls to it once you've completed development. While it’s
useful for determining the performance of a set of OpenGL
commands, it generally harms the overall performance of your
program.

Enabling and Disabling Operations in OpenGL

One important feature that we didn’t need to use in our first program, but
will use throughout this book, is enabling and disabling modes of opera-
tion in OpenGL. Most operational features are turned on and off by the
glEnable() and glDisable() commands.

void glEnable(GLenum capability);
void glDisable(GLenum capability);

glEnable() turns on a capability and glDisable() turns it off. There are
numerous enumerated values that can be passed as parameters to
glEnable() or glDisable(). Examples include GL_DEPTH_TEST for
turning on and off depth testing; GL_BLEND to control blending and
GL_RASTERIZER_DISCARD for advanced rendering control while doing
transform feedback.

You may often find, particularly if you have to write libraries that use
OpenGL that will be used by other programmers, that you need to

Our First Program: A Detailed Discussion

31

32

determine a feature’s state before changing for your own needs.
gllsEnabled() will return if a particular capability is currently enabled.

GLboolean glIsEnabled(GLenum capability);

Returns GL_TRUE or GL_FALSE, depending on whether or not the
queried capability is currently activated.

Chapter 1: Introduction to OpenGL

Chapter 2

Shader Fundamentals

Chapter Objectives

After reading this chapter, you'll be able to do the following:

e Identify the various types of shaders that OpenGL uses to create images.
e Construct and compile shaders using the OpenGL Shading Language.

e Dass data into shaders using a variety of mechanisms available in
OpenGL.

e Employ advanced GLSL shading capabilities to make shaders more
reusable.

33

34

This chapter introduces how to use programmable shaders with OpenGL.
Along the way, we describe the OpenGL Shading Language (commonly
called GLSL), and detail how shaders will influence your OpenGL
applications.

This chapter contains the following major sections:

e “Shaders and OpenGL" discusses programmable graphics shaders in
the context of OpenGL applications.

e “OpenGLs Programmable Pipeline” details each stage of the OpenGL
programmable pipeline.

e “An Overview of the OpenGL Shading Language’’ introduces the
OpenGL Shading Language.

e ‘“Interface Blocks”’ shows how to organize shader variables shared with
the application or between stages.

e “Compiling Shaders” describes the process of converting GLSL shaders
into programmable shader programs usable in your OpenGL
application.

e ‘“Shader Subroutines” discusses a method to increase the usability of
shaders by allowing them to select execution routines without
recompiling shaders.

e ‘“Separate Shader Objects” details how to composite elements from
multiple shaders into a single, configurable graphics pipeline.

Shaders and OpenGL

The modern OpenGL rendering pipeline relies very heavily on using shaders
to process the data you pass to it. About the only rendering you can do
with OpenGL without shaders is clearing a window, which should give you
a feel for how important they are when using OpenGL. Versions of OpenGL
before (and including) Version 3.0, or those using a compatibility-profile
context, include a fixed-function pipeline that processes geometric and pixel
data for you, without shaders. Starting with Version 3.1, the fixed-function
pipeline was removed from the core profile, and shaders became mandatory.

Shaders, whether for OpenGL or any other graphics API, are usually
written in a specialized programming language. For OpenGL, we use GLSL,
the OpenGL Shading Language, which has been around since OpenGL
Version 2.0 (and before as extensions). It has evolved along with OpenGL,
usually being updated with each new version of OpenGL. While GLSL is a

Chapter 2: Shader Fundamentals

programming language specially designed for graphics, you'll find it’s very
similar to the “C’ language, with a little C++ mixed in.

In this chapter, we'll describe how to write shaders, gradually introducing
GLSL along the way, discuss compiling and integrating shaders into your
application, and how data in your application passes between the various
shaders.

OpenGL’s Programmable Pipeline

While Chapter 1 provided a brief introduction to OpenGL’s rendering
pipeline, here we’ll describe in greater detail the various stages and what
operations they carry out. Version 4.3’s graphical pipeline contains four
processing stages, plus a compute stage, each of which you control by
providing a shader.

1. The Vertex shading stage receives the vertex data that you specified in
your vertex-buffer objects, processing each vertex separately. This
stage is mandatory for all OpenGL programs and must have a shader
bound to it. We describe vertex shading operation in Chapter 3,
“Drawing with OpenGL".

2. The Tessellation shading stage is an optional stage that generates addi-
tional geometry within the OpenGL pipeline, as compared to having
the application specify each geometric primitive explicitly. This stage,
if activated, receives the output of the vertex shading stage, and does
further processing of the received vertices. We describe the tessellation
shading stage in Chapter 9, “Tessellation Shaders”".

3. The Geometry shading stage is another optional stage that can modity
entire geometric primitives within the OpenGL pipeline. This stage
operates on individual geometric primitives allowing each to be
modified. In this stage, you might generate more geometry from the
input primitive, change the type of geometric primitive (e.g., con-
verting triangles to lines), or discarding the geometry altogether. If
activated, geometry shading receives its input either after vertex
shading has completed processing the vertices of a geometric primi-
tive, or from the primitives generated from the tessellation shading
stage, if it’s been enabled. The geometry shading stage is described in
Chapter 10, “Geometry Shaders”".

4. Finally, the last part of the OpenGL shading pipeline is the Fragment
shading stage. This stage processes the individual fragments (or samples,
if sample-shading mode is enabled) generated by OpenGL’s rasterizer,
and also must have a shader bound to it. In this stage, a fragment’s
color and depth values are computed, and then sent for further

OpenGL’s Programmable Pipeline

35

36

processing in the fragment-testing and blending parts of the pipeline.
Fragment shading operation is discussed in many sections of the text.

5. The Compute shading stage is not part of the graphical pipeline as the
stages above, but rather stands on its own as the only stage in a
program. A compute shader processes generic work items, driven by an
application-chosen range, rather than by graphical inputs like vertices
and fragments. Compute shaders can process buffers created and
consumed by other shader programs in your application. This includes
framebuffer post-processing effects, or really anything you want.
Compute shaders are described in Chapter 12, “Compute Shaders"’.

An important concept to understand in general is how data flows

between the shading stages. Shaders, like you saw in Chapter 1, are like

a function call—data are passed in, processed, and passed back out. In “C”,
for example, this can either be done using global variables, or arguments
to the function. GLSL is a little different. Fach shader looks a complete
“C” program, in that its entry point is a function named main(). Unlike
“C”, GLSL's main() doesn’t take any arguments, but rather all data going
into and out of a shader stage are passed using special global variables

in the shader (please don't confuse them with global variables in your
application—shader variables are entirely separate than the variables you've
declared in your application code). For example, take a look at Example 2.1.

Example 2.1 A Simple Vertex Shader

#version 330 core

in vec4 vPosition;
in vecd4d vColor;

out vec4d color;
uniform mat4d ModelViewProjectionMatrix;

void
main ()
{
color = vColor;
gl_Position = ModelViewProjectionMatrix * vPosition;

3

Even though that’s a very short shader, therere a lot of things to take note
of. Regardless of which shading stage you're programming for, shaders will
generally have the same structure as this one. This includes starting with a
declaration of the version using #version.

First, notice the global variables. Those are the inputs and outputs
OpenGL uses to pass data through the shader. Aside from each variable

Chapter 2: Shader Fundamentals

having a type (e.g., vec4, which we’ll get into more momentarily), data is
copied into the shader from OpenGL through the in variables, and
likewise, copied out of the shader through the out variables. The values in
those variables are updated every time OpenGL executes the shader (e.g., if
OpenGL is processing vertices, then new values are passed through those
variables for each vertex; when processing fragments, then for each
fragment). The other category of variable that’s available to receive data
from an OpenGL application are uniformvariables. Uniform values don’t
change per vertex or fragment, but rather have the same value across
geometric primitives, until the application updates them.

An Overview of the OpenGL Shading Language

This section provides an overview of the shading language used within
OpenGL. GLSL shares many traits with C++ and Java, and is used for
authoring shaders for all the stages supported in OpenGL, although certain
teatures are only available for particular types of shaders. We will first
describe GLSL's requirements, types, and other language constructs that
are shared between the various shader stages, and then discuss the features
unique to each type of shader.

Creating Shaders with GLSL

The Starting Point

A shader program, just like a “C"’ program, starts execution in main().
Every GLSL shader program begins life as follows:

#version 330 core

void
main ()

{

// Your code goes here

}

The // construct is a comment and terminates at the end of the current line,
just like in “C". Additionally, “C”-type, multiline comments—the /« and «/
type—are also supported. However, unlike ANSI “C”, main() does not return
an integer value; it is declared void. Also, as with “C’" and its derivative
languages, statements are terminated with a semicolon. While this is a
perfectly legal GLSL program that compiles and even runs, its functionality
leaves something to be desired. To add a little more excitement to our
shaders, we'll continue by describing variables and their operation.

An Overview of the OpenGL Shading Language

37

38

Declaring Variables

GLSL is a typed language; every variable must be declared and have an
associated type. Variable names conform to the same rules as those for
“C': you can use letters, numbers, and the underscore character () to
compose variable names. However, neither a digit nor an underscore can
be the first character in a variable name. Similarly, variable names cannot
contain consecutive underscores—those names are reserved in GLSL.

Table 2.1 shows the basic types available in GLSL.

Table 2.1 Basic Data Types in GLSL

Type Description

float IEEE 32-bit floating-point value

double IEEE 64-bit floating-point value

int signed two’s-complement 32-bit integer value
uint unsigned 32-bit integer value

bool Boolean value

These types (and later, aggregate types composed of these) are all
transparent. That is, their internal form is exposed and the shader code
gets to assume what they look like internally.

An additional set of types, the opaque types, do not have their internal
form exposed. These include sampler types, image types, and atomic
counter types. They declare variables used as opaque handles for accessing
texture maps, images, and atomic counters as described in Chapter 4,
“Color, Pixels, and Framebuffers”.

The various types of samplers and their uses are discussed in Chapter 6,
“Textures”.

Variable Scoping

While all variables must be declared, they may be declared any time before
their use (just as in C++, where they must be the first statements in a block
of code). The scoping rules of GLSL, which closely parallel those of C++ are
as follows:

e Variables declared outside of any function definition have global scope
and are visible to all subsequent functions within the shader program.

e Variables declared within a set of curly braces (e.g., function definition,
block following a loop or “if”’ statement, and so on) exist within the
scope of those braces only.

Chapter 2: Shader Fundamentals

e Loop iteration variables, such as i in the loop

for (int 1 = 0; i < 10; ++1) {
// loop body
}

are only scoped for the body of the loop.

Variable Initialization

Variables may also be initialized when declared. For example:

int i, numParticles = 1500;
float force, g = —9.8;
bool falling = true;

double pi = 3.1415926535897932384626LF;

Integer literal constants may be expressed as octal, decimal, or hexadecimal
values. An optional minus sign before a numeric value negates the
constant, and a trailing ‘“u”’ or “U” denotes an unsigned integer value.
Floating-point literals must include a decimal point, unless described in
scientific format, e.g., 3E-7. (However, there are many situations where an
integer literal will be implicitly converted to a floating-point value.)
Additionally, they may optionally include an “f”" or “F” suffix as in “C” on
a float literal. You must include a suffix of “IF”” or “LF" to make a literal
have the precision of a double.

Boolean values are either true or £alse, and can be initialized to either
of those values or as the result of an operation that resolves to a Boolean
expression.

Constructors

As mentioned, GLSL is more type safe than C++; having fewer implicit
conversion between values. For example,

int £ = false;

will result in a compilation error due to assigning a Boolean value to an
integer variable. Types will be implicitly converted as shown in Table 2.2.

Table 2.2 Implicit Conversions in GLSL

Type Needed Can Be Implicitly Converted From
uint int

float int, uint

double int, uint, float

An Overview of the OpenGL Shading Language

39

40

The above type conversions work for scalars, vectors, and matrices of these
types. Conversions will never change whether something is a vector or a
matrix, or how many components they have. Conversions also don't
apply to arrays or structures.

Any other conversion of values requires explicit conversion using a
conversion constructor. A constructor, as in other languages like C++, is a
function with the same name as a type, which returns a value of that type.
For example,

float £ = 10.0;
int ten = int(f);

uses an int conversion constructor to do the conversion. Likewise, the
other types also have conversion constructors: £loat, double, uint,
bool, and vectors and matrices of these types. Each accepts multiple other
types to explicitly convert from. These functions also illustrate another
feature of GLSL: function overloading, whereby each function takes various
input types, but all use the same base function name. We will discuss more
on functions in a bit.

Aggregate Types

GLSL's basic types can be combined to better match core OpenGL’s data
values and to ease computational operations.

First, GLSL supports vectors of two, three, or four components for each of
the basic types of bool, int, uint, £loat, and double. Also, matrices of
float and double are available. Table 2.3 lists the valid vector and
matrix types.

Table 2.3 GLSL Vector and Matrix Types

Base Type 2D vec 3D vec 4D vec Matrix Types
mat2 mat3 mat4
mat2x2 mat2x3 mat2x4
float veez vees vecd mat3x2 mat3x3 mat3x4
mat4x2 mat4x3 mat4x4
dmat2 dmat3 dmat4

dmat2x2 dmat2x3 dmat2x4

double dvec2 dvec3 dvec4 dmat3x2 dmat3x3 dmat3xd
dmat4x2 dmat4x3 dmat4x4

int ivec2 ivec3 ivec4 —

uint uvec2 uvec3 uvec4 —

bool bvec2 bvec3 bvec4 -

Chapter 2: Shader Fundamentals

Matrix types that list both dimensions, such as mat4x3, use the first value
to specify the number of columns, the second the number of rows.

Variables declared with these types can be initialized similar to their scalar
counterparts:

vec3 velocity = vec3(0.0, 2.0, 3.0);

and converting between types is equally accessible:
ivec3 steps = ivec3 (velocity);

Vector constructors can also be used to truncate or lengthen a vector. If a
longer vector is passed into the constructor of a smaller vector, the vector
is truncated to the appropriate length.

vec4 color;

vec3 RGB = vec3(color); // now RGB only has three elements

Likewise, vectors are lengthened in somewhat the same manner. Scalar
values can be promoted to vectors, as in
vec3 white = vec3(1.0); // white = (1.0, 1.0, 1.0)
vecd translucent = vec4d(white, 0.5);

Matrices are constructed in the same manner and can be initialized to
either a diagonal matrix or a fully populated matrix. In the case of
diagonal matrices, a single value is passed into the constructor, and the
diagonal elements of the matrix are set to that value, with all others being
set to zero, as in

40 00 00
m =mat3(4.0)= |00 4.0 0.0
0.0 0.0 4.0

Matrices can also be created by specifying the value of every element in the
matrix in the constructor. Values can be specified by combinations of
scalars and vectors, as long as enough values are provided, and each
column is specified in the same manner. Additionally, matrices are
specified in column-major order, meaning the values are used to populate
columns before rows (which is the opposite of how “C” initializes
two-dimensional arrays).

For example, we could initialize a 3 x 3 matrix in any of the following
ways:

mat3 M = mat3(

An Overview of the OpenGL Shading Language

41

42

vec3 columnl = vec3 (1.0, 2.0, 3.0);
vec3 column2 = vec3(4.0, 5.0, 6.0);
vec3 column3 = wvec3 (7.0, 8.0, 9.0);

mat3 M = mat3 (columnl, column2, column3);

Oor even
vec2 columnl = vec2(1.0, 2.0);
vec2 column2 = vec2(4.0, 5.0);
vec2 column3 = vec2 (7.0, 8.0);
mat3 M = mat3 (columnl, 3.0,
column2, 6.0,
column3, 9.0);
all yielding the same matrix
1.0 40 7.0
20 50 8.0
3.0 60 9.0

Accessing Elements in Vectors and Matrices

The individual elements of vectors and matrices can be accessed and
assigned. Vectors support two types of element access: a
named-component method and an array-like method. Matrices use a
two-dimensional, array-like method.

Components of a vector can be accessed by name, as in

float red = color.r;
float v_y = velocity.y;

or by using a zero-based index scheme. The following yield identical
results to the above:

float red = color[0];
float v_y = velocity[1l];

In fact, as shown in Table 2.4, there are three sets of component names, all
of which do the same thing. The multiple sets are useful for clarifying the
operations that you're doing.

Chapter 2: Shader Fundamentals

Table 2.4 Vector Component Accessors

Component Accessors Description

(x,y,z,w) components associated with positions

(r,8,b,a) components associated with colors

(s,t,p,q) components associated with texture coordinates

A common use for component-wise access to vectors is for swizzling
components, as you might do with colors, perhaps for color space
conversion. For example, you could do the following to specify a
luminance value based on the red component of an input color:

vec3 luminance = color.rrr;

Likewise, if you needed to move components around in a vector, you
might do:

color = color.abgr; // reverse the components of a color

The only restriction is that only one set of components can be used with a
variable in one statement. That is, you can’t do:

vecd color = otherColor.rgz; // Error: "z" is from a different group

Also, a compile-time error will be raised if you attempt to access an
element that’s outside the range of the type. For example,

vec2 pos;

float zPos = pos.z; // Error: no "z" component in 2D vectors

Matrix elements can be accessed using the array notation. Either a single
scalar value or an array of elements can be accessed from a matrix:

mat4d m = mat4(2.0);
vecd zVec = m[2]; // get column 2 of the matrix

float yScale = m[1][1]; // or m[l].y works as well

Structures

You can also logically group collections of different types into a structure.
Structures are convenient for passing groups of associated data into
functions. When a structure is defined, it automatically creates a new type,
and implicitly defines a constructor function that takes the types of the
elements of the structure as parameters.

An Overview of the OpenGL Shading Language

43

44

struct Particle {
float lifetime;
vec3 position;
vec3 velocity;
Y

Particle p = Particle(10.0, pos, vel); // pos, vel are vec3s

Likewise, to reference elements of a structure, use the familiar “dot”
notation as you would in “C"".

Arrays

GLSL also supports arrays of any type, including structures. As with “C”,
arrays are indexed using brackets ([]). The range of elements in an array of
sizenis 0...n— 1. Unlike “C”, however, neither negative array indices nor
positive indices out of range are permitted. As of GLSL 4.3, arrays can be
made out of arrays, providing a way to handle multidimensional data.
However, GLSL 4.2 and earlier versions do not allow arrays of arrays to be
created (that is, you cannot create a multidimensional array).

Arrays can be declared sized or unsized. You might use an unsized array as
a forward declaration of an array variable and later redeclare it to the
appropriate size. Array declarations use the bracket notation, as in:

float coeff[3]; // an array of 3 floats
float[3] coeff; // same thing
int indices[]; // unsized. Redeclare later with a size

Arrays are first-class types in GLSL, meaning they have constructors and
can be used as function parameters and return types. To statically initialize
an array of values, you would use a constructor in the following manner:

float coeff[3] = float[3](2.38, 3.14, 42.0);
The dimension value on the constructor is optional.

Additionally, similar to Java, GLSL arrays have an implicit method for
reporting their number of elements: the length() method. If you would
like to operate on all the values in an array, here is an example using the
length() method:

for (int i = 0; i < coeff.length(); ++i) {

coeff[i] x= 2.0;

}
The length() method also works on vectors and matrices. A vector’s length
is the number of components it contains, while a matrix’s length is the
number of columns it contains. This is exactly what you need when using

Chapter 2: Shader Fundamentals

array syntax for indexing vectors and matrices (m[2] is the third column
of a matrix m).

mat3x4 m;

int ¢ = m.length(); // number of columns in m: 3

int r = m[0].length(); // number of components in column vector 0: 4

When the length is known at compile time, the length() method will
return a compile-time constant that can be used where compile-time
constants are required. For example:

mat4 m;
float diagonal[m.length()]; // array of size matching the matrix size
float x[gl_in.length()]; // array of size matching the number of

// geometry shader input vertices

For all vectors and matrices, and most arrays, length() is known at compile
time. However for some arrays, length() is not known until link time. This
happens when relying on the linker to deduce the size from multiple
shaders in the same stage. For shader storage buffer objects (declared with
buffer, as described shortly), length() might not be known until render
time. If you want a compile-time constant returned from length(), just
make sure you establish the array size in your shader before using the
length() method.

Multidimensional arrays are really arrays made from arrays and have a
syntax similar to “C"":

float coeff[3][5]; // an array of size 3 of arrays of size 5
coeff[2][1] *= 2.0; // inner-dimension index is 1, outer is 2
coeff.length() ; // this returns the constant 3

coeff[2]; // a one-dimensional array of size 5
coeff[2].length() ; // this returns the constant 5

Multidimensional arrays can be formed in this way for virtually any type
and resource. When shared with the application, the inner-most
(right-most) dimension changes the fastest in the memory layout.

Storage Qualifiers
Types can also have modifiers that affect their behavior. There are four

modifiers defined in GLSL, as shown in Table 2.5, with their behaviors at
global scope.

An Overview of the OpenGL Shading Language

45

46

Table 2.5 GLSL Type Modifiers

Type Modifier Description

const Labels a variable as a read-only. It will also be a compile-time
constant if its initializer is a compile-time constant.

in Specifies that the variable is an input to the shader stage.

out Specifies that the variable is an output from a shader stage.

uniform Specifies that the value is passed to the shader from the
application and is constant across a given primitive.

buffer Specifies read-write memory shared with the application. This
memory is also referred to as a shader storage buffer.

shared Specifies that the variables are shared within a local work group.

This is only used in compute shaders.

const Storage Qualifier

Just as with “C”, const type modifier indicates that the variable is
read-only. For example, the statement

const float Pi = 3.141529;
sets the variable Pi to an approximation of =. With the addition of the

const modifier, it becomes an error to write to a variable after its
declaration, so they must be initialized when declared.

in Storage Qualifier

The in modifier is used to qualify inputs into a shader stage. Those inputs
may be vertex attributes (for vertex shaders), or output variables from the
preceding shader stage.

Fragment shaders can further qualify their input values using some
additional keywords that we discuss in Chapter 4, “Color, Pixels, and
Framebuffers”.

out Storage Qualifier

The out modifier is used to qualify outputs from a shader stage—for
example, the transformed homogeneous coordinates from a vertex shader,
or the final fragment color from a fragment shader.

uniform Storage Qualifier

The uniform modifier specifies that a variable’s value will be specified by
the application before the shader’s execution and does not change across
the primitive being processed. Uniform variables are shared between all the

Chapter 2: Shader Fundamentals

shader stages enabled in a program and must be declared as global variables.

Any type of variable, including structures and arrays, can be specified as

uniform. A shader cannot write to a uniform variable and change its value.

For example, you might want to use a color for shading a primitive. You
might declare a uniform variable to pass that information into your
shaders. In the shaders, you would make the declaration:

uniform vec4d BaseColor;

Within your shaders, you can reference BaseColor by name, but to set its
value in your application, you need to do a little extra work. The GLSL
compiler creates a table of all uniform variables when it links your shader
program. To set BaseColor’s value from your application, you need to
obtain the index of BaseColor in the table, which is done using the
glGetUniformLocation() routine.

GLint glGetUniformLocation(GLuint program,
const char* name);

Returns the index of the uniform variable name associated with the
shader program. name is a null-terminated character string with no spaces.
A value of minus one (—1) is returned if name does not correspond to a
uniform variable in the active shader program, or if a reserved shader
variable name (those starting with g1_ prefix) is specified.

name can be a single variable name, an element of an array (by including
the appropriate index in brackets with the name), or a field of a structure
(by specitying name, then “.” followed by the field name, as you would in
the shader program). For arrays of uniform variables, the index of the
first element of the array may be queried either by specifying only the
array name (for example, “arrayName”’), or by specifying the index to the
first element of the array (as in “arrayName[0]").

The returned value will not change unless the shader program is relinked
(see glLinkProgram()).

Once you have the associated index for the uniform variable, you can set
the value of the uniform variable using the glUniform*() or
glUniformMatrix*() routines.

Example 2.2 demonstrates obtaining a uniform variable’s index and
assigning values.

An Overview of the OpenGL Shading Language

47

48

Example 2.2 Obtaining a Uniform Variable’s Index and Assigning
Values

GLint timeLoc; /* Uniform index for variable "time" in shader =*/
GLfloat timevValue; /* Application time x/

timeLoc = glGetUniformLocation (program, "time");

glUniformlf (timeLoc, timeValue) ;

void glUniform{1234}{tdi ui}(GLint location, TYPE value);
void glUniform{1234}{tdi ui}v(GLint location, GLsizei count,
const TYPE * values);
void glUniformMatrix{234}{td}v(GLint location, GLsizei count,
GLboolean transpose,
const GLfloat * values);
void glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}{fd}v(
GLint location, GLsizei count,
GLboolean transpose,
const GLfloat * values);

Sets the value for the uniform variable associated with the index location.
The vector form loads count sets of values (from one to four values,
depending upon which glUniform*() call is used) into the uniform
variable’s starting location. If location is the start of an array, count
sequential elements of the array are loaded.

The GLfloat forms can be used to load the single-precision types of float, a
vector of floats, an array of floats, or an array of vectors of floats. Similarly
the GLdouble forms can be used for loading double-precision scalars,
vectors, and arrays. The GLfloat forms can also load Boolean types.

The GLint forms can be used to update a single signed integer, a signed
integer vector, an array of signed integers, or an array of signed integer
vectors. Additionally, individual and arrays of texture samplers and
Boolean scalars, vectors, and arrays can also be loaded. Similarly the
GLuint forms can be used for loading unsigned scalars, vectors, and
arrays.

For glUniformMatrix{234}*(), count sets of 2 x 2, 3 x 3, or 4 x 4
matrices are loaded from values.

For glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}*(), count sets of
like-dimensioned matrices are loaded from values. If transpose is
GL_TRUE, values are specified in row-major order (like arrays in “C"); or if
GL_FALSE is specified, values are taken to be in column-major order.

Chapter 2: Shader Fundamentals

buf fer Storage Qualifier

The recommended way to share a large buffer with the application is
through use of a buffer variable. These are much like uniform variables,
except that they can be modified by the shader. Typically, you'd use
buffer variablesin a buffer block, and blocks in general are described
later in this chapter.

The buffer modifier specifies that the subsequent block is a memory
buffer shared between the shader and the application. This buffer is both
readable and writeable by the shader. The size of the buffer can be
established after shader compilation and program linking.

shared Storage Qualifier

The shared modifier is only used in compute shaders to establish
memory shared within a local work group. This is discussed in more detail
in Chapter 12, “Compute Shaders”.

Statements

The real work in a shader is done by computing values and making
decisions. In the same manner as C++, GLSL has a rich set of operators for
constructing arithmetic operations for computing values and a standard
set of logical constructs for controlling shader execution.

Arithmetic Operations

No text describing a language is complete without the mandatory table of
operator precedence (see Table 2.6). The operators are ordered in
decreasing precedence. In general, the types being operated on must be
the same, and for vector and matrices, the operands must be of the same
dimension. In the table, integer types include int and uint and

vectors of them, floating-point types include £loat and double types
and vectors and matrices of them, arithmetic types include all integer

and floating-point types, and any additionally includes structures

and arrays.

Overloaded Operators

Most operators in GLSL are overloaded, meaning that they operate on a
varied set of types. Specifically, arithmetic operations (including pre- and
post-increment and -decrement) for vectors and matrices are well defined
in GLSL. For example, to multiply a vector and a matrix (recalling that the

An Overview of the OpenGL Shading Language

49

50

Table 2.6 GLSL Operators and Their Precedence

Precedence Operators Accepted types Description
1 () — Grouping of operations
2 [] arrays, matrices, Array subscripting
vectors
() functions Function calls and constructors
. (period) structures Structure field or method access
++ - arithmetic Post-increment and -decrement
3 ++ -- arithmetic Pre-increment and -decrement
+ - arithmetic Unary explicit positive or
negation
~ integer Unary bit-wise not
! bool Unary logical not
4 *[% arithmetic Multiplicative operations
5 + - arithmetic Additive operations
6 << >> integer Bit-wise operations
7 <><=>= arithmetic Relational operations
8 === any Equality operations
9 & integer Bit-wise and
10 ~ integer Bit-wise exclusive or
11 | integer Bit-wise inclusive or
12 && bool Logical and operation
13 A bool Logical exclusive-or operation
14 || bool Logical or operation
15 a?b:c bool ? any : any Ternary selection operation

(inline “if”” operation; if (a) then
(b) else (c))

16 = any Assignment
+=-= arithmetic Arithmetic assignment
*= /= arithmetic
%= <<=>>= integer
&= "= |= integer
17 , (comma) any Sequence of operations

order of operands is important; matrix multiplication is noncommutative,
for all you math heads), use the following operation:

vec3 v;
mat3 m;

vec3 result = v x m;

Chapter 2: Shader Fundamentals

The normal restrictions apply, that the dimensionality of the matrix and
the vector must match. Additionally, scalar multiplication with a vector or
matrix will produce the expected result. One notable exception is that the
multiplication of two vectors will result in component-wise multiplication
of components; however, multiplying two matrices will result in normal
matrix multiplication.

vec2 a, b, c;

mat2 m, u, v;
a *x b; //

c = c = (a.x*b.x, a.y*b.vy)
m=u*x v; // m = (u00%v00+ul0lxv10 u00*v01l+ul0l*vll
// u01l+*v00+ull*v10 ulO*v0l+ull+vll)

Additional common vector operations (e.g., dot and cross products) are
supported by function calls, as well as various per-component operations
on vectors and matrices.

Flow Control

GLSL's logical control structures are the popular if-else and switch
statements. As with the “C” language the else clause is optional, and
multiple statements require a block.

if (truth) {
// true clause

}
else {

// false clause
}

Similar to the situation in C, switch statements are available (starting with
GLSL 1.30) in their familiar form:
switch (int_value) {
case 1n:

// statements
break;

case m:
// statements
break;

default:
// statements
break;

3

GLSL switch statements also support “fall-through’’ cases; a case statement
that does not end with a break statement. Each case does require some
statement to execute before the end of the switch (before the closing brace).
Also, unlike C++, no statements are allowed before the first case. If no

case matches the switch, and a default label is present, then it is executed.

An Overview of the OpenGL Shading Language

51

52

Looping Constructs
GLSL supports the familiar “C” form of for, while, and do ... while loops.

The for loop permits the declaration of the loop iteration variable in the
initialization clause of the for loop. The scope of iteration variables
declared in this manner is only for the lifetime of the loop.

for (int i = 0; i < 10; ++1i) {
}

while (n < 10) {

}

do {

} while (n < 10);

Flow-Control Statements

Additional control statements beyond conditionals and loops are available
in GLSL. Table 2.7 describes available flow-control statements.

The discard statement is available only in fragment programs. The
execution of the fragment shader may be terminated at the execution of
the discard statement, but this is implementation dependent.

Table 2.7 GLSL Flow-Control Statements

Statement Description

break Terminates execution of the block of a loop, and continues
execution after the scope of that block.

continue Terminates the current iteration of the enclosing block of a loop,
resuming execution with the next iteration of the loop.

return [result] Returns from the current subroutine, optionally providing a value
to be returned from the function (assuming return value matches
the return type of the enclosing function).

discard Discards the current fragment and ceases shader execution.
Discard statements are only valid in fragment shader programs.

Functions

Functions permit you to replace occurrences of common code with a
function call. This, of course, allows for smaller code, and less chances for
errors. GLSL defines a number of built-in functions, which are listed in

Chapter 2: Shader Fundamentals

Appendix C as well as support for user-defined functions. User-defined
functions can be defined in a single shader object, and reused in multiple
shader programs.

Declarations

Function declaration syntax is very similar to “C”, with the exception of
the access modifiers on variables:

returnType functionName ([accessModifier] typel variablel,
[accessModifier] type2 varaible2,

-)

// function body
return returnValue; // unless returnType is void

}

Function names can be any combination of letters, numbers, and the
underscore character, with the exception that it can neither begin with a
digit nor with gl _nor contain consecutive underscores.

Return types can be any built-in GLSL type or user-defined structure or
array type. Arrays as return values must explicitly specify their size. If a
function doesn’t return a value, its return type is void.

Parameters to functions can also be of any type, including arrays (which
must specify their size).

Functions must be either declared with a prototype or defined with a body,
before they are called. Just as in C++, the compiler must have seen the
function’s declaration before its use or an error will be raised. If a function
is used in a shader object other than the one where it’s defined, a
prototype must be declared. A prototype is merely the function’s signature
without its accompanying body. Here’s a simple example:

float HornerEvalPolynomial (float coeff[10], float x);

Parameter Qualifiers

While functions in GLSL are able to modify and return values after their
execution, there’s no concept of a pointer or reference, as in “C"" or C++.
Rather, parameters of functions have associated parameter qualifiers
indicating if the value should be copied into, or out of, a function after
execution. Table 2.8 describes the available parameter qualifiers in GLSL.

An Overview of the OpenGL Shading Language

53

54

Table 2.8 GLSL Function Parameter Access Modifiers

Access Modifier Description

in Value copied into a function (default if not specified)

const in Read-only value copied into a function

out Value copied out of a function (undefined upon entrance into

the function)
inout Value copied into and out of a function

The in keyword is optional. If a variable does not include an access
modifier, then an in modifier is implicitly added to the parameter’s
declaration. However, if the variable’s value needs to be copied out of a
function, it must either be tagged with an out (for copy out-only
variables) or an inout (for a variable both copied in and copied out)
modifier. Writing to a variable not tagged with one of these modifiers will
generate a compile-time error.

Additionally, to verify at compile time that a function doesn’t modify an
input-only variable, adding a “const in”’ modifier will cause the compiler
to check that the variable is not written to in the function. If you don’t do
this and do write to an input-only variable, it only modifies the local copy
in the function.

Computational Invariance

GLSL does not guarantee that two identical computations in different
shaders will result in exactly the same value. The situation is no different
than for computational applications executing on the CPU, where the
choice of optimizations may result in tiny differences in results. These tiny
errors may be an issue for multipass algorithms that expect positions to be
computed exactly the same for each shader pass. GLSL has two methods
for enforcing this type of invariance between shaders, using the
invariant or precise keywords.

Both of these methods will cause computations done by the graphics
device to create reproducibility (invariance) in results of the same
expression. However, they do not help reproduce the same results between
the host and the graphics device. Compile-time constant expressions are
computed on the compiler’s host and there is no guarantee that the host
computes in exactly the same way as the graphics device. For example:

uniform float ten; // application sets this to 10.0
const float £ = sin(10.0); // computed on compiler host
float g = sin(ten) ; // computed on graphics device

Chapter 2: Shader Fundamentals

void main ()

{
if (f == g) // £ and g might be not equal

}

In this example, it would not matter if invariant or precise was used
on any of the variables involved, as they only effect two computations
done on the graphics device.

The invariant Qualifier

The invariant qualifier may be applied to any shader output variable. It
will guarantee that if two shader invocations each set the output variable
with the same expression and the same values for the variables in that
expression, then both will compute the same value.

The output variable declared as invariant may be a built-in variable or a
user-defined one. For example:

invariant gl_Position;

invariant centroid out wvec3 Color;
As you may recall, output variables are used to pass data from one stage to
the next. The invariant keyword may be applied at any time before use
of the variable in the shader and may be used to modify built-in variables.
This is done by declaring the variable only with invariant, as was shown
above for gl_Position.

For debugging, it may be useful to impose invariance on all varying
variables in shader. This can be accomplished by using the vertex shader
preprocessor pragma.

#pragma STDGL invariant (all)

Global invariance in this manner is useful for debugging; however, it may
likely have an impact on the shader’s performance. Guaranteeing
invariance usually disables optimizations that may have been performed
by the GLSL compiler.

The precise Qualifier

The precise qualifier may be applied to any computed variable or
function return value. Despite its name, its purpose is not to increase
precision, but rather to increase reproducibility of a computation. It is
mostly used in tessellation shaders to avoid forming cracks in your
geometry. Tessellation shading in general is described in Chapter 9,
“Tessellation Shaders’’, and there is additional discussion in that chapter
about a use case for precise qualification.

An Overview of the OpenGL Shading Language

55

56

Generally, you use precise instead of invariant when you need to get
the same result from an expression, even if values feeding the expression
are permuted in a way that should not mathematically affect the result.
For example, the following expression should get the same result if the
values for a and b are exchanged. It should also get the same result if the
values for ¢ and d and exchanged, or if both a and ¢ are exchanged and b
and d are exchanged, etc.

Location = a = b + ¢ * d;

The precise qualifier may be applied to a built-in variable, user variable,
or a function return value.

precise gl_Position;
precise out vec3 Location;
precise vec3 subdivide(vec3 P1l, wvec3 P2) { ... }

The precise keyword may be applied at any time before use of the
variable in the shader and may be used to modify previously declared
variables.

One practical impact in a compiler of using precise is an expression like
the one above cannot be evaluated using two different methods of
multiplication for the two multiply operations. For example, a multiply
instruction for the first multiply and a fused multiply-and-add instruction
for the second multiply. This is because these two instructions will get
slightly different results for the same values. Since that was disallowed by
precise, the compiler is prevented from doing this. Because use of fused
multipy-and-add instructions is important to performance, it would be
unfortunate to completely disallow them. So, there is a built-in function in
GLSL, fma(), that you can use to explicitly say this is okay.

precise out float result;

float f = ¢ * d;
float result = fma(a, b, f);

Of course, you only do that if you weren’t going to have the values of a
and ¢ permuted, as you would be defeating the purpose of using precise.

Shader Preprocessor

The first step in compilation of a GLSL shader is parsing by the
preprocessor. Similar to the “C” preprocessor, there are a number of
directives for creating conditional compilation blocks and defining values.
However, unlike the “C" preprocessor, there is no file inclusion (#include).

Chapter 2: Shader Fundamentals

Preprocessor Directives

Table 2.9 lists the preprocessor directives accepted by the GLSL
preprocessor and their functions.

Table 2.9

GLSL Preprocessor Directives

Preprocessor Directive

Description

##define
#undef
#if
#ifdef

#ifndef
#else
#elif
#tendif

#terror text

#pragma options

#extension options

#version number

#line options

Control the definition of constants and
macros similar to the “C"’ preprocessor
Conditional code management similar

to the “C” preprocessor, including the defined
operator.

Conditional expressions evaluate integer
expressions and defined values
(as specified by #define) only.

Cause the compiler to insert text (up to the first
newline character) into the shader information log

Control compiler specific options

Specify compiler operation with respect to specified
GLSL extensions

Mandate a specific version of GLSL version support
Control diagnostic line numbering

Macro Definition

The GLSL preprocessor allows macro definition in much the same manner
as the “C” preprocessor, with the exception of the string substitution and
concatenation facilities. Macros might define a single value, as in

#define NUM_ELEMENTS 10
or with parameters like
#define LPos(n) gl_LightSourcel (n)].position

Additionally, there are several predefined macros for aiding in diagnostic
messages (that you might issue with the #error directive, for example), as
shown in Table 2.10.

An Overview of the OpenGL Shading Language

57

58

Table 2.10 GLSL Preprocessor Predefined Macros

__LINE__ Line number defined by one more than the number of newline
characters processed and modified by the #line directive

__FILE__ Source string number currently being processed

__VERSION__ Integer representation of the OpenGL Shading Language version

Likewise, macros (excluding those defined by GLSL) may be undefined by
using the #undef directive. For example

#undef LPos

Preprocessor Conditionals

Identical to the processing by the “C" preprocessor, the GLSL preprocessor
provides conditional code inclusion based on macro definition and integer
constant evaluation.

Macro definition may be determined in two ways: Either using the #ifdef
directive

#ifdef NUM_ELEMENTS

#endif
or using the defined operator with the #if or #elif directives

#if defined (NUM_ELEMENTS) && NUM_ELEMENTS > 3

#elif NUM_ELEMENTS < 7

#enéif

Compiler Control

The #pragma directive provides the compiler additional information
regarding how you would like your shaders compiled.

Optimization Compiler Option

The optimize option instructs the compiler to enable or disable optimiza-
tion of the shader from the point where the directive resides forward in the
shader source. You can enable or disable optimization by issuing either

#pragma optimize (on)
or
#pragma optimize (off)

Chapter 2: Shader Fundamentals

respectively. These options may only be issued outside of a function
definition. By default, optimization is enabled for all shaders.

Debug Compiler Option

The debug option enables or disables additional diagnostic output of the
shader. You can enable or disable debugging by issuing either

#pragma debug (on)

or

#pragma debug (off)

respectively. Similar to the optimize option, these options may only be
issued outside of a function definition, and by default, debugging is
disabled for all shaders.

Global Shader-Compilation Option

One final #pragma directive that is available is STDGL. This option is
currently used to enable invariance in the output of varying values.

Extension Processing in Shaders

GLSL, like OpenGL itself, may be enhanced by extensions. As vendors may
include extensions specific to their OpenGL implementation, it’s useful to
have some control over shader compilation in light of possible extensions
that a shader may use.

The GLSL preprocessor uses the #extension directive to provide instruc-
tions to the shader compiler regarding how extension availability should
be handled during compilation. For any, or all, extensions, you can specify
how you would like the compiler to proceed with compilation.

#extension extension_name : <directive>

where extension_name uses the same extension name returned by calling
glGetString(GL_EXTENSIONS) or

#extension all : <directive>

to affect the behavior of all extensions.

An Overview of the OpenGL Shading Language

59

60

The options available are shown in Table 2.11

Table 2.11 GLSL Extension Directive Modifiers

Directive Description

require Flag an error if the extension is not supported, or if the
all-extension specification is used.
enable Give a warning if the particular extensions specified are not

supported, or flag an error if the all-extension specification is used.

warn Give a warning if the particular extensions specified are not
supported, or give a warning if any extension use is detected
during compilation.

disable Disable support for the particular extensions listed (that is, have
the compiler act as if the extension is not supported even if it is)
or all extensions if all is present, issuing warnings and errors as if
the extension were not present.

Interface Blocks

Shader variables shared with the application or between stages can be, and
sometimes must be, organized into blocks of variables. Uniform variables
can be organized into uniform blocks, input and output variables into in
and out blocks, and shader storage buffers into buf fer blocks.

These all have a similar form. First, we’ll use uniform to demonstrate.

uniform b { // "uniform" or "in" or "out" or "buffer"
vecd vl; // list of variables
bool v2; //

i // access members as "vl" and "v2"

Or:

uniform b { // "uniform" or "in" or "out" or "buffer"
vecd vl; // list of variables
bool v2; //

} name; // access members as "name.vl" and "name.v2"

Specific interface block details are provided in the sections below.
Generally, the block name at the beginning (b above) is used for interface
matching or external identification, while the name at the end (name
above) is used in the rest of the shader for accessing the members.

Chapter 2: Shader Fundamentals

Uniform Blocks

As your shader programs become more complex, it’s likely that the number
of uniform variables they use will increase. Often the same uniform value
is used within several shader programs. As uniform locations are generated
when a shader is linked (i.e., when glLinkProgram() is called), the indices
may change, even though (to you) the values of the uniform variables are
identical. Uniform buffer objects provide a method to optimize both
accessing uniform variables and enabling sharing of uniform values across
shader programs.

As you might imagine, that given uniform variables can exist both in your
application and in a shader, you'll need to both modify your shaders and
use OpenGL routines to set up uniform buffer objects.

Specifying Uniform Blocks in Shaders

To access a collection of uniform variables using routines such as
glMapBuffer() (see Chapter 3, “Drawing with OpenGL” for more details),
you need to slightly modify their declaration in your shader. Instead of
declaring each uniform variable individually, you group them, just as you
would do in a structure, in a uniform block. A uniform block is specified
using the uniform keyword. You then enclose all the variables you want in
that block within a pair of braces, as demonstrated in Example 2.3.

Example 2.3 Declaring a Uniform Block

uniform Matrices {
matd ModelView;
mat4 Projection;
mat4 Color;

Y

Recall types are divided into two categories: opaque and transparent;
where the opaque types include samplers, images, and atomic counters.
Only the transparent types are permitted to be within a uniform block.
Additionally, uniform blocks must be declared at global scope.

Uniform Block Layout Control

A variety of qualifiers are available to specify how to lay out the variables
within a uniform block. These qualifiers can be used for each individual
uniform block or to specify how all subsequent uniform blocks are

Interface Blocks

61

62

arranged (after specifying a layout declaration). The possible qualifiers are
detailed in Table 2.12.

Table 2.12 Layout Qualifiers for Uniform

Layout Description
Qualifier
shared Specify that the uniform block is shared among multiple

programs. (This is the default layout and is not to be confused
with the shared storage qualifier.)

packed Lay out the uniform block to minimize its memory use;
however, this generally disables sharing across programs.

std140 Use a standard layout for uniform blocks or shader storage
buffer blocks, described in Appendix I, “Buffer Object
Layouts”’.

std430 Use a standard layout for buf fer blocks, described in
Appendix I, “Buffer Object Layouts”’.

row_major Cause matrices in the uniform block to be stored in a

row-major element ordering.

column_major Specify matrices should be stored in a column-major element
ordering. (This is the default ordering.)

For example, to specify that a single uniform block is shared and has
row-major matrix storage, you would declare it in the following manner:

layout (shared, row_major) uniform { ... };

The multiple qualifying options must be separated by commas within the
parentheses. To affect the layout of all subsequent uniform blocks, use the
following construct:

layout (packed, column_major) uniform;

With this specification, all uniform blocks declared after that line will use
that layout until the global layout is changed, or unless they include a
layout override specific to their declaration.

Accessing Uniform Variables Declared in a Uniform Block

While uniform blocks are named, the uniform variables declared within
them are not qualified by that name. That is, a uniform block doesn’t
scope a uniform variable’s name, so declaring two variables of the same
name within two uniform blocks of different names will cause an error.
Using the block name is not necessary when accessing a uniform variable,
however.

Chapter 2: Shader Fundamentals

Accessing Uniform Blocks from Your Application

Because uniform variables form a bridge to share data between shaders and
your application, you need to find the offsets of the various uniform
variables inside the named uniform blocks in your shaders. Once you
know the location of those variables, you can initialize them with data,
just as you would any type of buffer object (using calls such as
glBufferData(), for example).

To start, let’s assume that you already know the names of the uniform
blocks used inside the shaders in your application. The first step in
initializing the uniform variables in your uniform block is to obtain the
index of the block for a given program. Calling
glGetUniformBlockIndex() returns an essential piece of information
required to complete the mapping of uniform variables into your
application’s address space.

GLuint glGetUniformBlockIndex(GLuint program,
const char * uniformBlockName);

Returns the index of the named uniform block specified by
uniformBlockName associated with program. If uniformBlockName is not a
valid uniform block of program, GL_INVALID_INDEX is returned.

To initialize a buffer object to be associated with your uniform block, you'll
need to bind a buffer object to a GL_UNIFORM_BUFFER target using the
glBindBuffer() routine as shown in the example below (Chapter 3,
“Drawing with OpenGL" will add more details).

Once we have a buffer object initialized, we need to determine how large
to make it to accommodate the variables in the named uniform block from
our shader. To do so, we use the routine glGetActiveUniformBlockiv(),
requesting the GL_UNIFORM_BLOCK_DATA_SIZE, which returns the size
of the block as generated by the compiler (the compiler may decide to
eliminate uniform variables that aren’t used in the shader, depending on
which uniform block layout you've selected).
glGetActiveUniformBlockiv() can be used to obtain other parameters
associated with a named uniform block.

After obtaining the index of the uniform block, we need to associate a
buffer object with that block. The most common method for doing so is to
call either glBindBufferRange() or, if all the buffer storage is used for the
uniform block, glBindBufferBase().

Interface Blocks

63

64

void glBindBufferRange(GLenum farget, GLuint index,
GLuint buffer, GLintptr offset,
GLsizeiptr size);
void glBindBufferBase(GLenum target, GLuint index,
GLuint buffer);

Associates the buffer object buffer with the named uniform block
associated with index. target can either be GL_UNIFORM_BUFFER (for
uniform blocks) or GL_TRANSFORM_FEEDBACK_BUFFER (for use with
transform feedback; Chapter 5). index is the index associated with a
uniform block. offset and size specify the starting index and range of the
buffer that is to be mapped to the uniform buffer.

Calling glBindBufferBase() is identical to calling glBindBufferRange()
with offset equal to zero and size equal to the size of the buffer object.

These calls can generate various OpenGL errors: A GL_INVALID_VALUE
is generated if size is less than zero; if offset + size is greater than the size
of the buffer; if either offset or size is not a multiple of 4; or if index is less
than zero, or greater than or equal to the value returned when querying
GL_MAX_UNIFORM_BUFFER_BINDINGS.

Once the association between a named uniform block and a buffer object
is made, you can initialize or change values in that block by using any of
the commands that affect a buffer’s values.

You may also want to specify the binding for a particular named uniform
block to a buffer object, as compared to the process of allowing the linker
to assign a block binding and then querying the value of that assignment
after the fact. You might follow this approach if you have numerous
shader programs that will share a uniform block. It avoids having the
block be assigned a different index for each program. To explicitly control
a uniform block’s binding, call glUniformBlockBinding() before calling
glLinkProgram().

GLint glUniformBlockBinding(GLuint program,
GLuint uniformBlockIndex,
GLuint uniformBlockBinding);

Explicitly assigns uniformBlockIndex to uniformBlockBinding for
program.

Chapter 2: Shader Fundamentals

The layout of uniform variables in a named uniform block is controlled

by the layout qualifier specified when the block was compiled and linked.
If you used the default layout specification, you will need to determine the
offset and date-store size of each variable in the uniform block. To do so, you
will use the pair of calls: glGetUniformIndices(), to retrieve the index of
a particular named uniform variable, and glGetActiveUniformsiv(), to get
the offset and size for that particular index, as demonstrated in Example 2.4.

void glGetUniformIndices(GLuint program,
GLsizei uniformCount,
const char ** uniformNames,
GLuint * uniformindices);

Returns the indices associated with the uniformCount uniform variables
specified by name in the array uniformNames in the array uniformindices
for program. Each name in uniformNames is assumed to be NULL
terminated, and both uniformNames and uniformiIndices have
uniformCount elements in each array. If a name listed in uniformNames is
not the name of an active uniform variables, the value
GL_INVALID_INDEX is returned in the corresponding element in
uniformindices.

Example 2.4 Initializing Uniform Variables in a Named Uniform Block

/* Vertex and fragment shaders that share a block of uniforms
*x+% named "Uniforms" x/
const charx vShader = {

"#version 330 core\n"

"uniform Uniforms {"

" vec3 translation;"

" float scale;"

" vec4d rotation;"

" bool enabled;"

Wy

"in vec2 vPos;"

"in vec3 vColor;"

"out vec4d fColor;"

"void main()"

W

" vec3 pos = vec3(vPos, 0.0);"

" float angle = radians(rotation[0]);"

" vec3 axis = normalize(rotation.yzw) ;"

" mat3 I = mat3(1.0);™"

" mat3 S = mat3(0, -axis.z, axis.y, "
" axis.z, 0, -axis.x, "
" -axis.y, axis.x, 0);"
" mat3 uuT = outerProduct (axis, axis);"

Interface Blocks

65

" mat3 rot = uuT + cos(angle)* (I - uuT)
+ sin(angle)*S;"
" pos *= scale;"
" pos *= rot;"
" pos += translation;"
" fColor = vec4d(scale, scale, scale, 1);"
" gl_Position = vecd(pos, 1);"
n } "
Y

const char* fShader = {
"#version 330 core\n"
"uniform Uniforms {"
" vec3 translation;"
" float scale;"
" vecd rotation;"
" bool enabled;"
ny o
"in vecd fColor;"
"out vecd color;"
"void main ()"
I|{|l
" color = fColor;"
||}"

};

/* Helper function to convert GLSL types to storage sizes =*/
size_t

TypeSize (GLenum type)

{

size_t size;

#define CASE(Enum, Count, Type) \
case Enum: size = Count * sizeof (Type); break

switch (type) {

CASE (GL_FLOAT, 1, GLfloat) ;
CASE (GL_FLOAT_VEC2, 2, GLfloat) ;
CASE (GL_FLOAT_VEC3, 3, GLfloat) ;
CASE (GL_FLOAT_VEC4, 4, GLfloat) ;
CASE (GL_INT, 1, GLint) ;
CASE (GL_INT_VEC2, 2, GLint) ;
CASE (GL_INT_VEC3, 3, GLint) ;
CASE (GL_INT_VEC4, 4, GLint) ;
CASE (GL_UNSIGNED_INT, 1, GLuint) ;
CASE (GL_UNSIGNED_INT_VEC2, 2, GLuint) ;
CASE (GL_UNSIGNED_INT_VEC3, 3, GLuint) ;
CASE (GL_UNSIGNED_INT_VEC4, 4, GLuint) ;
CASE (GL_BOOL, 1, GLboolean);
CASE (GL_BOOL_VEC2, 2, GLboolean) ;
CASE (GL_BOOL_VEC3, 3, GLboolean);
CASE (GL_BOOL_VEC4, 4, GLboolean);
CASE (GL_FLOAT_MAT2, 4, GLfloat) ;

66 Chapter 2: Shader Fundamentals

}

CASE (GL_FLOAT_MAT2x3, 6, GLfloat);
CASE (GL_FLOAT_MAT2x4, 8, GLfloat);
CASE (GL_FLOAT_MAT3, 9, GLfloat);
CASE (GL_FLOAT_MAT3x2, 6, GLfloat);
CASE (GL_FLOAT_MAT3x4, 12, GLfloat);
CASE (GL_FLOAT_MAT4, 16, GLfloat);
CASE (GL_FLOAT_MAT4x2, 8, GLfloat);
CASE (GL_FLOAT_MAT4x3, 12, GLfloat);

#undef CASE

default:

fprintf (stderr, "Unknown type: Ox%x\n", type) ;
exit (EXIT_FAILURE) ;

break;

}

return size;

void
init ()

{

GLuint program;
glClearColor(l, 0, 0, 1);

ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, vShader },
{ GL_FRAGMENT_SHADER, fShader },
{ GL_NONE, NULL }

}i

program = LoadShaders (shaders) ;
glUseProgram (program) ;

/* Initialize uniform values in uniform block "Uniforms" =/
GLuint uboIndex;

GLint uboSize;

GLuint ubo;

GLvoid +buffer;

/+ Find the uniform buffer index for "Uniforms", and
«* determine the block’s sizes x/
uboIndex = glGetUniformBlockIndex (program, "Uniforms");

glGetActiveUniformBlockiv (program, uboIndex,
GL_UNIFORM_BLOCK_DATA_SIZE, &uboSize);

buffer = malloc(uboSize) ;

if (buffer == NULL) {
fprintf (stderr, "Unable to allocate buffer\n");
exit (EXIT_FAILURE) ;

Interface Blocks

67

else {
enum { Translation, Scale, Rotation, Enabled, NumUniforms };

/* Values to be stored in the buffer object =x/
GLfloat scale = 0.5;

GLfloat translation[] = { 0.1, 0.1, 0.0 };
GLfloat rotation([] = { 90, 0.0, 0.0, 1.0 };
GLboolean enabled = GL_TRUE;

/* Since we know the names of the uniforms
% 1n our block, make an array of those values =/

const charx names [NumUniforms] = {
"translation",
"scale",
"rotation",
"enabled"
}i

/* Query the necessary attributes to determine
** where in the buffer we should write
*%x the values */

GLuint indices [NumUniforms];
GLint size[NumUniforms];
GLint offset [NumUniforms];
GLint type [NumUniforms] ;

glGetUniformIndices (program, NumUniforms, names, indices);
glGetActiveUniformsiv (program, NumUniforms, indices,
GL_UNIFORM_OFFSET, offset);
glGetActiveUniformsiv (program, NumUniforms, indices,
GL_UNIFORM_SIZE, size);
glGetActiveUniformsiv (program, NumUniforms, indices,
GL_UNIFORM_TYPE, type):;

/* Copy the uniform values into the buffer =/
memcpy (buffer + offset[Scalel], &scale,
size[Scale] * TypeSize(typel[Scale]));
memcpy (buffer + offset[Translation], &translation,
size[Translation] * TypeSize (typel[Translation]));
memcpy (buffer + offset[Rotation], &rotation,
size[Rotation] * TypeSize(type[Rotationl]));
memcpy (buffer + offset[Enabled], &enabled,
size[Enabled] * TypeSize (type[Enabled]));

/* Create the uniform buffer object, initialize
+x its storage, and associated it with the shader
%% program */
glGenBuffers(1l, &ubo);
glBindBuffer (GL_UNIFORM_BUFFER, ubo);
glBufferData (GL_UNIFORM_BUFFER, uboSize,

buffer, GL_STATIC_RAW) ;

68 Chapter 2: Shader Fundamentals

glBindBufferBase (GL_UNIFORM_BUFFER, uboIndex, ubo) ;

Buffer Blocks

GLSL buffer blocks, or from the application’s perspective shader storage
buffer objects, operate quite similarly to uniform blocks. Two critical
differences give these blocks great power, however. First, the shader can
write to them, modifying their content as seen from other shader
invocations or the application. Second, their size can be established just
before rendering, rather than at compile or link time. For example:

buffer BufferObject { // create a read-writeable buffer
int mode; // preamble members
vecd points|[]; // last member can be unsized array
Y

If the array above is not provided a size in the shader, then its size can
be established by the application before rendering, after compiling and
linking. The shader can use the length() method to find the render-
time size.

The shader may now both read and write the members of the buffer block.
Writes modifying the shader storage buffer object will be visible to other
shader invocations. This can be particularly valuable in a compute shader,
especially when manipulating nongraphical memory rather than

an image.

Memory qualifiers (e.g., coherent) and atomic operations apply to buffer
blocks and are discussed in depth in Chapter 11, “Memory”".

You set up a shader storage buffer object similarly to how a uniform buffer
was set up, except that glBindBuffer() and glBufferData() take the target
GL_SHADER_STORAGE_BUFFER. A more complete example is given in
Chapter 11, “Memory”, in section “Shader Storage Buffer Objects’”” on
Page 576.

If you don’t need to write to a buffer, use a uniform block, as your device
might not have as many resources available for buffer blocks as it does for
uniform blocks.

Interface Blocks

69

70

In/Out Blocks

Shader variables output from one stage and input into the next stage can
also be organized into interface blocks. These logical groupings can make it
easier to visually verify interface matches between stages, as well as to
make linking separate programs easier.

For example, a vertex shader might output:

out Lighting {
vec3 normal;
vec2 bumpCoord;
Y

This would match a fragment shader input:

in Lighting {
vec3 normal;
vec2 bumpCoord;
Y

A vertex shader might output material and lighting information, each
grouped into its own block. The interfaces built into the OpenGL Shading
Language are also organized into blocks, like g1_PerVertex, which
contains the built-in variable g1_Position, among others. A complete list
of these is available in Appendix C, “Built-in GLSL Variables and
Functions”.

Compiling Shaders

Writing shaders for use with OpenGL programs is similar to using a
compiler-based language like “C”. You have a compiler analyze your
program, check it for errors, and then translate it into object code. Next,
you combine a collection of object files together in a linking phase to
generate an executable program. Using GLSL shaders in your program is a
similar process, except that the compiler and linker are part of the
OpenGL APIL.

Figure 2.1 illustrates the steps to create GLSL shader objects and link them
to create an executable shader program.

Chapter 2: Shader Fundamentals

Figure 2.1 Shader-compilation command sequence

For each shader program you want to use in your application, you'll need
to do the following sequence of steps:

For each shader object:

1. Create a shader object.
2. Compile your shader source into the object.

3. Verity that your shader compiled successfully.

Compiling Shaders

71

Then, to link multiple shader objects into a shader program, you'll

Create a shader program.
Attach the appropriate shader objects to the shader program.

1

2

3. Link the shader program.

4. Verify that the shader link phase completed successfully.
5

Use the shader for vertex or fragment processing.

Why create multiple shader objects? Just as you might reuse a function in
different programs, the same idea applies to GLSL programs. Common
routines that you create might be usable in multiple shaders. Instead of
having to compile several large shaders with lots of common code, you'll
merely link the appropriate shader objects into a shader program.

To create a shader object, call glCreateShader().

GLuint glCreateShader(GLenum fype);

Allocates a shader object. type must be one of GL_VERTEX_SHADER,
GL_FRAGMENT_SHADER, GL_TESS_CONTROL_SHADER,
GL_TESS_EVALUATION_SHADER, or GL_GEOMETRY_SHADER. The
return value is either a nonzero integer or zero if an error occurred.

Once you have created a shader object, you need to associate the source
code of the shader with that object created by glCreateShader(). This is
done by calling glShaderSource().

void glShaderSource(GLuint shader, GLsizei count,
const GLchar **string, const GLint *length);

Associates the source of a shader with a shader object shader. string is an
array of count GLchar strings that compose the shader’s source. The
character strings in string may be optionally null-terminated. length can
be one of three values. If length is NULL, then it’s assumed that each
string provided in string is null-terminated. Otherwise, length has count
elements, each of which specifies the length of the corresponding entry
in string. If the value of an element in the array length is a positive
integer, the value represents the number of characters in the
corresponding string element. If the value is negative for particular
elements, then that entry in string is assumed to be null-terminated.

72 Chapter 2: Shader Fundamentals

To compile a shader object’s source, use glCompileShader().

void glCompileShader(GLuint shader);

Compiles the source code for shader. The results of the compilation can
be queried by calling glGetShaderiv() with an argument of
GL_COMPILE_STATUS.

Similar to when you compile a “C” program, you need to determine if the
compilation finished successfully. A call to glGetShaderiv(), with an
argument of GL_COMPILE_STATUS, will return the status of the
compilation phase. If GL_TRUE is returned, the compilation succeeded,
and the object can be linked into a shader program. If the compilation
failed, you can determine what the error was by retrieving the compilation
log. glGetShaderInfoLog() will return an implementation-specific set of
messages describing the compilation errors. The current size of the error
log can be queried by calling glGetShaderiv() with an argument of
GL_INFO_LOG_LENGTH.

void glGetShaderInfoLog(GLuint shader, GLsizei bufSize,
GLsizei *length, char *infoLog);

Returns the log associated with the last compilation of shader. The log is
returned as a null-terminated character string of length characters in the
bufter infoLog. The maximum return size of the log is specified in bufSize.

If length is NULL, infoLog’s length is not returned.

Once you have created and compiled all of the necessary shader objects,
you will need to link them to create an executable shader program. This
process is similar in nature to creating shader objects. First, you'll need to
create a shader program to which you can attach the shader objects. Using
glCreateProgram(), a shader program will be returned for further
processing.

GLuint glCreateProgram(void);

Creates an empty shader program. The return value is either a nonzero
integer, or zero if an error occurred.

Once you have your shader program, you'll need to populate it with the
necessary shader objects to create the executable program. This is

Compiling Shaders

73

74

accomplished by attaching a shader object to the program by calling
glAttachShader().

void glAttachShader(GLuint program, GLuint shader);

Associates the shader object, shader, with the shader program, program. A
shader object can be attached to a shader program at any time, although
its functionality will only be available after a successful link of the shader
program. A shader object can be attached to multiple shader programs
simultaneously.

For parity, if you need to remove a shader object from a program to modify
the shader’s operation, detach the shader object by calling
glDetachShader() with the appropriate shader object identifier.

void glDetachShader(GLuint program, GLuint shader);

Removes the association of a shader object, shader, from the shader
program, program. If shader is detached from program and had been
previously marked for deletion (by calling glDeleteShader()), it is deleted
at that time.

After all the necessary shader objects have been attached to the shader
program, you will need to link the objects for an executable program. This
is accomplished by calling glLinkProgramy().

void glLinkProgram(GLuint program);

Processes all shader objects attached to program to generate a completed
shader program. The result of the linking operation can be queried by
calling glGetProgramiv() with GL_LINK_STATUS. GL_TRUE is returned
for a successful link; GL_FALSE is returned otherwise.

As with shader objects, there’s a chance that the linking phase may fail due
to errors in the attached shader objects. You can query the result of the
link operation’s success by calling glGetProgramiv() with an argument of
GL_LINK_STATUS. If GL_TRUE was returned, the link was successful, and
you're able to specify the shader program for use in processing vertices or
fragments. If the link failed, represented by GL_FALSE being returned,

Chapter 2: Shader Fundamentals

then you can determine the cause of the failure by retrieving the program
link information log by calling glGetProgramInfoLog().

void glGetProgramInfolLog(GLuint program, GLsizei bufSize,
GLsizei *length, char *infoLog);

Returns the log associated with the last compilation of program. The log
is returned as a null-terminated character string of length characters in
the buffer infoLog. The maximum return size of the log is specified in
bufSize. If length is NULL, infoLog’s length is not returned.

After a successful program link, you can engage the vertex or fragment
program by calling glUseProgram() with the program’s object handle.

void glUseProgram(GLuint program);

Use the linked shader program program. If program is zero, any shaders
currently in use are unbound. OpenGL's operation is undefined if no
shader is bound, but no error is generated.

While a program is in use, it can have new shader objects attached to it,
or detach previously attached objects. It may also be relinked. If the link
phase is successful, the newly linked shader program replaces the
previously active program. If the link fails, the currently bound shader
program remains active and is not replaced until either a new program is
specified with glUseProgram() or the program is successfully relinked.

When you're done using a shader object, you can delete it using
glDeleteShader(), even if it’s attached to an active program. Just like
linking a “C” program, once you have an executable, you don’t need the
object files until you compile again.

void glDeleteShader(GLuint shader);

Deletes shader. If shader is currently linked to one or more active shader
programs, the object is tagged for deletion and deleted once the shader
program is no longer being used by any shader program.

Similarly, if you're done using a shader program, you can delete it by
calling glDeleteProgram().

Compiling Shaders

75

76

void glDeleteProgram(GLuint program);

Deletes program immediately if not currently in use in any context, or
schedules program for deletion when the program is no longer in use by
any contexts.

Finally, for completeness, you can also determine if a name is already been
reserved as a shader object by calling gllsShader(), or a shader program by
calling glIsProgram():

GLboolean glIsShader(GLuint shader);

Returns GL_TRUE if shader is the name of a shader object that was
previously generated with glCreateShader(), but has not been
subsequently deleted. Returns GL_FALSE if shader is zero or a nonzero
value that is not the name of a shader object.

GLboolean glIsProgram(GLuint program);

Returns GL_TRUE if program is the name of a program object that was
previously generated with glCreateProgram(), but has not been
subsequently deleted. Returns GL_FALSE if program is zero or a nonzero
value that is not the name of a program object.

Our Loadshaders() Function

In order to simplify using shaders in your applications, we created
LoadShaders() to help in loading and creating shader programs. We used
it in our first program in Chapter 1 to load a simple set of shaders.

Shader Subroutines

Advanced

While GLSL allows you to define functions in shaders, the call flow of
those functions was always static. To dynamically select between multiple

Chapter 2: Shader Fundamentals

functions, you either created two distinct shaders, or used an if-statement
to make a run-time selection, like demonstrated in Example 2.5.

Example 2.5 Static Shader Control Flow
#version 330 core

void func_1() { ...
void func_2() { ... }

uniform int func;

void
main ()
{
if (func == 1)
func_1();
else
func_2 () ;
}

Shader subroutines are conceptually similar to function pointers in C for
implementing dynamic subroutine selection. In your shader, you specify a
subroutine type and use that type when declaring the set of subroutines
eligible for dynamic use. Then, you choose which subroutine from the set
to execute in the shader by setting a subroutine uniform variable.

GLSL Subroutine Setup

When you want to use subroutine selection inside of a shader, there are
three steps required to set up the pool of subroutines:

1. Define the subroutine type using the subroutine keyword
subroutine returnType subroutineType (type param, ...);

where returnType is any valid type that a function can return, and
subroutineType is any valid name. As with function prototypes, only
the parameter types are required; the parameter names are optional.
(Hint: Think of this like a typedef in C, with subroutineType as the
newly defined type.)

2. Using the subroutineType you just defined, define the set of subroutines
that you would like to dynamically select from using the subroutine
keyword. The prototype for a subroutine function looks like:

subroutine (subroutineType) returnType functionName(...);

Shader Subroutines

77

78

3. Finally, specify the subroutine uniform variable that will hold the
“function pointer” for the subroutine you've selected in your
application:

subroutine uniform subroutineType variableName;

Demonstrating those steps together, consider the following example where
we would like to dynamically select between ambient and diffuse lighting:

Example 2.6 Declaring a Set of Subroutines
subroutine vec4 LightFunc(vec3); // Step 1

subroutine (LightFunc) vec4 ambient(vec3 n) // Step 2
{
return Materials.ambient;

}

subroutine (LightFunc) vec4 diffuse(vec3 n) // Step 2 (again)
{
return Materials.diffuse »*
max (dot (normalize(n), LightVec.xyz), 0.0);

}

subroutine uniform LightFunc materialShader; // Step 3

A subroutine is not restricted to being a single type of subroutine (e.g.,
LightFunc in Example 2.6). If you have defined multiple types of
subroutines, you can associate any number of the types with a subroutine
by adding the type to the list when defining the subroutine, as
demonstrated,

subroutine void Type_1()

subroutine void Type_2();
subroutine void Type_3();

subroutine (Type_1, Type_2) Func_1();
subroutine (Type_1, Type_3) Func_2();

subroutine uniform Type_1 func_1;
subroutine uniform Type_2 func_2;
subroutine uniform Type_3 func_3;

For the above example, func_1 could use either Func_1 or Func_2
because of Type_1 appearing in each of their subroutine lines. However,
func_2, for example, would be limited to only using Func_1, and
similarly, func_3 could only use Func_2.

Selecting Shader Subroutines

Once you have all your subroutine types and functions defined in your
shaders, you only need to query a few values from the linked shader
program, and then use those values to select the appropriate function.

Chapter 2: Shader Fundamentals

In step 3 described on page 78, a subroutine uniform value was declared,
and we will need its location in order to set its value. As compared to other
shader uniforms, subroutine uniforms use
glGetSubroutineUniformLocation() to retrieve their locations.

GLint glGetSubroutineUniformLocation(GLuint program,
GLenum shadertype,
const char* name);

Returns the location of the subroutine uniform named name in program
for the shading stage specified by shadertype. name is a null-terminated
character string, and shadertype must be one of GL_VERTEX_SHADER,
GL_TESS_CONTROL_SHADER, GL_TESS_EVALUATION_SHADER,
GL_GEOMETRY_SHADER, or GL_FRAGMENT_SHADER.

If name is not an active subroutine uniform, minus one (—1) is returned.
If program is not a successfully linked shader program, a
GL_INVALID_OPERATION error will be generated.

Once we have the subroutine uniform to assign values to, we need to
determine the indices of the subroutines inside of the shader. For that, we
can call glGetSubroutinelndex().

GLuint glGetSubroutineIndex(GLuint program,
GLenum shadertype,
const char* name);

Returns the index of the shader function associated with name from
program for the shading stage specified by shadertype. name is a
null-terminated character string, and shadertype must be one of
GL_VERTEX_SHADER, GL_TESS_CONTROL_SHADER,
GL_TESS_EVALUATION_SHADER, GL_GEOMETRY_SHADER, or
GL_FRAGMENT_SHADER.

If name is not an active subroutine for the shader for shadertype,
GL_INVALID_INDEX is returned.

Shader Subroutines

79

Once you have both the available subroutine indices, and subroutine
uniform location, use glUniformSubroutinesuiv() to specify which
subroutine should be executed in the shader. All active subroutine
uniforms for a shader stage must be initialized.

GLuint glUniformSubroutinesuiv(GLenum shadertype,
GLsizei count,
const GLuint * indices);

Sets count shader subroutine uniforms using the values in indices, for the
shader stage shadertype. shadertype must be one of GL_VERTEX SHADER,
GL_TESS_CONTROL_SHADER, GL_TESS_EVALUATION_SHADER,
GL_GEOMETRY_SHADER, or GL_FRAGMENT_SHADER. The it
subroutine uniform will be assigned the value indices(i].

If count is not equal to the value of
GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader stage
shadertype for the currently bound program, a GL_INVALID_VALUE error
is generated. All values in indices must be less than
GL_ACTIVE_SUBROUTINES, or a GL_INVALID_VALUE error is generated.

Assembling those steps, the following code snippet demonstrates the
process for the vertex shader described in Example 2.6.

GLint materialShaderLoc;
GLuint ambientIndex;
GLuint diffuselIndex;

glUseProgram (program) ;

materialShaderLoc = glGetSubroutineUniformLocation (
program, GL_VERTEX_SHADER, "materialShader") ;

if (materialShaderLoc < 0) {
// Error: materialShader is not an active subroutine
// uniform in the shader.

}

ambientIndex = glGetSubroutineIndex (program,
GL_VERTEX_SHADER,
"ambient") ;

diffuseIndex = glGetSubroutineIndex (program,
GL_VERTEX_SHADER,
"diffuse");

80 Chapter 2: Shader Fundamentals

if (ambientIndex == GL_INVALID_INDEX | |

diffuseIndex == GL_INVALID_INDEX) {

// Error: the specified subroutines are not active in

// the currently bound program for the GL_VERTEX_SHADER
// stage.

}
else {
GLsizei n;
glGetIntegerv (GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS, &n);

GLuint xindices = new GLuint[n];
indices[materialShaderLoc] = ambientIndex;

glUniformSubroutinesuiv (GL_VERTEX_SHADER, n, indices);

delete [] indices;

Note: Calling glUseProgram() will reset all of the subroutine uniform
values to an implementation-dependent ordering.

Separate Shader Objects

Advanced

Previous to OpenGL Version 4.1 (and not considering extensions) only a
single shader program could be bound at any one time in an application’s
execution. This was inconvenient if your application used multiple
fragment shaders for a collection of geometry that was all transformed
using the same vertex shader. This caused you to need to have multiple
programs around that duplicated the same vertex shader, wasting resources
and duplicating code.

Separate shader objects allows shader stages (e.g., vertex shading) from
various programs to be combined into a program pipeline.

The first step is to create a shader program that’s usable in a shader
pipeline. This is done by calling glProgramParameteri() with the
parameter GL_PROGRAM_SEPARABLE before linking the shader program.
This marks the shader program as eligible to be used in a program pipeline.
To simplity this process, a new command glCreateShaderProgramv() was
added that encapsulates the shader-compilation process, including
marking the program as sharable (as discussed above) and linking it to
produce the final object.

Separate Shader Objects

81

82

Once your collection of shader programs are combined, you need to use
the new shader pipeline constructs to combine shader stages from multiple
programs into a usable program pipeline. As with most objects in OpenGL,
there is a gen-bind-delete sequence of calls to make. A shader pipeline is
created by calling glGenProgramPipelines(), which will create an unused
program pipeline identifier that you pass into glBindProgramPipeline(),
making that program available for editing (e.g., adding or replacing shader
stages), and use. Similar to other generated objects, program pipelines are
deleted with glDeleteProgramPipelines().

Once you've bound a program pipeline, you can attach program objects
that have been marked as separable to the pipeline by calling
glUseProgramStages(), which takes a bitfield describing which stages from
the provided program should be employed when this pipeline is used to
process geometry and shade fragments. The older glUseProgram() when
called with a program will replace the current program pipeline binding.

The interfaces between shader stages—the in and out variables—must
match in order for the pipeline to work. As compared to using a
nonseparate shader object, where those interfaces can be verified during
program linkage, shader pipelines with separate program objects need to
be checked at draw-call issue. If the interfaces don’t match correctly, all
varying values (out variables) are undefined.

The built-in gl_PerVertex block must be redeclared in shaders to
explicitly indicate what subset of the fixed pipeline interface will be used.
This will be necessary when using multiple programs to complete your
pipeline.

For example:

out gl_PerVertex {

vecd gl_Position; // makes gl_Position is part of interface
float gl_PointSize; // makes gl_PointSize is part of interface
Y // no more members of gl_PerVertex are used

This establishes the output interface the shader will use with the following
pipeline stage. It must be a subset of the built-in members of
gl_PerVertex. If a built-in block interface is formed across shaders in
different programs, the shaders must all redeclare the built-in block in the
same way.

Since separable shader objects can each have their individual set of
program uniforms, two methods are provided for assigning uniform

Chapter 2: Shader Fundamentals

variable values. First, you can select an active shader program with
glActiveShaderProgram(), which causes calls to glUniform*() and
glUniformMatrix*() to assign values to that particular shader program’s
uniform variables. Alternatively, and more preferred, is to call
glProgramUniform*() and glProgramUniformMatrix*(), which take an
explicit program object in addition to the other parameters used to
identify the program’s uniform variable.

void glProgramUniform{1234}{fdi ui}(GLuint program,
GLint location,
TYPE value);
void glProgramUniform{1234}{fdi ui}v(GLuint program,
GLint location,
GLsizei count,
const TYPE * values);
void glProgramUniformMatrix{234}{td}v(GLuint program,
GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * values);
void glProgramUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}{fd}v(
GLuint program, GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat * values);

glProgramUniform*() and glProgramUniformMatrix*() routines
operate exactly as glUniform*() and glUniformMatrix*(), except that
program specifies the shader program to update the uniform variable for.
The advantage of these routines is that program need not be the currently
bound program (i.e., the last specified shader program to
glUseProgram()).

Separate Shader Objects

83

This page intentionally left blank

Chapter 3

Drawing with OpenGL

Chapter Objectives

After reading this chapter, you will be able to:

e Identify all of the rendering primitives available in OpenGL.

e Initialize and populate data buffers for use in rendering geometry.

e Optimize rendering using advanced techniques like instanced rendering.

85

86

The primary use of OpenGL is to render graphics into a framebuffer. To
accomplish this, complex objects are broken up into primitives—points, lines,
and triangles that when drawn at high enough density give the appearance
of 2D and 3D objects. OpenGL includes many functions for rendering such
primitives. These functions allow you to describe the layout of primitives
in memory, how many primitives to render, and what form they take, and
even to render many copies of the same set of primitives with one function
call. These are arguably the most important functions in OpenGL,

as without them, you wouldn’t be able to do much but clear the screen.

This chapter contains the following major sections:

e “OpenGL Graphics Primitives’ describes the available graphics
primitives in OpenGL that you can use in your renderings.

o ‘“Data in OpenGL Buffers” explains the mechanics of working with
data in OpenGL.

o ‘“Vertex Specification” outlines how to use vertex data for rendering,
and processing it using vertex shaders.

e “OpenGL Drawing Commands” introduces the set of functions that
cause OpenGL to draw.

e ‘“Instanced Rendering’ describes how to render multiple objects using
the same vertex data efficiently.

OpenGL Graphics Primitives

OpenGL includes support for many primitive types. Eventually they all get
rendered as one of three types—points, lines, or triangles. Line and triangle
types can be combined together to form strips, loops (for lines), and fans
(for triangles). Points, lines, and triangles are the native primitive types
supported by most graphics hardware.! Other primitive types are
supported by OpenGL, including patches, which are used as inputs to the
tessellator and the adjacency primitives that are designed to be used as
inputs to the geometry shader. Tessellation (and tessellation shaders) are
introduced in Chapter 9, and geometry shaders are introduced in

Chapter 10. The patch and adjacency primitive types will be covered in
detail in each of those chapters. In this section, we cover only the point,
line, and triangle primitive types.

1. In terms of hardware support, this means that the graphics processor likely includes direct
hardware support for rasterizing these types of primitives. Other primitive types such as patches
and adjacency primitives are never directly rasterized.

Chapter 3: Drawing with OpenGL

Points

Points are represented by a single vertex. The vertex represents a point in
tour-dimensional homogeneous coordinates. As such, a point really has no
area, and so in OpenGL it is really an analogue for a square region of the
display (or draw buffer). When rendering points, OpenGL determines
which pixels are covered by the point using a set of rules called
rasterization rules. The rules for rasterizing a point in OpenGL are quite
straightforward—a sample is considered covered by a point if it falls within
a square centered on the point’s location in window coordinates. The side
length of the square is equal to the point’s size, which is fixed state (set
with glPointSize()), or the value written to the g1_PointSize built-in
variable in the vertex, tessellation, or geometry shader. The value written
to gl_PointSize in the shader is used only if GL_PROGRAM_POINT_SIZE
is enabled, otherwise it is ignored and the fixed state value set with
glPointSize() is used.

void glPointSize(GLfloat size);

Sets the fixed size, in pixels, that will be used for points when
GL_PROGRAM_POINT_SIZE is not enabled.

The default point size is 1.0. Thus, when points are rendered, each vertex
essentially becomes a single pixel on the screen (unless it’s clipped, of
course). If the point size is increased (either with glPointSize(), or by
writing a value larger than 1.0 to g1_PointSize), then each point vertex
may end up lighting more than one pixel. For example, if the point size is
1.2 pixels and the point’s vertex lies exactly at a pixel center, then only
that pixel will be lit. However, if the point’s vertex lies exactly midway
between two horizontally or vertically adjacent pixel centers, then both of
those pixels will be lit (i.e., two pixels will be lit). If the point’s vertex lies at
the exact midpoint between four adjacent pixels, then all four pixels will
be lit—for a total of four pixels being lit for one point!

Point Sprites

When you render points with OpenGL, the fragment shader is run for
every fragment in the point. Each point is essentially a square area of the
screen and each pixel can be shaded a different color. You can calculate
that color analytically in the fragment shader or use a texture to shade the
point. To assist in this, OpenGL fragment shaders include a special built-in
variable called gl1_PointCoord which contains the coordinate within the
point where the current fragment is located. g1_PointCoord is available

OpenGL Graphics Primitives

87

88

only in the fragment shader (it doesn’t make much sense to include it in
other shaders) and has a defined value only when rendering points. By
simply using g1_PointCoord as a source for texture coordinates, bitmaps
and textures can be used instead of a simple square block. Combined with
alpha blending or with discarding fragments (using the discard
keyword), it’s even possible to create point sprites with odd shapes.

We'll revisit point sprites with an example shortly. If you want to skip
ahead, the example is shown in “Point Sprites’’ on Page 346.

Lines, Strips, and Loops

In OpenGL, the term line refers to a line segment, not the mathematician’s
version that extends to infinity in both directions. Individual lines are
therefore represented by pairs of vertices, one for each endpoint of the
line. Lines can also be joined together to represent a connected series

of line segments, and optionally closed. The closed sequence is known as a
line loop, whereas the open sequence (one that is not closed) is known

as a line strip. As with points, lines technically have no area, and so special
rasterization rules are used to determine which pixels should be lit when a
line segment is rasterized. The rule for line rasterization is known as the
diamond exit rule. It is covered in some detail in the OpenGL specification.
However, we attempt to paraphrase it here. When rasterizing a line
running from point A to point B, a pixel should be lit if the line passes
through the imaginary edge of a diamond shape drawn inside the pixel’s
square area on the screen—unless that diamond contains point B (i.e., the
end of the line is inside the diamond). That way, if another, second line is
drawn from point B to point C, the pixel in which B resides is lit only once.

The diamond exit rule suffices for thin lines, but OpenGL allows you to
specify wider sizes for lines using the glLineWidth() function (the
equivalent for glPointSize() for lines).

void glLineWidth(GLfloat width);

Sets the fixed width of lines. The default value is 1.0. width is the new
value of line width and must be greater than 0.0, otherwise an error is
generated.

There is no equivalent to g1_PointsSize for lines—lines are rendered at
one fixed width until state is changed in OpenGL. When the line width is
greater than 1, the line is simply replicated width times either horizontally
or vertically. If the line is y-major (i.e., it extends further vertically than

Chapter 3: Drawing with OpenGL

horizontally), it is replicated horizontally. If it is x-major then it is
replicated vertically.

The OpenGL specification is somewhat liberal on how ends of lines are
represented and how wide lines are rasterized when antialiasing is turned
off. When antialiasing is turned on, lines are treated as rectangles aligned
along the line, with width equal to the current line width.

Triangles, Strips, and Fans

Triangles are made up of collections of three vertices. When separate
triangles are rendered, each triangle is independent of all others. A triangle
is rendered by projecting each of the three vertices into screen space and
forming three edges running between the edges. A sample is considered
covered if it lies on the positive side of all of the half spaces formed by the
lines between the vertices. If two triangles share an edge (and therefore a
pair of vertices), no single sample can be considered inside both triangles.
This is important because, although some variation in rasterization
algorithm is allowed by the OpenGL specification, the rules governing
pixels that lie along a shared edge are quite strict:

e No pixel on a shared edge between two triangles that together would
cover the pixel should be left unlit.

e No pixel on a shared edge between two triangles should be lit by more
than one of them.

This means that OpenGL will reliably rasterize meshes with shared edges
without gaps between the triangles, and without overdraw.? This is
important when rasterizing triangle strips or fans. When a triangle strip is
rendered, the first three vertices form the first triangle, then each
subsequent vertex forms another triangle along with the last two vertices
of the previous triangle. This is illustrated in Figure 3.1.

\VAVAVAVAVAVAVAV

Figure 3.1 Vertex layout for a triangle strip

When rendering a triangle fan, the first vertex forms a shared point that is
included in each subsequent triangle. Triangles are then formed using that

2. Overdraw is where the same pixel is lit more than once, and can cause artifacts when
blending is enabled, for example.

OpenGL Graphics Primitives

89

20

shared point and the next two vertices. An arbitrarily complex convex
polygon can be rendered as a triangle fan. Figure 3.2 shows the vertex
layout of a triangle fan.

Figure 3.2 Vertex layout for a triangle fan

These primitive types are used by the drawing functions that will be
introduced in the next section. They are represented by OpenGL tokens
that are passed as arguments to functions used for rendering. Table 3.1
shows the mapping of primitive types to the OpenGL tokens used to
represent them.

Table 3.1 OpenGL Primitive Mode Tokens

Primitive Type OpenGL Token

Points GL_POINTS

Lines GL_LINES

Line Strips GL_LINE_STRIP

Line Loops GL_LINE_LOOP
Independent Triangles GL_TRIANGLES
Triangle Strips GL_TRIANGLE_STRIP
Triangle Fans GL_TRIANGLE_FAN

Rendering Polygons As Points, Outlines, or Solids

A polygon has two sides—front and back—and might be rendered differently
depending on which side is facing the viewer. This allows you to have
cutaway views of solid objects in which there is an obvious distinction
between the parts that are inside and those that are outside. By default,
both front and back faces are drawn in the same way. To change this, or to
draw only outlines or vertices, use glPolygonMode().

Chapter 3: Drawing with OpenGL

void glPolygonMode(GLenum face, GLenum mode);

Controls the drawing mode for a polygon’s front and back faces. The
parameter face must be GL_FRONT_AND_BACK; while mode can be
GL_POINT, GL_LINE, GL_FILL to indicate whether the polygon should
be drawn as points, outlined, or filled. By default, both the front and
back faces are drawn filled.

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order
on the screen are called front facing. You can construct the surface of any
“reasonable’ solid—a mathematician would call such a surface an
orientable manifold (spheres, donuts, and teapots are orientable; Klein
bottles and Mobius strips aren’t)—from polygons of consistent orientation.
In other words, you can use all clockwise polygons or all counterclockwise

polygons.

Suppose you've consistently described a model of an orientable surface but
happen to have the clockwise orientation on the outside. You can swap
what OpenGL considers the back face by using the function glFrontFace(),
supplying the desired orientation for front-facing polygons.

void glFrontFace(GLenum mode);

Controls how front-facing polygons are determined. By default, mode is
GL_CCW, which corresponds to a counterclockwise orientation of the
ordered vertices of a projected polygon in window coordinates. If mode is
GL_CW, faces with a clockwise orientation are considered front-facing.

Note: The orientation (clockwise or counterclockwise) of the vertices is
also known as its winding.

In a completely enclosed surface constructed from opaque polygons with a
consistent orientation, none of the back-facing polygons are ever visible—
they're always obscured by the front-facing polygons. If you are outside
this surface, you might enable culling to discard polygons that OpenGL
determines are back-facing. Similarly, if you are inside the object, only
back-facing polygons are visible. To instruct OpenGL to discard front- or
back-facing polygons, use the command glCullFace() and enable culling
with glEnable().

OpenGL Graphics Primitives

91

92

void glCullFace(GLenum mode);

Indicates which polygons should be discarded (culled) before they’re
converted to screen coordinates. The mode is either GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK to indicate front-facing,
back-facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled with glDisable() and
the same argument.

Advanced

In more technical terms, deciding whether a face of a polygon is front- or
back-facing depends on the sign of the polygon’s area computed in
window coordinates. One way to compute this area is

n—1

a=3> Xiyie1 ~ Xie1)i
i=0

where x; and y; are the x and y window coordinates of the i" vertex of the
n-vertex polygon and where i ¢ 1 is shorthand for (i + 1) mod n, where
mod is the modulus operator.

Assuming that GL_CCW has been specified, if a > 0, the polygon
corresponding to that vertex is considered to be front-facing; otherwise, it’s
back-facing. If GL_CW is specified and if a < O, then the corresponding
polygon is front-facing; otherwise, it’s back-facing.

Data in OpenGL Buffers

Almost everything you will ever do with OpenGL will involve buffers full
of data. Buffers in OpenGL are represented as buffer objects. You've already
had a brief introduction to buffer objects in Chapter 1. However, in this
section we'll dig a little deeper into the specifics of how buffer objects are
used; ways to create, manage, and destroy them; and the best practices
associated with buffer objects.

Creating and Allocating Buffers

As with many things in OpenGL, buffer objects are named using GLuint
values. Values are reserved using the glGenBuffers() command. This
function has already been described in Chapter 1, but we include the

prototype here again for handy reference.

Chapter 3: Drawing with OpenGL

void glGenBuffers(GLsizei n, GLuint *buffers);

Returns n currently unused names for buffer objects in the array buffers.

After calling glGenBuffers(), you will have an array of buffer object names
in buffers, but at this time, they're just placeholders. They're not actually
buffer objects—yet. The buffer objects themselves are not actually created
until the name is first bound to one of the buffer binding points on the
context. This is important because OpenGL may make decisions about the
best way to allocate memory for the buffer object based on where it is
bound. The buffer binding points (called targets) are described in Table 3.2.

Table 3.2 Buffer Binding Targets

Target Uses

GL_ARRAY_BUFFER This is the binding point that is used
to set vertex array data pointers using
glVertexAttribPointer(). This is the
target that you will likely use most

often.
GL_COPY_RFEAD_BUFFER and Together, these targets form a pair of
GL_COPY_WRITE_BUFFER binding points that can be used to

copy data between buffers without
disturbing OpenGL state, or implying
usage of any particular kind to
OpenGL.

GL_DRAW_INDIRECT_BUFFER A buffer target used to store the
parameters for drawing commands
when using indirect drawing, which
will be explained in detail in the next
section.

GL_ELEMENT_ARRAY_BUFFER Buffers bound to this target can
contain vertex indices which are used
by indexed draw commands such as
glDrawElements().

GL_PIXEL_PACK_BUFFER The pixel pack buffer is used as the
destination for OpenGL commands
that read data from image objects
such as textures or the framebuffer.
Examples of such commands include
glGetTexImage() and glReadPixels().

Data in OpenGL Buffers

93

94

Table 3.2 (continued)

Buffer Binding Targets

Target

Uses

GL_PIXEL_UNPACK_BUFFER

GL_TEXTURE_BUFFER

GL_TRANSFORM_FEEDBACK_ BUFFER

GL_UNIFORM_BUFFER

The pixel unpack buffer is the opposite
of the pixel pack buffer—it is used as
the source of data for commands like
glTexImage2D().

Texture buffers are buffers that are
bound to texture objects so that their
data can be directly read inside
shaders. The GL_TEXTURE_BUFFER
binding point provides a target for
manipulating these buffers, although
they must still be attached to textures
to make them accessible to shaders.

Transform feedback is a facility in
OpenGL whereby transformed
vertices can be captured as they exit
the vertex processing part of the
pipeline (after the vertex or geometry
shader, if present) and some of their
attributes written into buffer objects.
This target provides a binding point
for buffers that are used to record
those attributes. Transform feedback
will be covered in some detail in
“Transform Feedback’’ on Page 239.

This target provides a binding point
where buffers that will be used as
uniform buffer objects may be bound.
Uniform buffers are covered in
Subsection 2, “Uniform Blocks”’.

A buffer object actually is created by binding one of the names reserved
by a call to glGenBuffers() to one of the targets in Table 3.2 using

glBindBuffer(). As with glGenBuffers(), glBindBuffer() was introduced in

Chapter 1, but we include its prototype here again for completeness.

void glBindBuffer(GLenum target, GLuint buffer);

Binds the buffer object named buffer to the buffer-binding point as
specified by target. target must be one of the OpenGL buffer-binding
targets, and buffer must be a name reserved by a call to glGenBuffers().
If this the first time the name buffer has been bound, a buffer object is

created with that name.

Chapter 3: Drawing with OpenGL

Right, so we now have a buffer object bound to one of the targets listed in
Table 3.2, now what? The default state of a newly created buffer object is a
buffer with no data in it. Before it can be used productively, we must put
some data into it.

Getting Data into and out of Buffers

There are many ways to get data into and out of buffers in OpenGL. These
range from explicitly providing the data, to replacing parts of the data in a
buffer object with new data, to generating the data with OpenGL and
recording it into the buffer object. The simplest way to get data into a
buffer object is to load data into the buffer at time of allocation. This is
accomplished through the use of the glBufferData() function. Here’s the
prototype of glBufferData() again.

void glBufferData(GLenum farget, GLsizeiptr size,
const GLvoid *data, GLenum usage);

Allocates size bytes of storage for the buffer object bound to target. If data
is non-NULL, that space is initialized with the contents of memory
addressed by data. usage is provided to allow the application to supply
OpenGL with a hint as to the intended usage for the data in the buffer.

It’s important to note that glBufferData() actually allocates (or reallocates)
storage for the buffer object. That is, if the size of the new data is greater
than the current storage space allocated for the buffer object, the buffer
object will be resized to make room. Likewise, if the new data is smaller
than what has been allocated for the buffer, the buffer object will shrink to
match the new size. The fact that it is possible to specify the initial data to be
placed into the buffer object is merely a convenience and is not necessarily
the best way to do it (or even the most convenient, for that matter).

The target of the initial binding is not the only information OpenGL uses
to decide how to best allocate the buffer object’s data store. The other
important parameter to glBufferData() is the usage parameter. usage
must be one of the standard usage tokens such as GL_STATIC_DRAW or
GL_DYNAMIC_COPY. Notice how the token name is made of two
parts—the first being one of STATIC, DYNAMIC, or STREAM and the
second being one of DRAW, READ, or COPY.

The meanings of these “subtokens’ are shown in Table 3.3.

Data in OpenGL Buffers

95

96

Table 3.3 Buffer Usage Tokens

Token Fragment Meaning

STATIC The data store contents will be modified once and used
many times.

DYNAMIC The data store contents will be modified repeatedly and used
many times.

STREAM The data store contents will be modified once and used at
most a few times.

_DRAW The data store contents are modified by the application and
used as the source for OpenGL drawing and image
specification commands.

_READ The data store contents are modified by reading data from
OpenGL and used to return that data when queried by the
application.

_Cory The data store contents are modified by reading data from

OpenGL and used as the source for OpenGL drawing and
image specification commands.

Accurate specification of the usage parameter is important to achieve
optimal performance. This parameter conveys useful information to
OpenGL about how you plan to use the buffer. Consider the first part of
the accepted tokens first. When the token starts with _STATIC_, this
indicates that the data will change very rarely, if at all—it is essentially
static. This should be used for data that will be specified once and never
modified again. When usage includes _STATIC_, OpenGL may decide to
shuffle the data around internally in order to make it fit in memory better,
or be a more optimal data format. This may be an expensive operation, but
since the data is static, it needs to be performed only once and so the
payoff may be great.

Including _DYNAMIC _ in usage indicates that you're going to change the
data from time to time but will probably use it many times between
modifications. You might use this, for example, in a modeling program
where the data is essentially static—until the user edits it. In this case,
it'll probably be used for many frames, then be modified, and then

used for many more frames, and so on. This is in contrast to the
GL_STREAM_ subtoken. This indicates that you're planning on regularly
modifying the data in the buffer and using it only a few times (maybe only
once) between each modification. In this case, OpenGL might not even
copy your data to fast graphics memory if it can access it in place. This
should be used for applications such as physical simulations running on
the CPU where a new set of data is presented in each frame.

Chapter 3: Drawing with OpenGL

Now turn your attention to the second part of the usage tokens. This part
of the token indicates who is responsible for updating and using the data.
When the token includes _DRAW, this infers that the buffer will be used as
a source of data during regular OpenGL drawing operations. It will be read
a lot, compared to data whose usage token includes _READ, which is likely
to be written often. Including _READ indicates that the application will
read back from the buffer (see “Accessing the Content of Buffers’”), which
in turn infers that the data is likely to be written to often by OpenGL.
usage parameters including _DRAW should be used for buffers containing
vertex data, for example, whereas parameters including _READ should be
used for pixel buffer objects and other buffers that will be used to retrieve
information from OpenGL. Finally, including _COPY in usage indicates
that the application will use OpenGL to generate data to be placed in the
buffer, which will then be used as a source for subsequent drawing
operations. An example of an appropriate use of _COPY is transform
teedback buffers—buffers that will be written by OpenGL and then be used
as vertex buffers in later drawing commands.

Initializing Part of a Buffer

Suppose you have an array containing some vertex data, another
containing some color information, and yet another containing texture
coordinates or some other data. You'd like to pack the data back to back
into one big buffer object so that OpenGL can use it. The arrays may or
may not be contiguous in memory, so you can’t use glBufferData() to
upload all of it in one go. Further, if you use glBufferData() to upload, say,
the vertex data first, then the buffer will be sized to exactly match the
vertex data and there won't be room for the color or texture coordinate
information. That’s where glBufferSubData() comes in.

void glBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, const GLvoid *data);

Replaces a subset of a buffer object’s data store with new data. The section
of the buffer object bound to target starting at offset bytes is updated with
the size bytes of data addressed by data. An error is thrown if offset and
size together specify a range that is beyond the bounds of the buffer
object’s data store.

By using a combination of glBufferData() and glBufferSubData(), we can
allocate and initialize a buffer object and upload data into several separate
sections of it. An example is shown in Example 3.1.

Data in OpenGL Buffers

97

98

Example 3.1 Initializing a Buffer Object with glBufferSubData()

// Vertex positions
static const GLfloat positions[] =

{

-1.0£f, -1.0£, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,

-1.0£, 1.0f£, 0.0f, 1.0f

};

// Vertex colors
static const GLfloat colors[] =

{

1.0£, 0.0£, 0.0f,
0.0f, 1.0f£, 0.0f,
0.0f, 0.0f£, 1.0f,
1.0£, 1.0f, 1.0f,

Y

// The buffer object
GLuint buffer;

// Reserve a name for the buffer object.

glGenBuffers(l, &buffer);

// Bind it to the GL_ARRAY_BUFFER target.

glBindBuffer (GL_ARRAY_BUFFER, buffer);

// Allocate space for it (sizeof (positions) + sizeof(colors)).

glBufferData (GL_ARRAY_BUFFER, // target
sizeof (positions) + sizeof (colors), // total size
NULL, // no data
GL_STATIC_DRAW) ; // usage
// Put "positions" at offset zero in the buffer.
glBufferSubData (GL_ARRAY_BUFFER, // target
0, // offset
sizeof (positions), // size
positions) ; // data

// Put "colors" at an offset in the buffer equal to the filled size of
// the buffer so far - i.e., sizeof (positions).

glBufferSubData (GL_ARRAY_BUFFER, // target
sizeof (positions), // offset
sizeof (colors), // size
colors) ; // data

// Now "positions" is at offset 0 and "colors" is directly after it

// in the same buffer.

If you simply wish to clear a buffer object’s data store to a known value,
you can use the glClearBufferData() or glClearBufferSubData()
functions. Their prototypes are as follows:

Chapter 3: Drawing with OpenGL

void glClearBufferData(GLenum target, GLenum internalformat,
GLenum format, GLenum type,
const void * data);
void glClearBufferSubData(GLenum target,
GLenum internalformat,
GLintptr offset, GLintptr size,
GLenum format, GLenum type,
const void * data);

Clear all or part of a buffer object’s data store. The data store of the buffer
bound to target is filled with the data stored in data. format and type
specify the format and type of the data pointed to by data, respectively.
The data is first converted into the format specified by internalformat, and
then that data is used to fill the specified range of the buffer’s data store.
In the case of glClearBufferData(), the entire store is filled with the
specified data. For glClearBufferSubData(), the range is specified by
offset and size, which give the starting offset and size, in bytes of the
range, respectively.

Using glClearBufferData() or glClearBufferSubData() allows you to
initialize the data store of a buffer object without necessarily reserving and
clearing a region of system memory to do it.

Data can also be copied between buffer objects using the
glCopyBufferSubData() function. Rather than assembling chunks of data
in one large buffer object using glBufferSubData(), it is possible to upload
the data into separate buffers using glBufferData() and then copy from
those buffers into the larger buffer using glCopyBufferSubData().
Depending on the OpenGL implementation, it may be able to overlap
these copies because each time you call glBufferData() on a buffer object,
it invalidates whatever contents may have been there before. Therefore,
OpenGL can sometimes just allocate a whole new data store for your data,
even though a copy operation from the previous store has not completed
yet. It will then release the old storage at a later opportunity.

The prototype of glCopyBufferSubData() is as follows:

void glCopyBufferSubData(GLenum readtarget,
GLenum writetarget,
GLintptr readoffset,
GLintprr writeoffset, GLsizeiptr size);

Data in OpenGL Buffers

99

100

Copies part of the data store of the buffer object bound to readtarget into
the data store of the buffer object bound to writetarget. The size bytes of
data at readoffset within readtarget are copied into writetarget at writeoffset.
If readoffset or writeoffset together with size would cause either OpenGL to
access any area outside the bound buffer objects, a GL_INVALID_VALUE
error is generated.

Whilst glCopyBufferSubData() can be used to copy data between buffers
bound to any two targets, the targets GL_COPY_READ_BUFFER and
GL_COPY_WRITE_BUFFER are provided specifically for this purpose.
Neither target is used for anything else by OpenGL, and so you can safely
bind buffers to them for the purposes of copying or staging data without
disturbing OpenGL state or needing to keep track of what was bound to
the target before your copy.

Reading the Contents of a Buffer

Data can be read back from a buffer object in a couple of different ways.
The first is to use the glGetBufferSubData() function. This function reads
data from the buffer object bound to one of the targets and places it into a
chunk of memory owned by your applications. The prototype of
glGetBufferSubData() is as follows:

void glGetBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, GLvoid * data);

Returns some or all of the data from the buffer object currently bound

to target. Data starting at byte-offset offset and extending for size bytes is
copied from the data store to the memory pointed to by data. An error is
thrown if the buffer object is currently mapped, or if offset and size together
define a range beyond the bounds of the buffer object’s data store.

glGetBufferSubData() is useful when you have generated data using
OpenGL and wish to retrieve it. Examples include using transform
teedback to process vertices using a GPU, or reading framebuffer or texture
data into a Pixel Buffer Object. Both of these topics will be covered later. Of
course, it’s also possible to use glGetBufferSubData() to simply read back
data that you previously put into the buffer object.

Accessing the Content of Buffers

The issue with all of the functions covered in this section so far
(glBufferData(), glBufferSubData(), glCopyBufferSubData(), and

Chapter 3: Drawing with OpenGL

glGetBufferSubData()) is that they all cause OpenGL to make a copy of
your data. glBufferData() and glBufferSubData() both copy data from
your application’s memory into memory owned by OpenGL. Obviously,
glCopyBufferSubData() causes a copy of previously buffered data to be
made. glGetBufferSubData() copies data from memory owned by OpenGL
into memory provided by your application. Depending on the hardware
configuration, it’s very possible that the memory owned by OpenGL would
be accessible to your application if only you had a pointer to it. Well, you
can get that pointer using giMapBuffer().

void * giMapBuffer(GLenum farget, GLenum access);

Maps to the client’s address space the entire data store of the buffer object
currently bound to target. The data can then be directly read or written
relative to the returned pointer, depending on the specified access policy.
If OpenGL is unable to map the buffer object’s data store, giMapBuffer()
generates an error and returns NULL. This may occur for system-specific
reasons, such as low virtual memory availability.

When you call glMapBuffer(), the function returns a pointer to memory
that represents the data store of the buffer object attached to target. Note
that this memory represents only this buffer—it is not necessarily the
memory that the graphics processor will use. The access parameter specifies
how the application intends to use the memory once it is mapped. It must
be one of the tokens shown in Table 3.4.

Table 3.4 Access Modes for glMapBuffer()

Token Meaning

GL_READ_ONLY The application will only read from the memory
mapped by OpenGL.

GL_WRITE_ONLY The application will only write to the memory
mapped by OpenGL.

GL_READ_WRITE The application may read from or write to the
memory mapped by OpenGL.

If giMapBuffer() fails to map the buffer object’s data store, it returns
NULL. The access parameter forms a contract between you and OpenGL
that specifies how you will access the memory. If you violate that contract,

Data in OpenGL Buffers

101

102

bad things will happen, which may include ignoring writes to the buffer,
corrupting your data or even crashing your program.3

Note: When you map a buffer whose data store is in memory that will
not be accessible to your application, OpenGL may need to move
the data around so that when you use the pointer it gives you, you
get what you expect. Likewise, when you're done with the data
and have modified it, OpenGL may need to move it back to a place
where the graphics processor can see it. This can be expensive
in terms of performance, so great care should be taken when
doing this.

When the buffer is mapped with the GL_READ_ONLY or GL_READ_WRITE
access mode, the data that was in the buffer object becomes visible to your
application. You can read it back, write it to a file, and even modity it in
place (so long as you used GL_READ_WRITE as the access mode). If access is
GL_READ_WRITE or GL_WRITE_ONLY, you can write data into memory
using the pointer OpenGL gave you. Once you are done using the data or
writing data into the buffer object, you must unmap it using
glUnmapBuffer(), whose prototype is as follows:

GLboolean glUnmapBuffer(GLenum farget);

Releases the mapping created by giMapBuffer(). glUnmapBuffer()
returns GL_TRUE unless the data store contents have become corrupt
during the time the data store was mapped. This can occur for
system-specific reasons that affect the availability of graphics memory,
such as screen mode changes. In such situations, GL_FALSE is returned
and the data store contents are undefined. An application must detect
this rare condition and reinitialize the data store.

When you unmap the buffer, any data you wrote into the memory given
to you by OpenGL becomes visible in the buffer object. This means that
you can place data into buffer objects by allocating space for them using
glBufferData() and passing NULL as the data parameter, mapping them,
writing data into them directly, and then unmapping them again.
Example 3.2 contains an example of loading the contents of a file into a
buffer object.

3. The unfortunate thing is that so many applications do violate this contract that most OpenGL
implementations will assume you don’t know what you’'re doing and will treat all calls to
glMapBuffer() as if you specified GL_READ_WRITE as the access parameter, just so these other
applications will work.

Chapter 3: Drawing with OpenGL

Example 3.2 Initializing a Buffer Object with giMapBuffer()
GLuint buffer;
FILE = f;

size_t filesize;

// Open a file and find its size

f = fopen("data.dat", "rb");
fseek (f, 0, SEEK_END) ;
filesize = ftell(f);

fseek (f, 0, SEEK_SET);

// Create a buffer by generating a name and binding it to a buffer

// binding point - GL_COPY_WRITE_BUFFER here (because the binding means
// nothing in this example).

glGenBuffers(l, &buffer);

glBindBuffer (GL_COPY_WRITE_BUFFER, buffer);

// Allocate the data store for the buffer by passing NULL for the

// data parameter.

glBufferData (GL_COPY_WRITE_BUFFER, (GLsizei)filesize, NULL,
GL_STATIC_DRAW) ;

// Map the buffer...

void » data = glMapBuffer (GL_COPY_WRITE_BUFFER, GL_WRITE_ONLY) ;

// Read the file into the buffer.
fread(data, 1, filesize, f);

// Okay, done, unmap the buffer and close the file.
glUnmapBuffer (GL_COPY_WRITE_BUFFER) ;

fclose(£);

In Example 3.2, the entire contents of a file are read into a buffer object in
a single operation. The buffer object is created and allocated to the same
size as the file. Once the buffer is mapped, the file can be read directly into
the buffer object’s data store. No copies are made by the application, and,
if the data store is visible to both the application and the graphics
processor, no copies will be made by OpenGL.

There may be significant performance advantages to initializing buffer
objects in this manner. The logic is this; when you call glBufferData()

or glBufferSubData(), once those functions return, you are free to do
whatever you want with the memory you gave them—free it, use it for
something else—it doesn’t matter. This means that those functions must be
done with that memory by the time they return, and so they need to make
a copy of your data. However, when you call giMapBuffer(), the pointer
you get points at memory owned by OpenGL. When you call
glUnmapBuffer(), OpenGL still owns that memory—it’s the application
that has to be done with it. This means that if the data needs to be moved

Data in OpenGL Buffers

103

104

or copied, OpenGL can start that process when you call glUnmapBuffer()
and return immediately, content in the knowledge that it can finish the
operation at its leisure without your application interfering in any way.
Thus the copy that OpenGL needs to perform can overlap whatever your
application does next (making more buffers, reading more files, and so
on). If it doesn’t need to make a copy, then great! The unmap operation
essentially becomes free in that case.

Asynchronous and Explicit Mapping

To address many of the issues involved with mapping buffers using
glMapBuffer() (such as applications incorrectly specifying the access
parameter or always using GL_READ_WRITE), gIMapBufferRange() uses
flags to specify access more precisely. The prototype for
glMapBufferRange() is as follows:

void * gIMapBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length, GLbitfield access);

Maps all or part of a buffer object’s data store into the application’s
address space. target specifies the target to which the buffer object is
currently bound. offset and length together indicate the range of the data
(in bytes) that is to be mapped. access is a bitfield containing flags that
describe the mapping.

For giIMapBufferRange(), access is a bitfield that must contain one or both
of the GL_MAP_READ_BIT and the GL_MAP_WRITE_BIT indicating
whether the application plans to read from the mapped data store, write to
it, or do both. In addition, access may contain one or more of the flags
shown in Table 3.5.

Table 3.5 Flags for Use with giIMapBufferRange()

Flag Meaning

GL_MAP_INVALIDATE_RANGE_BIT If specified, any data in the specified
range of the buffer may be discarded and
considered invalid. Any data within the
specified range that is not subsequently
written by the application becomes
undefined. This flag may not be used
with GL_MAP_READ_BIT.

Chapter 3: Drawing with OpenGL

Table 3.5 (continued) Flags for Use with giMapBufferRange()

Flag

Meaning

GL_MAP_INVALIDATE_BUFFER_BIT

GL_MAP_FLUSH_EXPLICIT_BIT

GL_MAP_UNSYNCHRONIZED_BIT

If specified, the entire contents of the
buffer may be discarded and considered
invalid, regardless of the specified range.
Any data lying outside the mapped range
of the buffer object becomes undefined,
as does any data within the range but not
subsequently written by the application.
This flag may not be used with
GL_MAP_READ_BIT.

The application will take responsibility to
signal to OpenGL which parts of the
mapped range contain valid data by
calling glFlushMappedBufferRange()
prior to calling glUnmapBuffer(). Use
this flag if a larger range of the buffer will
be mapped and not all of it will be
written by the application. This bit must
be used in conjunction with
GL_MAP_WRITE_BIT. If
GL_MAP_FLUSH_EXPLICIT_BIT is not
specified, glUnmapBuffer() will
automatically flush the entirety of the
mapped range.

If this bit is not specified, OpenGL will
wait until all pending operations that
may access the buffer have completed
before returning the mapped range. If
this flag is set, OpenGL will not attempt
to synchronize operations on the buffer.

As you can see from the flags listed in Table 3.5, the command provides a
significant level of control over how OpenGL uses the data in the buffer
and how it synchronizes operations that may access that data.

When you specify that you want to invalidate the data in the buffer object
by specifying either the GL_MAP_INVALIDATE_RANGE_BIT or
GL_MAP_INVALIDATE_BUFFER_BIT, this indicates to OpenGL that it is
free to dispose of any previously stored data in the buffer object. Either of
the flags can be set only if you also specify that you're going to write to the
buffer by also setting the GL_MAP_WRITE_BIT flag. If you specify
GL_MAP_INVALIDATE_RANGE_BIT, it indicates that you will update the
entire range (or at least all the parts of it that you care about). If you set the
GL_MAP_INVALIDATE_BUFFER_BIT, it means that you don’t care what

Data in OpenGL Buffers 105

106

ends up in the parts of the buffer that you didn’t map. Either way, setting
the flags indicates that you're planning to update the rest of the buffer
with subsequent maps.* When OpenGL is allowed to throw away the rest
of the buffer’s data, it doesn’t have to make any effort to merge your
modified data back into the rest of the original buffer. It’s probably a good
idea to use GL_MAP_INVALIDATE_BUFFER_BIT for the first section of the
buffer that you map, and then GL_MAP_INVALIDATE_RANGE_BIT for the
rest of the buffer.

The GL_MAP_UNSYNCHRONIZED_BIT flag is used to disengage OpenGL's
automatic synchronization between data transfer and use. Without this
bit, OpenGL will finish up any in-flight commands that might be using
the buffer object. This can stall the OpenGL pipeline, causing a bubble and
a loss of performance. If you can guarantee that all pending commands
will be complete before you actually modify the contents of the buffer (but
not necessarily before you call giMapBufferRange()) through a method
such as calling glFinish() or using a sync object (which are described in
““Atomic Operations and Synchronization” on Page 578 in Chapter 11),
then OpenGL doesn’t need to do this synchronization for you.

Finally, the GL_MAP_FLUSH_EXPLICIT_BIT flag indicates that the
application will take on the responsibility of letting OpenGL know which
parts of the buffer it has modified before calling glUnmapBuffer(). It does
this through a call to glFlushMappedBufferRange(), whose prototype is as
follows:

void glFlushMappedBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length);

Indicates to OpenGL that the range specified by offset and length in the
mapped buffer bound to farget has been modified and should be
incorporated back into the buffer object’s data store.

It is possible to call glFlushMappedBufferRange() multiple times on
separate or even overlapping ranges of a mapped buffer object. The range
of the buffer object specified by offset and length must lie within the range
of buffer object that has been mapped, and that range must have been
mapped by a call to glMapBufferRange() with access including the
GL_MAP_FLUSH_EXPLICIT_BIT flag set. When this call is made, OpenGL
assumes that you're done modifying the specified range of the mapped
buffer object, and can begin any operations it needs to perform in order to

4. Don't specify the GL_MAP_INVALIDATE_BUFFER_BIT for every section, otherwise only the
last section you mapped will have valid data in it!

Chapter 3: Drawing with OpenGL

make that data usable such as copying it to graphics processor visible
memory, or flushing, or invalidating data caches. It can do these things
even though some or all of the buffer is still mapped. This is a useful way
to parallelize OpenGL with other operations that your application might
perform. For example, if you need to load a very large piece of data from
a file into a buffer, map a range of the buffer large enough to hold the
whole file, then read chunks of the file, and after each chunk call
glFlushMappedBufferRange(). OpenGL will then operate in parallel to
your application, reading more data from the file for the next chunk.

By combining these flags in various ways, it is possible to optimize data
transfer between the application and OpenGL or to use advanced
techniques such as multithreading or asynchronous file operations.

Discarding Buffer Data

Advanced

When you are done with the data in a buffer, it can be advantageous

to tell OpenGL that you don't plan to use it any more. For example,
consider the case where you write data into a buffer using transform
teedback, and then draw using that data. If that drawing command is the
last one that is going to access the data, then you can tell OpenGL that

it is free to discard the data and use the memory for something else. This
allows an OpenGL implementation to make optimizations such as tightly
packing memory allocations or avoiding expensive copies in systems with
more than one GPU.

To discard some or all of the data in a buffer object, you can call
gllnvalidateBufferData() or glinvalidateBufferSubData(), respectively.
The prototypes of these functions are as follows:

void glinvalidateBufferData(GLuint buffer);
void glinvalidateBufferSubData(GLuint buffer, GLintptr offset,
GLsizeiptr length);

Tell OpenGL that the application is done with the contents of the buffer
object in the specified range and that it is free to discard the data if it
believes it is advantageous to do so. glinvalidateBufferSubData()
discards the data in the region of the buffer object whose name is

buffer starting at offset bytes and continuing for length bytes.
glinvalidateBufferData() discards the entire contents of the buffer’s
data store.

Data in OpenGL Buffers

107

108

Note that semantically, calling glBufferData() with a NULL pointer does a
very similar thing to calling glInvalidateBufferData(). Both methods will
tell the OpenGL implementation that it is safe to discard the data in the
buffer. However, glBufferData() logically recreates the underlying memory
allocation, whereas glinvalidateBufferData() does not. Depending

on the OpenGL implementation, it may be more optimal to call
glinvalidateBufferData(). Further, glinvalidateBufferSubData() is really
the only way to discard a region of a buffer object’s data store.

Vertex Specification

Now that you have data in buffers, and you know how to write a basic
vertex shader, it’s time to hook the data up to the shader. You've

already read about vertex array objects, which contain information about
where data is located and how it is laid out, and functions like
glVertexAttribPointer(). It’s time to take a deeper dive into vertex
specifications, other variants of glVertexAttribPointer(), and how to
specify data for vertex attributes that aren’t floating point or aren’t enabled.

VertexAttribPointer in Depth

The glVertexAttribPointer() command was briefly introduced in
Chapter 1. The prototype is as follows:

void glVertexAttribPointer(GLuint index, GLint size,
GLenum type, GLboolean normalized,
GLsizei stride, const GLvoid *pointer);

Specifies where the data values for the vertex attribute with location index
can be accessed. pointer is the offset in basic-machine units (i.e.,
bytes)from the start of the buffer object currently bound to the
GL_ARRAY_BUFFER target for the first set of values in the array. size
represents the number of components to be updated per vertex. type
specifies the data type of each element in the array. normalized indicates
that the vertex data should be normalized before being presented to the
vertex shader. stride is the byte offset between consecutive elements in
the array. If stride is zero, the data is assumed to be tightly packed.

The state set by glVertexAttribPointer() is stored in the currently bound
vertex array object (VAO). size is the number of elements in the attribute’s
vector (1, 2, 3, or 4), or the special token GL_BGRA, which should be

Chapter 3: Drawing with OpenGL

specified when packed vertex data is used. The fype parameter is a token
that specifies the type of the data that is contained in the buffer object.
Table 3.6 describes the token names that may be specified for type and the
OpenGL data type that they correspond to:

Table 3.6 Values of Type for glVertexAttribPointer()

Token Value OpenGL Type

GL_BYTE GLbyte (signed 8-bit bytes)
GL_UNSIGNED_BYTE GLubyte (unsigned 8-bit bytes)
GL_SHORT GLshort (signed 16-bit words)
GL_UNSIGNED_SHORT GLushort (unsigned 16-bit words)
GL_INT GLint (signed 32-bit integers)
GL_UNSIGNED_INT GLuint (unsigned 32-bit integers)
GL_FIXED GLfixed (16.16 signed fixed point)
GL_FLOAT GLfloat (32-bit IEEE single-precision

GL_HALF_FLOAT

GL_DOUBLE

GL_INT_2_10_10_10_REV
GL_UNSIGNED_INT_2_10_10_10_REV

floating point)

GLhalf (16-bit SIESM10
half-precision floating point)

GLdouble (64-bit IEEE
double-precision floating point)

GLuint (packed data)
GLuint (packed data)

Note that while integer types such as GL_SHORT or

GL_UNSIGNED_INT can be passed to the fype argument, this tells OpenGL
only what data type is stored in memory in the buffer object. OpenGL will
convert this data to floating point in order to load it into floating-point
vertex attributes. The way this conversion is performed is controlled by the
normalize parameter. When normalize is GL_FALSE, integer data is simply
typecast into floating-point format before being passed to the vertex
shader. This means that if you place the integer value 4 into a buffer and
use the GL_INT token for the type when normalize is GL_FALSE, the value
4.0 will be placed into the shader. When normalize is GL_TRUE, the data

is normalized before being passed to the vertex shader. To do this, OpenGL
divides each element by a fixed constant that depends on the incoming
data type. When the data type is signed, the following formula is used:

c

=

Vertex Specification

109

Whereas, if the data type is unsigned, the following formula is used:

2c+1

f 2 -1
In both cases, [is the resulting floating-point value, ¢ is the incoming
integer component, and b is the number of bits in the data type (i.e., 8 for
GL_UNSIGNED_BYTE, 16 for GL_SHORT, and so on). Note that unsigned
data types are also scaled and biased before being divided by the
type-dependent constant. To return to our example of putting 4 into an
integer vertex attribute, we get:

4

f:23271

which works out to about 0.000000009313—a pretty small number!

Integer Vertex Attributes

If you are familiar with the way floating-point numbers work, you’ll

also realize that precision is lost as numbers become very large, and so

the full range of integer values cannot be passed into a vertex shader using
floating-point attributes. For this reason, we have integer vertex attributes.
These are represented in vertex shaders by the int, ivec2, ivec3, or ivec4
types or their unsigned counterparts—uint, uvec2, uvec3, and uvec4.

A second vertex-attribute function is needed in order to pass raw integers
into these vertex attributes—one that doesn’t automatically convert
everything to floating point. This is glVertexAttribIPointer()—the I stands
for integer.

void glVertexAttribIPointer(GLuint index, GLint size,
GLenum type, GLsizei stride,
const GLvoid *pointer);

Behaves similarly to glVertexAttribPointer(), but for vertex attributes
declared as integers in the vertex shader. type must be one of the integer
data type tokens GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, or GL_UNSIGNED_INT.

Notice that the parameters to glVertexAttribIPointer() are identical to the
parameters to glVertexAttribPointer(), except for the omission of the

110 Chapter 3: Drawing with OpenGL

normalize parameter. normalize is missing because it’s not relevant to
integer vertex attributes. Only the integer data type tokens, GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, and
GL_UNSIGNED_INT may be used for the fype parameter.

Double-Precision Vertex Attributes

The third variant of glVertexAttribPointer() is glVertexAttribLPointer()—
here the L stands for “long”. This version of the function is specifically for
loading attribute data into 64-bit double-precision tloating-point vertex
attributes.

void glVertexAttribLPointer(GLuint index, GLint size,
GLenum type, GLsizei stride,
const GLvoid *pointer);

Behaves similarly to glVertexAttribPointer(), but for vertex attributes
declared as 64-bit double-precision floating-point types in the vertex
shader. type must be GL_DOUBLE.

Again, notice the lack of the normalize parameter. In
glVertexAttribPointer(), normalize was used only for integer data types
that aren’t legal here, and so the parameter is not needed. If GL_DOUBLE
is used with glVertexAttribPointer(), the data is automatically
down-converted to 32-bit single-precision floating-point representation
before being passed to the vertex shader—even if the target vertex attribute
was declared using one of the double-precision types double, dvec2,
dvec3, or dvec4, or one of the double-precision matrix types such as
dmat4. However, with glVertexAttribLPointer(), the full precision of the
input data is kept and passed to the vertex shader.

Packed Data Formats for Vertex Attributes

Going back to the glVertexAttribPointer() command, you will notice that
the allowed values for the size parameter are 1, 2, 3, 4, and the special token
GL_BGRA. Also, the type parameter may take one of the special values
GL_INT_2_10_10_10_REV or GL_UNSIGNED_INT_2_10_10_10_REV, both
of which correspond to the GLuint data type. These special tokens are used
to represent packed data that can be consumed by OpenGL. The
GL_INT_2_10_10_10_REV and GL_UNSIGNED_INT_2_10_10_10_REV
tokens represent four-component data represented as ten bits for each of
the first three components and two for the last, packed in reverse order
into a single 32-bit quantity (a GLuint). GL_BGRA could just have easily

Vertex Specification 111

112

been called GL_ZYXW.® Looking at the data layout within the 32-bit word,
you would see the bits divided up as shown in Figure 3.3.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w X Y

27

Figure 3.3 Packing of elements in a BGRA-packed vertex attribute

In Figure 3.3, the elements of the vertex are packed into a single 32-bit
integer in the order w, x, y, z—which when reversed is z, y, x, w,or b, g, 1, a
when using color conventions. In Figure 3.4, the coordinates are packed
in the order w, z, y, x, which reversed and written in color conventions is
1,4 b,a.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\+I z Y X

Figure 3.4 Packing of elements in a RGBA-packed vertex attribute

Vertex data may be specified only in the first of these two formats by using
the GL_INT_2_10_10_10_REV or GL_UNSIGNED_INT_2_10_10_10_REV
tokens. When one of these tokens is used as the type parameter to
glVertexAttribPointer(), each vertex consumes one 32-bit word in the
vertex array. The word is unpacked into its components and then
optionally normalized (depending on the value of the normalize parameter
before being loaded into the appropriate vertex attribute. This data
arrangement is particularly well suited to normals or other types of
attributes that can benefit from the additional precision afforded by the
10-bit components but perhaps don’t require the full precision offered by
half-float data (which would take 16-bits per component). This allows the
conservation of memory space and bandwidth, which helps improve
performance.

Static Vertex-Attribute Specification

Remember from Chapter 1 where you were introduced to
glEnableVertexAttribArray() and glDisableVertexAttribArray().

5. Not a valid OpenGL token; just to be clear.

Chapter 3: Drawing with OpenGL

These functions are used to tell OpenGL which vertex attributes are backed
by vertex buffers. Before OpenGL will read any data from your vertex
buffers, you must enable the corresponding vertex attribute arrays with
glEnableVertexAttribArray(). You may wonder what happens if you don’t
enable the attribute array for one of your vertex attributes. In that case, the
static vertex attribute is used. The static vertex attribute for each vertex is the
default value that will be used for the attribute when there is no enabled
attribute array for it. For example, imagine you had a vertex shader that
would read the vertex color from one of the vertex attributes. Now suppose
that all of the vertices in a particular mesh or part of that mesh had the
same color. It would be a waste of memory and potentially of performance
to fill a buffer full of that constant value for all the vertices in the mesh.
Instead, you can just disable the vertex attribute array and use the static
vertex attribute to specify color for all of the vertices.

The static vertex attribute for each attribute may be specified using one of
glVertexAttrib*() functions. When the vertex attribute is declared as a
floating-point quantity in the vertex shader (i.e., it is of type float, vec2,
vec3, vec4, or one of the floating-point matrix types such as mat4), the
following glVertexAttrib*() commands can be used to set its value.

void glVertexAttrib{1234}{fds}(GLuint index, TYPE values);
void glVertexAttrib{1234}{fds}v(GLuint index,
const TYPE *values);
void glVertexAttrib4{bsifd ub us ui}v(GLuint index,
const TYPE *values);

Specifies the static value for the vertex attribute with index index. For the
non-v versions, up to four values are specified in the x, y, z, and w
parameters. For the v versions, up to four components are sourced from
the array whose address is specified in v and used in place of the x, y, z,
and w components in that order.

All of these functions implicitly convert the supplied parameters

to floating-point before passing them to the vertex shader (unless they’re
already floating-point). This conversion is a simple typecast. That is,

the values are converted exactly as specified as if they had been specified
in a buffer and associated with a vertex attribute by calling
glVertexAttribPointer() with the normalize parameter set to GL_FALSE. For
the integer variants of the functions, versions exist that normalize the

Vertex Specification

113

114

parameters to the range [0, 1] or [-1, 1] depending on whether the
parameters are signed or unsigned. These are:

void glVertexAttrib4Nub(GLuint index, GLubyte x, GLubyte y,
GLubyte z, GLubyte w);
void glVertexAttrib4N{bsi ub us ui}v(GLuint index,
const TYPE *v);

Specifies a single or multiple vertex-attribute values for attribute index,
normalizing the parameters to the range [0, 1] during the conversion
process for the unsigned variants and to the range [—1, 1] for the signed
variants.

Even with these commands, the parameters are still converted to
floating-point before being passed to the vertex shader. Thus, they are
suitable only for setting the static values of attributes declared with one of
the single-precision floating-point data types. If you have vertex attributes
that are declared as integers or double-precision floating-point variables,
you should use one of the following functions:

void glVertexAttribI{1234}{i ui}(GLuint index, TYPE values);
void glVertexAttribI{123}{i ui}v(GLuint index,
const TYPE *values);
void glVertexAttribI4{bsi ub us ui}v(GLuint index,
const TYPE *values);

Specifies a single or multiple static integer vertex-attribute values for
integer vertex attribute index.

Furthermore, if you have vertex attributes that are declared as one of the
double-precision floating-point types, you should use one of the L variants
of glVertexAttrib*(), which are:

void glVertexAttribL{1234}(GLuint index, TYPE values);
void glVertexAttribL{1234}v(GLuint index, const TYPE *values);

Specifies a single or multiple static vertex-attribute values for
double-precision vertex attribute index.

Both the glVertexAttribI*() and glVertexAttribL*() variants of
glVertexAttrib*() pass their parameters through to the underlying vertex
attribute just as the I versions of glVertexAttribIPointer() do.

Chapter 3: Drawing with OpenGL

If you use one of the glVertexAttrib*() functions with less components
than there are in the underlying vertex attribute (e.g., you use
glVertexAttrib*() 2f to set the value of a vertex attribute declared

as a vec4), default values are filled in for the missing components. For w,
1.0 is used as the default value, and for y and z, 0.0 is used.® If you use a
function that takes more components than are present in the vertex
attribute in the shader, the additional components are simply discarded.

Note: The static vertex attribute values are stored in the current VAO, not
the program object. That means that if the current vertex shader
has, for example, a vec3 input and you use glVertexAttrib*() 4fv
to specify a four-component vector for that attribute, the fourth
component will be ignored but still stored. If you change the vertex
shader to one that has a vec4 input at that attribute location, the
fourth component specified earlier will appear in that attribute’s
w component.

OpenGL Drawing Commands

Most OpenGL drawing commands start with the word Draw.” The drawing
commands are roughly broken into two subsets—indexed and nonindexed
draws. Indexed draws use an array of indices stored in a buffer object
bound to the GL_ELEMENT_ARRAY_BUFFER binding that is used to
indirectly index into the enabled vertex arrays. On the other hand,
nonindexed draws do not use the GL_ELEMENT_ARRAY_BUFFER at all,
and simply read the vertex data sequentially. The most basic, nonindexed
drawing command in OpenGL is glDrawArrays().

void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Constructs a sequence of geometric primitives using array elements
starting at first and ending at first 4+ count — 1 of each enabled array. mode
specifies what kinds of primitives are constructed and is one of the
primitive mode tokens such as GL_TRIANGLES, GL_LINE_LOOQOP,
GL_LINES, and GL_POINTS.

Similarly, the most basic indexed drawing command is glDrawElements().

6. The lack of a default for x is intentional—you can’t specify values for y, z, or w without also
specifying a value for x.

7. In fact, the only two commands in OpenGL that start with Draw but don’t draw anything
are glDrawBuffer() and glDrawBuffers().

OpenGL Drawing Commands

115

void glDrawElements(GLenum mode, GLsizei count,
GLenum type, const GLvoid *indices);

Defines a sequence of geometric primitives using count number of
elements, whose indices are stored in the buffer bound to the
GL_ELEMENT_ARRAY_BUFFER buffer binding point (the element array
buffer). indices represents an offset, in bytes, into the element array buffer
where the indices begin. type must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT, indicating the data type
of the indices the element array buffer. mode specifies what kind of
primitives are constructed and is one of the primitive mode tokens, such
as GL_TRIANGLES, GL_LINE_LOOP, GL_LINES, and GL_POINTS.

Each of these functions causes vertices to be read from the enabled
vertex-attribute arrays and used to construct primitives of the type
specified by mode. Vertex-attribute arrays are enabled using
glEnableVertexAttribArray() as described in Chapter 1. glDrawArrays()
just uses the vertices in the buffer objects associated with the enabled
vertex attributes in the order they appear. glDrawElements() uses the
indices in the element array buffer to index into the vertex attribute arrays.
Each of the more complex OpenGL drawing functions essentially builds
functionality on top of these two functions. For example,
glDrawElementsBaseVertex() allows the indices in the element array
buffer to be offset by a fixed amount.

void glDrawElementsBaseVertex(GLenum mode, GLsizei count,
GLenum type,
const GLvoid *indices,
GLint basevertex);

Behaves identically to glDrawElements() except that the ith element
transferred by the corresponding draw command will be taken from
element indices[i] + basevertex of each enabled vertex attribute array.

glDrawElementsBaseVertex() allows the indices in the element array
buffer to be interpreted relative to some base index. For example,

multiple versions of a model (say, frames of an animation) can be stored in
a single set of vertex buffers at different offsets within the buffer.
glDrawElementsBaseVertex() can then be used to draw any frame of that
animation by simply specifying the first index that corresponds to that
frame. The same set of indices can be used to reference every frame.

116 Chapter 3: Drawing with OpenGL

Another command that behaves similarly to glDrawElements() is
glDrawRangeElements().

void glDrawRangeElements(GLenum mode, GLuint start,
GLuint end, GLsizei count,
GLenum type,
const GLvoid *indices);

This is a restricted form of glDrawElements() in that it forms a contract
between the application (i.e., you) and OpenGL that guarantees that any
index contained in the section of the element array buffer referenced by
indices and count will fall within the range specified by start and end.

Various combinations of functionality are available through even more
advanced commands—for example, glDrawRangeElementsBaseVertex()
combines the features of glDrawElementsBaseVertex() with the
contractual arrangement of glDrawRangeElements().

void glDrawRangeElementsBaseVertex(GLenum mode,
GLuint start, GLuint end,
GLsizei count,
GLenum type,
const GLvoid *indices,
GLint basevertex);

Forms a contractual agreement between the application similar to that of
glDrawRangeElements(), while allowing the base vertex to be specified in
basevertex. In this case, the contract states that the values stored in the ele-
ment array buffer will fall between start and end before basevertex is added.

Instanced versions of both of these functions are also available. Instancing
will be covered in “Instanced Rendering’”” on Page 128. The instancing com-
mands include glDrawArraysInstanced(), glDrawElementsInstanced(),
and even glDrawElementsInstancedBaseVertex(). Finally, there are two
commands that take their parameters not from your program directly, but
from a buffer object. These are the draw-indirect functions, and to use them,
a buffer object must be bound to the GL_DRAW_INDIRECT_BUFFER
binding. The first is the indirect version of glDrawArrays(),
glDrawArraysIndirect().

OpenGL Drawing Commands

117

118

void glDrawArraysIndirect(GLenum mode,
const GLvoid *indirect);

Behaves exactly as glDrawArraysInstanced(), except that the parameters
for the drawing command are taken from a structure stored in the buffer
bound to the GL_DRAW_INDIRECT_BUFFER binding point (the draw
indirect buffer). indirect represents an offset into the draw indirect buffer.
mode is one of the primitive types that is accepted by glDrawArrays().

In glDrawArraysIndirect(), the parameters for the actual draw command
are taken from a structure stored at offset indirect into the draw indirect
buffer. The structure’s declaration in “C” is presented in Example 3.3:

Example 3.3 Declaration of the DrawArraysIndirectCommand
Structure

typedef struct DrawArraysIndirectCommand_t
{

GLuint count;

GLuint primCount;

GLuint first;

GLuint baselInstance;

} DrawArraysIndirectCommand;

The fields of the DrawArraysIndirectCommand structure are interpreted
as if they were parameters to a call to glDrawArraysInstanced(). first and
count are passed directly to the internal function. The primCount field is
the instance count, and the baselnstance field becomes the baselnstance
offset to any instanced vertex attributes (don’t worry, the instanced
rendering commands will be described shortly).

The indirect version of glDrawElements() is glDrawElementsIndirect()
and its prototype is as follows:

void glDrawElementsIndirect(GLenum mode, GLenum type,
const GLvoid * indirect);

Behaves exactly as glDrawElements(), except that the parameters for the
drawing command are taken from a structure stored in the buffer bound
to the GL_DRAW_INDIRECT BUFFER binding point. indirect represents
an offset into the draw indirect buffer. mode is one of the primitive types
that is accepted by glDrawElements(), and type specifies the type of the
indices stored in the element array buffer at the time the draw command
is called.

Chapter 3: Drawing with OpenGL

As with glDrawArraysIndirect(), the parameters for the draw command in
glDrawElementsIndirect() come from a structure stored at offset indirect
stored in the element array buffer. The structure’s declaration in “C"’ is
presented in Example 3.4:

Example 3.4 Declaration of the DrawElementsIndirectCommand
Structure

typedef struct DrawElementsIndirectCommand_t
{

GLuint count;

GLuint primCount;

GLuint firstIndex;

GLuint baseVertex;

GLuint DbaselInstance;

} DrawElementsIndirectCommand;

As with the DrawArraysIndirectCommand structure, the fields of the
DrawElementsIndirectCommand structure are also interpreted as calls to
the glDrawElementsInstancedBaseVertex() command. count and
baseVertex are passed directly to the internal function. As in
glDrawArraysIndirect(), primCount is the instance count. firstVertex is
used, along with the size of the indices implied by the fype parameter to
calculate the value of indices that would have been passed to
glDrawElementsInstancedBaseVertex(). Again, baselnstance becomes the
instance offset to any instanced vertex attributes used by the resulting
drawing commands.

Now, we come to the drawing commands that do not start with Draw.
These are the multivariants of the drawing commands,
glMultiDrawArrays(), giMultiDrawElements(), and
glMultiDrawElementsBaseVertex(). Each one takes an array of first
parameters, and an array of count parameters acts as if the nonmultiversion
of the function had been called once for each element of the array. For
example, look at the prototype for gIMultiDrawArrays().

void glMultiDrawArrays(GLenum mode, const GLint * first,
const GLint * count, GLsizei primcount);

Draws multiple sets of geometric primitives with a single OpenGL
function call. first and count are arrays of primcount parameters that
would be valid for a call to glDrawArrays().

OpenGL Drawing Commands

119

Calling gIMultiDrawArrays() is equivalent to the following OpenGL code
sequence:

void glMultiDrawArrays (GLenum mode,

const GLint * first,
const GLint =* count,
GLsizeil primcount)

GLsizei 1i;

for (1 = 0; 1 < primcount; 1++)

{
3

glDrawArrays (mode, first[i], count[i]);

}

Similarly, the multiversion of glDrawElements() is
glMultiDrawElements(), and its prototype is as follows:

void glMultiDrawElements(GLenum mode, const GLint * count,
GLenum type,
const GLvoid * const * indices,
GLsizei primcount);

Draws multiple sets of geometric primitives with a single OpenGL
function call. first and indices are arrays of primcount parameters that
would be valid for a call to glDrawElements().

Calling giMultiDrawElements() is equivalent to the following OpenGL
code sequence:

void glMultiDrawElements (GLenum mode,

const GLsizel =* count,

GLenum type,

const GLvoid * const * indices,
GLsizel primcount) ;

GLsizeil 1i;

for (i1 = 0; 1 < primcount; i++)

{

glDrawElements (mode, count[i], type, indices[i]);

}

120 Chapter 3: Drawing with OpenGL

An extension of gIMultiDrawElements() to include a baseVertex parameter
is giMultiDrawElementsBaseVertex(). Its prototype is as follows:

void giMultiDrawElementsBaseVertex(GLenum mode,
const GLint * count,
GLenum type,
const GLvoid * const * indices,
GLsizei primcount,
const GLint * baseVertex);

Draws multiple sets of geometric primitives with a single OpenGL
function call. first, indices, and baseVertex are arrays of primcount
parameters that would be valid for a call to
glDrawElementsBaseVertex().

As with the previously described OpenGL multidrawing commands,
gIlMultiDrawElementsBaseVertex() is equivalent to another code
sequence that ends up calling the nonmultiversion of the function.

void glMultiDrawElementsBaseVertex (GLenum mode,
const GLsizei = count,
GLenum type,
const GLvoid * const * indices,
GLsizeil primcount,
const \GLint * baseVertex) ;

GLsizei 1i;

for (1 = 0; i < primcount; i++)
{
glDrawElements (mode, count[i], type,
indices[i], baseVertex[i]);

}

Finally, if you have a large number of draws to perform and the parameters
are already in a buffer object suitable for use by glDrawArraysIndirect()
or glDrawElementsIndirect(), it is possible to use the multi versions

of these two functions, giIMultiDrawArraysIndirect() and
glMultiDrawElementsIndirect().

OpenGL Drawing Commands

121

122

void glMultiDrawArraysIndirect(GLenum mode,
const void * indirect,
GLsizei drawcount,
GLsizei stride);

Draws multiple sets of primitives, the parameters for which are stored in
a buffer object. drawcount independent draw commands are dispatched as
a result of a call to gIMultiDrawArraysIndirect(), and parameters

are sourced from these commands as they would be for
glDrawArraysIndirect(). Each DrawArraysIndirectCommand structure
is separated by stride bytes. If stride is zero, then the data structures are
assumed to form a tightly packed array.

void glMultiDrawElementsIndirect(GLenum mode,
GLenum type,
const void * indirect,
GLsizei drawcount,
GLsizei stride);

Draws multiple sets of primitives, the parameters for which are stored
in a buffer object. drawcount independent draw commands are
dispatched as a result of a call to gIMultiDrawElementsIndirect(), and
parameters are sourced from these commands as they would be for
glDrawElementsIndirect(). Each DrawElementsIndirectCommand
structure is separated by stride bytes. If stride is zero, then the data
structures are assumed to form a tightly packed array.

OpenGL Drawing Exercises

This is a relatively simple example of using a few of the OpenGL drawing
commands covered so far in this chapter. Example 3.5 shows how the data
is loaded into the buffers required to use the draw commands in the
example. Example 3.6 shows how the drawing commands are called.

Example 3.5 Setting up for the Drawing Command Example

// A four vertices

static const GLfloat vertex_positions[] =

{
-1.0f, -1.0£f, 0.0f, 1.0f,
1.0, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0£f, 0.0f, 1.0f,
-1.0£f, -1.0f£, 0.0f, 1.0¢f,

Chapter 3: Drawing with OpenGL

// Color for each vertex
static const GLfloat vertex_colors[] =
{

1.0f£, 1.0f£, 1.0£, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
1.0£, 0.0£, 1.0£, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f

Y

// Three indices (we’'re going to draw one triangle at a time
static const GLushort vertex_indices[] =

// Set up the element array buffer
glGenBuffers(l, ebo);
glBindBuffer (GL_ELEMENT_ ARRAY_BUFFER, ebol[0]);
glBufferData (GL_ELEMENT_ARRAY_BUFFER,
sizeof (vertex_indices), vertex_indices, GL_STATIC_DRAW) ;

// Set up the vertex attributes
glGenVertexArrays(l, wvao);
glBindVertexArray (vao[0]) ;

glGenBuffers(l, vbo);
glBindBuffer (GL_ARRAY_BUFFER, vbo[0]);
glBufferData (GL_ARRAY_BUFFER,
sizeof (vertex_positions) + sizeof (vertex_colors),
NULL, GL_STATIC_DRAW) ;
glBufferSubData (GL_ARRAY_BUFFER, O,
sizeof (vertex_positions), vertex positions);
glBufferSubData (GL_ARRAY_BUFFER,
sizeof (vertex_positions), sizeof (vertex_colors),
vertex_colors) ;

Example 3.6 Drawing Commands Example

// DrawArrays

model_matrix = vmath::translation(-3.0f, 0.0f, -5.0f);
glUniformMatrix4fv (render_model_matrix_loc, 4, GL_FALSE, model_matrix) ;
glDrawArrays (GL_TRIANGLES, 0, 3);

// DrawElements

model_matrix = vmath::translation(-1.0f, 0.0f, -5.0f);
glUniformMatrix4fv (render_model_matrix_loc, 4, GL_FALSE, model_matrix) ;
glDrawElements (GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, NULL) ;

// DrawElementsBaseVertex

model_matrix = vmath::translation(1.0f, 0.0f, -5.0f);
glUniformMatrix4fv (render_model_matrix_loc, 4, GL_FALSE, model_matrix);
glDrawElementsBaseVertex (GL_TRIANGLES, 3, GL_UNSIGNED_SHORT, NULL, 1);

OpenGL Drawing Commands

123

124

// DrawArraysInstanced
model_matrix = vmath::translation(3.0f, 0.0f, -5.0f);
glUniformMatrix4fv (render_model_matrix_loc, 4, GL_FALSE, model_matrix);

glDrawArraysInstanced (GL_TRIANGLES, 0, 3, 1);

The result of the program in Examples 3.5 and 3.6 is shown in Figure 3.5.
It’s not terribly exciting, but you can see four similar triangles, each
rendered using a different drawing command.

Figure 3.5 Simple example of drawing commands

Restarting Primitives

As you start working with larger sets of vertex data, you are likely to
find that you need to make numerous calls to the OpenGL drawing
routines, usually rendering the same type of primitive (such as
GL_TRIANGLE_STRIP) that you used in the previous drawing call. Of
course, you can use the giIMultiDraw*() routines, but they require the
overhead of maintaining the arrays for the starting index and length of
each primitive.

OpenGL has the ability to restart primitives within the same drawing
command by specifying a special value, the primitive restart index, which is
specially processed by OpenGL. When the primitive restart index is
encountered in a draw call, a new rendering primitive of the same type is

Chapter 3: Drawing with OpenGL

started with the vertex following the index. The primitive restart index is
specified by the glPrimitiveRestartIndex() function.

void glPrimitiveRestartIndex(GLuint index);

Specifies the vertex array element index used to indicate that a new
primitive should be started during rendering. When processing of
vertex-array element indices encounters a value that matches index, no
vertex data is processed, the current graphics primitive is terminated, and
a new one of the identical type is started from the next vertex.

As vertices are rendered with one of the glDrawElements() derived
function calls, it can watch for the index specified by
glPrimitiveRestartIndex() to appear in the element array buffer. However,
it watches only for this index to appear if primitive restating is enabled.
Primitive restarting is controlled by calling glEnable() or glDisable() with
the GL_PRIMITIVE_RESTART parameter.

To illustrate, consider the layout of vertices in Figure 3.6, which shows
how a triangle strip would be broken in two by using primitive restarting.
In this figure, the primitive restart index has been set to 8. As the triangles
are rendered, OpenGL watches for the index 8 to be read from the element
array buffer, and when it sees it go by, rather than creating a vertex, it ends
the current triangle strip. The next vertex (vertex 9) becomes the first vertex
of a new triangle strip, and so in this case two triangle strips are created.

Figure 3.6 Using primitive restart to break a triangle strip

The following example demonstrates a simple use of primitive restart—it
draws a cube as a pair of triangle strips separated by a primitive restart
index. Examples 3.7 and 3.8 demonstrate how the data for the cube is
specified and then drawn.

Example 3.7 Intializing Data for a Cube Made of Two Triangle Strips

// 8 corners of a cube, side length 2, centered on the origin
static const GLfloat cube_positions[] =
{

-1.0£, -1.0f£, -1.0f, 1.0f,

-1.0£, -1.0£, 1.0f, 1.0f,

-1.0f£, 1.0f, -1.0f, 1.0f,

OpenGL Drawing Commands

125

-1.0£, 1.0f, 1.0f, 1.0f,
1.0£, -1.0£f, -1.0£f, 1.0f,
1.0£, -1.0£, 1.0f, 1.0f,
1.0£, 1.0f, -1.0f, 1.0f,
1.0f£, 1.0f, 1.0f, 1.0f

}i

// Color for each vertex
static const GLfloat cube_colors[] =

{

1.0£, 1.0£, 1.0£, 1.0f,
1.0£f, 1.0f£, 0.0£, 1.0f,
1.0£, 0.0f£, 1.0£, 1.0f,
1.0£, 0.0f£, 0.0£, 1.0f,
0.0f, 1.0f, 1.0£, 1.0f,
0.0£, 1.0£, 0.0f£, 1.0f,
0.0£f, 0.0f£, 1.0£, 1.0f,
0.5f£, 0.5f£, 0.5f, 1.0f

Y

// Indices for the triangle strips
static const GLushort cube_indices[] =

{

0, 1, 2, 3, 6, 7, 4, 5, // First strip
0XFFFF, // <<-- This is the restart index
2, 6, 0, 4, 1, 5, 3, 7 // Second strip

}i

// Set up the element array buffer
glGenBuffers(1l, ebo);
glBindBuffer (GL_ELEMENT_ ARRAY_BUFFER, ebo[0]);
glBufferData (GL_ELEMENT_ARRAY_BUFFER,
sizeof (cube_indices),
cube_indices, GL_STATIC_DRAW) ;

// Set up the vertex attributes
glGenVertexArrays (l, wvao);
glBindVertexArray (vao[0]) ;

glGenBuffers(1l, vbo);
glBindBuffer (GL_ARRAY_BUFFER, vbo[0]);
glBufferData (GL_ARRAY_BUFFER,
sizeof (cube_positions) + sizeof (cube_colors),
NULL, GL_STATIC_DRAW) ;
glBufferSubData (GL_ARRAY_BUFFER, O,
sizeof (cube_positions), cube_positions);
glBufferSubData (GL_ARRAY_BUFFER, sizeof (cube_positions),
sizeof (cube_colors), cube_colors);

glVertexAttribPointer (0, 4, GL_FLOAT,
GL_FALSE, 0, NULL);

glVertexAttribPointer (1, 4, GL_FLOAT,
GL_FALSE, O,

126 Chapter 3: Drawing with OpenGL

(const GLvoid «)sizeof (cube_positions));
glEnableVertexAttribArray (0) ;
glEnableVertexAttribArray (1) ;

Figure 3.7 shows how the vertex data given in Example 3.7 represents the
cube as two independent triangle strips.

¢ STRIP1 v °® STRIP2

Figure 3.7 Two triangle strips forming a cube

Example 3.8 Drawing a Cube Made of Two Triangle Strips Using
Primitive Restart

// Set up for a glDrawElements call
glBindVertexArray (vao[0]) ;
glBindBuffer (GL_ELEMENT_ARRAY_ BUFFER, ebo[01]);

#if USE_PRIMITIVE_RESTART
// When primitive restart is on, we can call one draw command
glEnable (GL_PRIMITIVE_RESTART) ;
glPrimitiveRestartIndex (0xFFFF) ;
glDrawElements (GL_TRIANGLE_STRIP, 17, GL_UNSIGNED_SHORT, NULL) ;
#else
// Without primitive restart, we need to call two draw commands
glDrawElements (GL_TRIANGLE_STRIP, 8, GL_UNSIGNED_SHORT, NULL) ;
glDrawElements (GL_TRIANGLE_STRIP, 8, GL_UNSIGNED_SHORT,

(const GLvoid *) (9 % sizeof (GLushort)));

#endif

Note: OpenGL will restart primitives whenever it comes across the
current restart index in the element array buffer. Therefore, it’s a
good idea to set the restart index to a value that will not be used in
your code. The default restart index is zero, which is very likely to
appear in your element array buffer. A good value to choose is
2" — 1, where n is the number of bits in your indices (i.e., 16 for
GL_UNSIGNED_SHORT indices and 32 for GL_UNSIGNED_INT
indices). This is very unlikely to be used as a real index. Sticking
with such a standard also means that you don’t need to figure out
the index for every model in your program.

OpenGL Drawing Commands

127

128

Instanced Rendering

Instancing, or instanced rendering, is a way of executing the same drawing
commands many times in a row, with each producing a slightly different
result. This can be a very efficient method of rendering a large amount of
geometry with very few API calls. Several variants of already-familiar
drawing functions exist to instruct OpenGL to execute the command
multiple times. Further, various mechanisms are available in OpenGL to
allow the shader to use the instance of the draw as an input, and to be
given new values for vertex attributes per-instance rather than per-vertex.
The simplest instanced rendering call is:

void glDrawArraysInstanced(GLenum mode, GLint first,
GLsizei count, GLsizei primCount);

Draws primCount instances of the geometric primitives specified by mode,
first, and count as if specified by individual calls to glDrawArrays(). The
built-in variable gl_InstanceID is incremented for each instance, and
new values are presented to the vertex shader for each instanced vertex
attribute.

This is the instanced version of glDrawArrays(); note similarity of the two
functions. The parameters of glDrawArraysInstanced() are identical to
those of glDrawArrays(), with the addition of the primCount argument.
This parameter specifies the count of the number of instances that are to be
rendered. When this function is executed, OpenGL will essentially execute
primCount copies of glDrawArrays(), with the mode, first, and count
parameters passed through. There are *Instanced versions of several of the
OpenGL drawing commands, including glDrawElementsInstanced() (for
glDrawElements()) and glDrawElementsInstancedBaseVertex() (for
glDrawElementsBaseVertex()). The glDrawElementsInstanced()
function is defined as:

void glDrawElementsInstanced(GLenum mode, GLsizei count,
GLenum type,
const void* indices,
GLsizei primCount);

Draws primCount instances of the geometric primitives specified by mode,
count and indices as if specified by individual calls to glDrawElements().
As with glDrawArraysInstanced(), the built-in variable g1_InstanceID
is incremented for each instance, and new values are presented to the
vertex shader for each instanced vertex attribute.

Chapter 3: Drawing with OpenGL

Again, note that the parameters to glDrawElementsInstanced() are
identical to glDrawElements(), with the addition of primCount. Each time
one of the instanced functions is called, OpenGL essentially runs the
whole command as many times as is specified by the primCount parameter.
This on its own is not terribly useful. However, there are two mechanisms
provided by OpenGL that allow vertex attributes to be specified as instanced
and to provide the vertex shader with the index of the current instance.

void glDrawElementsInstancedBaseVertex(GLenum mode,
GLsizei count,
GLenum type,
const void* indices,
GLsizei instanceCount,
GLuint baseVertex);

Draws instanceCount instances of the geometric primitives specified by
mode, count, indices, and baseVertex as if specified by individual calls to
glDrawElementsBaseVertex(). As with glDrawArraysInstanced(), the
built-in variable gl_TInstanceID is incremented for each instance, and
new values are presented to the vertex shader for each instanced vertex
attribute.

Instanced Vertex Attributes

Instanced vertex attributes behave similarly to regular vertex attributes.
They are declared and used in exactly the same way inside the vertex
shader. On the application side, they are also configured in the same way as
regular vertex attributes. That is, they are backed by buffer objects, can be
queried with glGetAttribLocation(), set up using glVertexAttribPointer(),
and enabled and disabled using glEnableVertexAttribArray()

and glDisableVertexAttribArray(). The important new

function that allows a vertex attribute to become instanced is as follows:

void glVertexAttribDivisor(GLuint index, GLuint divisor);

Specifies the rate at which new values of the instanced the vertex
attribute at index are presented to the vertex shader during instanced
rendering. A divisor value of O turns off instancing for the specified
attribute, whereas any other value of divisor indicates that a new value
should be presented to the vertex shader each divisor instances.

Instanced Rendering

129

The glVertexAttribDivisor() function controls the rate at which the vertex
attribute is updated. index is the index of the vertex attribute whose divisor
is to be set, and is the same as you would pass into glVertexAttribPointer()
or glEnableVertexAttribArray(). By default, a new value of each enabled
attribute is delivered to each vertex. Setting divisor to zero resets the attribute
to this behavior and makes it a regular, noninstanced attribute. A nonzero
value of divisor makes the attribute instanced and causes a new value to

be fetched from the attribute array once every divisor instances rather than
for every vertex. The index within the enabled vertex attribute array from
which the attribute is taken is then "gfﬁ‘i‘s’z,cf, where instance is the current
instance number and divisor is the value of divisor for the current attribute.
For each of the instanced vertex attributes, the same value is delivered to the
vertex shader for all vertices in the instance. If divisor is two, the value of the
attribute is updated every second instance; if it is three then the attribute
is updated every third instance, and so on. Consider the vertex attributes
declared in Example 3.9, some of which will be configured as instanced.

Example 3.9 Vertex Shader Attributes for the Instancing Example

#version 410 core

// "position" and "normal" are regular vertex attributes
layout (location = 0) in vec4d position;
layout (location = 1) in wvec3 normal;

// Color is a per-instance attribute
layout (location = 2) in wvec4d color;

// model_matrix will be used as a per-instance transformation
// matrix. Note that a mat4 consumes 4 consecutive locations, so
// this will actually sit in locations, 3, 4, 5, and 6.

layout (location = 3) in mat4 model_matrix;

Note that in Example 3.9, there is nothing special about the declaration of
the instanced vertex attributes color and model_matrix. Now consider
the code shown in Example 3.10, which configures a subset of vertex
attributes declared in Example 3.9 as instanced.

Example 3.10 Example Setup for Instanced Vertex Attributes

// Get the locations of the vertex attributes in "prog", which is
// the (linked) program object that we’re going to be rendering

// with. Note that this isn’t really necessary because we specified
// locations for all the attributes in our vertex shader. This code
// could be made more concise by assuming the vertex attributes are
// where we asked the compiler to put them.

int position_loc = glGetAttribLocation(prog, "position");
int normal_loc = glGetAttribLocation (prog, "normal");
int color_loc = glGetAttribLocation (prog, "color");

130 Chapter 3: Drawing with OpenGL

int matrix_loc = glGetAttribLocation (prog, "model_matrix");

// Configure the regular vertex attribute arrays -

// position and normal.

glBindBuffer (GL_ARRAY_ BUFFER, position_buffer);
glVertexAttribPointer (position_loc, 4, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (position_loc) ;

glBindBuffer (GL_ARRAY_BUFFER, normal_buffer);

glvertexAttribPointer (normal_loc, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (normal_loc) ;

// Now we set up the color array. We want each instance of our

// geometry to assume a different color, so we’ll just pack colors
// into a buffer object and make an instanced vertex attribute out
// of it.

glBindBuffer (GL_ARRAY_BUFFER, color_buffer);

glVertexAttribPointer (color_loc, 4, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (color_loc) ;

// This is the important bit... set the divisor for the color array
// to 1 to get OpenGL to give us a new value of "color" per-instance
// rather than per-vertex.

glVertexAttribDivisor (color_loc, 1);

// Likewise, we can do the same with the model matrix. Note that a
// matrix input to the vertex shader consumes N consecutive input
// locations, where N is the number of columns in the matrix. So...
// we have four vertex attributes to set up.
glBindBuffer (GL_ARRAY_BUFFER, model_matrix_buffer);
// Loop over each column of the matrix...
for (int 1 = 0; 1 < 4; 1i++)
{

// Set up the vertex attribute

glVertexAttribPointer (matrix_loc + i, // Location
4, GL_FLOAT, GL_FALSE, // vecd
sizeof (mat4), // Stride
(void «) (sizeof (vecd) « 1i)); // Start offset

// Enable it

glEnableVertexAttribArray (matrix_loc + 1i);
// Make it instanced
glVertexAttribDivisor (matrix_loc + i, 1);

}

In Example 3.10, position and normal are regular, noninstanced vertex
attributes. However, color is configured as an instanced vertex attribute
with a divisor of one. This means that each instance will have a new value
for the color attribute (which will be constant across all vertices in the
instance). Further, the model_matrix attribute will also be made
instanced to provide a new model transformation matrix for each instance.
A mat4 attribute is consuming a consecutive location. Therefore, we loop
over each column in the matrix and configure it separately. The remainder
of the vertex shader is shown in Example 3.11.

Instanced Rendering

131

132

Example 3.11 Instanced Attributes Example Vertex Shader

// The view matrix and the projection matrix are constant
// across a draw

uniform mat4 view_matrix;

uniform mat4 projection_matrix;

// The output of the vertex shader (matched to the
// fragment shader)

out VERTEX

{

vec3 normal ;
vecd color;
} vertex;
// Ok, go!

void main (void)

{
// Construct a model-view matrix from the uniform view matrix
// and the per-instance model matrix.
mat4d model_view_matrix = view_matrix * model_matrix;

// Transform position by the model-view matrix, then by the

// projection matrix.

gl_Position = projection_matrix * (model_view matrix =*
position) ;

// Transform the normal by the upper-left-3x3-submatrix of the

// model-view matrix

vertex.normal = mat3 (model_view _matrix) * normal;

// Pass the per-instance color through to the fragment shader.

vertex.color = color;

}

The code to set the model matrices for the instances and then draw the
instanced geometry using these shaders is shown in Example 3.12. Each
instance has its own model matrix, whereas the view matrix (consisting of
a rotation around the y axis followed by a translation in z) is common to
all instances. The model matrices are written directly into the buffer by
mapping it using glMapBuffer(). Each model matrix translates the object
away from the origin and then rotates the translated model around the
origin. The view and projection matrices are simply placed in uniform
variables. Then, a single call to glDrawArraysInstanced() is used to draw
all instances of the model.

Example 3.12 Instancing Example Drawing Code

// Map the buffer
mat4d » matrices = (mat4d)glMapBuffer (GL_ARRAY_BUFFER,
GL_WRITE_ONLY) ;

// Set model matrices for each instance

Chapter 3: Drawing with OpenGL

for (n = 0; n < INSTANCE_COUNT; n++)

float a 50.0f % float(n) .0f;
float b = 50.0f *« float(n) / 5.0f;
float ¢ = 50.0f float(n) / 6.0f;

~
=~

w1

matrices[n] = rotation(a + t % 360.0f, 1.0f, 0.0f, 0.0f) =
rotation(b + t % 360.0f, 0.0f, 1.0f, 0.0f) =
rotation(c + t * 360.0f, 0.0f, 0.0f, 1.0f) =«
translation(10.0f + a, 40.0f + b, 50.0f + ¢);

// Done. Unmap the buffer.
glUnmapBuffer (GL_ARRAY_BUFFER) ;

// Activate instancing program
glUseProgram (render_prog) ;

// Set up the view and projection matrices
mat4 view_matrix(translation(0.0f, 0.0f, -1500.0f) =
rotation(t * 360.0f = 2.0f, 0.0f, 1.0f, 0.0f));
matd projection_matrix(frustum(-1.0f, 1.0f,
-aspect, aspect, 1.0f, 5000.0f));

glUniformMatrix4fv(view_matrix_loc, 1,
GL_FALSE, view_matrix);
glUniformMatrix4fv (projection_matrix_loc, 1,
GL_FALSE, projection_matrix);

// Render INSTANCE_COUNT objects

glDrawArraysInstanced (GL_TRIANGLES, 0, object_size, INSTANCE_COUNT) ;

The result of the program is shown in Figure 3.8. In this example,

the constant INSTANCE_COUNT (which is referenced in the code of
Examples 3.10 and 3.12) is 100. One hundred copies of the model are
drawn, each with a different position and a different color. These
models could very easily be trees in a forest, space ships in a fleet, or
buildings in a city.

Instanced Rendering

133

134

Figure 3.8 Result of rendering with instanced vertex attributes

There are some inefficiencies in the example shown in Examples 3.9
through 3.12. Work that will produce the same result across all of the
vertices in an instance will still be performed per-vertex. Sometimes there
are ways to get around this. For example, the computation of
model_view_matrix will evaluate to the same matrix for all vertices
within a single instance. Here, we could avoid this work by using a second
instanced mat4 attribute to carry the per-instance model-view matrix. In
other cases, it may not be possible to avoid this work, but it may be
possible to move it into a geometry shader so that work is performed once
per-primitive rather than once per-vertex, or perhaps use geometry shader
instancing instead. Both of these techniques will be explained in

Chapter 10.

Note: Remember that calling an instanced drawing command is mostly
equivalent to calling its noninstanced counterpart many times
before executing any other OpenGL commands. Therefore,
converting a sequence of OpenGL functions called inside a loop to
a sequence of instanced draw calls will not produce identical
results.

Another example of a way to use instanced vertex attributes is to pack a set
of textures into a 2D array texture and then pass the array slice to be used
for each instance in an instanced vertex attribute. The vertex shader can
then pass the instance’s slice into the fragment shader, which can then
render each instance of the geometry with a different texture.

Chapter 3: Drawing with OpenGL

It is possible to internally add an offset to the indices used to fetch
instanced vertex attributes from vertex buffers. Similar to the baseVertex
parameter that is available through glDrawElementsBaseVertex(), the
instance offset is exposed through an additional baselnstance parameter in
some versions of the instanced drawing functions. The functions that take
a baselnstance parameter are glDrawArraysInstancedBaseInstance(),
glDrawElementsInstancedBaselnstance(), and
glDrawElementsInstancedBaseVertexBaseInstance(). Their prototypes
are as follows:

void glDrawArraysInstancedBaseInstance(GLenum mode,
GLint first,
GLsizei count,
GLsizei instanceCount,
GLuint baselnstance);

Draws primCount instances of the geometric primitives specified by mode,
first, and count as if specified by individual calls to glDrawArrays(). The
built-in variable gl_InstanceID is incremented for each instance, and
new values are presented to the vertex shader for each instanced vertex
attribute. Furthermore, the implied index used to fetch any instanced
vertex attributes is offset by the value of baselnstance by OpenGL.

void glDrawElementsInstancedBaseInstance(GLenum mode,
GLsizei count,
GLenum type,
const GLvoid * indices,
GLsizei instanceCount,
GLuint baselnstance);

Draws primCount instances of the geometric primitives specified by mode,
count, and indices as if specified by individual calls to glDrawElements().
As with glDrawArraysInstanced(), the built-in variable g1_InstanceID
is incremented for each instance, and new values are presented to the
vertex shader for each instanced vertex attribute. Furthermore, the
implied index used to fetch any instanced vertex attributes is offset by
the value of baselnstance by OpenGL.

Instanced Rendering

135

136

void glDrawElementsInstancedBaseVertexBaseInstance(GLenum mode,
GLsizei count,
GLenum type,
const GLvoid * indices,
GLsizei instanceCount,
GLuint baseVertex,
GLuint baselnstance);

Draws instanceCount instances of the geometric primitives specified by

mode, count, indices, and baseVertex as if specified by individual calls to
glDrawElementsBaseVertex(). As with glDrawArraysInstanced(), the built-in
variable gl_InstancelID is incremented for each instance, and new values are
presented to the vertex shader for each instanced vertex attribute. Furthermore,
the implied index used to fetch any instanced vertex attributes is offset by the
value of baselnstance by OpenGL.

Using the Instance Counter in Shaders

In addition to instanced vertex attributes, the index of the current instance
is available to the vertex shader in the built-in variable g1_InstancelID.
This variable is implicitly declared as an integer. It starts counting from
zero and counts up one each time an instance is rendered.
gl_InstanceID is always present in the vertex shader, even when the
current drawing command is not one of the instanced ones. In those cases,
it will just be zero. The value in g1_InstanceID may be used to index
into uniform arrays, perform texture lookups, as the input to an analytic
function, or for any other purpose.

In the following example, the functionality of Examples 3.9 through 3.12
is replicated by using gl_InstanceID to index into texture buffer objects
(TBOs) rather than through the use of instanced vertex attributes. Here,
the vertex attributes of Example 3.9 are replaced with TBO lookups, and so
are removed from the vertex attribute setup code. Instead, a first TBO
containing color of each instance, and a second TBO containing the model
matrices are created. The vertex attribute declaration and setup code are
the same as in Examples 3.9 and 3.10 (with the omission of the color and
model_matrix attributes, of course). As the instance’s color and model
matrix is now explicitly fetched in the vertex shader, more code is added to
the body of the vertex shader, which is shown in Example 3.13.

Example 3.13 gl_VertexID Example Vertex Shader

// The view matrix and the projection matrix are constant across a draw
uniform mat4d view_matrix;
uniform mat4 projection_matrix;

Chapter 3: Drawing with OpenGL

// These are the TBOs that hold per-instance colors and per-instance
// model matrices

uniform samplerBuffer color_tbo;

uniform samplerBuffer model_matrix_tbo;

// The output of the vertex shader (matched to the fragment shader)
out VERTEX
{
vec3 normal;
vec4d color;
} vertex;

// Ok, go!

void main (void)

{
// Use gl_InstanceID to obtain the instance color from the color TBO
vecd color = texelFetch(color_tbo, gl_InstancelD);

// Generating the model matrix is more complex because you can'’t
// store mat4 data in a TBO. Instead, we need to store each

// matrix as four vecd variables and assemble the matrix in the
// shader. First, fetch the four columns of the matrix

// (remember, matrices are stored in memory in column-major

// order) .

vecd coll = texelFetch(model_matrix_tbo, gl_InstanceID =* 4);
vecd col2 = texelFetch(model _matrix_tbo, gl_InstanceID * 4 + 1);
vecd col3 = texelFetch(model_matrix_ tbo, gl_InstanceID * 4 + 2);
vecd cold = texelFetch(model matrix_tbo, gl_InstanceID * 4 + 3);

// Now assemble the four columns into a matrix.
mat4d model_matrix = matd (coll, col2, col3, col4d);

// Construct a model-view matrix from the uniform view matrix
// and the per-instance model matrix.
mat4d model_view _matrix = view_matrix x model_matrix;

// Transform position by the model-view matrix, then by the

// projection matrix.

gl_Position = projection_matrix * (model_view _matrix =x
position) ;

// Transform the normal by the upper-left-3x3-submatrix of the

// model-view matrix

vertex.normal = mat3 (model_view_matrix) =* normal;

// Pass the per-instance color through to the fragment shader.

vertex.color = color;

}

To drive the shader of Example 3.13, we need to create and initialize TBOs
to back the color_tbo and model_matrix_tbo samplers rather than
initializing the instanced vertex attributes. However, aside from the
differences in setup code, the program is essentially unchanged.

Instanced Rendering

137

138

Example 3.14 contains the code to set up the TBOs for use with the shader
of Example 3.13.

Example 3.14 Example Setup for Instanced Vertex Attributes

// Get the locations of the vertex attributes in "prog", which is
// the (linked) program object that we’re going to be rendering

// with. Note that this isn’t really necessary because we specified
// locations for all the attributes in our vertex shader. This code
// could be made more concise by assuming the vertex attributes are
// where we asked the compiler to put them.

int position_loc = glGetAttribLocation(prog, "position");

int normal_loc = glGetAttribLocation (prog, "normal");

// Configure the regular vertex attribute arrays - position and normal.
glBindBuffer (GL_ARRAY_BUFFER, position_buffer) ;

glVertexAttribPointer (position_loc, 4, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (position_loc) ;

glBindBuffer (GL_ARRAY_BUFFER, normal_buffer);

glVertexAttribPointer (normal_loc, 3, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (normal_loc) ;

// Now set up the TBOs for the instance colors and model matrices...

// First, create the TBO to store colors, bind a buffer to it and
// initialize its format. The buffer has previously been created
// and sized to store one vec4d per-instance.

glGenTextures (1, &color_tbo) ;

glBindTexture (GL_TEXTURE_BUFFER, color_tbo);

glTexBuffer (GL_TEXTURE_BUFFER, GL_RGBA32F, color_buffer);

// Now do the same thing with a TBO for the model matrices. The
// buffer object (model_matrix_buffer) has been created and sized
// to store one mat4d per-instance.

glGenTextures (1, &model_matrix_tbo) ;

glActiveTexture (GL_TEXTUREL) ;

glBindTexture (GL_TEXTURE_BUFFER, model_matrix_tbo) ;

glTexBuffer (GL_TEXTURE_BUFFER, GL_RGBA32F, model_matrix_buffer) ;

Note that the code in Example 3.14 is actually shorter and simpler than
that in Example 3.10. This is because we have shifted the responsibility for
tetching per-instance data from built-in OpenGL functionality to the
shader writer. This can be seen in the increased complexity of

Example 3.13 relative to Example 3.11. With this responsibility comes
additional power and flexibility. For example, if the number of instances is
small, it may be preferable to use a uniform array rather than a TBO for
data storage, which may increase performance. Regardless, there are very
tew other changes that need to be made to the original example to move
to using explicit fetches driven by g1_InstanceID. In fact, the rendering

Chapter 3: Drawing with OpenGL

code of Example 3.12 is used intact to produce an identical result to the
original program. The proof is in the screenshot (Figure 3.9).

Figure 3.9 Result of instanced rendering using g1_InstancelID

Instancing Redux

To use a instancing in your program

e Create some vertex shader inputs that you intend to be instanced.
e Set the vertex attribute divisors with glVertexAttribDivisor().

e Use the gl_InstanceID built-in variable in the vertex shader.

e Use the instanced versions of the rendering functions such as
glDrawArraysInstanced()glDrawElementsInstanced(), or
glDrawElementsInstancedBaseVertex().

Instanced Rendering 139

This page intentionally left blank

Chapter 4

Color, Pixels, and
Framebuffers

Chapter Objectives

After reading this chapter, you'll be able to do the following:

Understand how OpenGL processes and represents the colors in your
generated images.

Identify the types of buffers available in OpenGL, and be able to clear
and control writing to them.

List the various tests and operations on fragments that occur after
fragment shading.

Use alpha blending to render translucent objects realistically.
Use multisampling and antialiasing to remove aliasing artifacts.

Employ occlusion queries and conditional rendering to optimize
rendering.

Create and use framebuffer objects for advanced techniques, and to
minimizing copying of data between buffers.

Retrieve rendered images, and copy pixels from one place to another,
or one framebuffer to another.

141

142

The goal of computer graphics, generally speaking, is to determine the
colors that make up an image. For OpenGL, that image is usually shown in
a window on a computer screen, which itself is made up of a rectangular
array of pixels, each of which can display its own color. This chapter
turther develops how you can use shaders in OpenGL to generate the
colors of the pixels in the framebuffer. We discuss how colors set in an
application directly contribute to a fragment’s color, the processing that
occurs after the completion of the fragment shader, and other techniques
used for improving the generated image. This chapter contains the
following major sections:

e ‘“Basic Color Theory”, which briefly describes the physics of light, and
how colors are represented in OpenGL.

e “Buffers and Their Uses” presents different kinds of buffers, how to
clear them, when to use them, and how OpenGL operates on them.

e “Color and OpenGL” explains how OpenGL processes color in its
pipeline.

e “Multisampling” introduces one of OpenGL’s antialiasing techniques,
and describes how it modfies rasterization.

e ‘“Testing and Operating on Fragments’’ describes the tests and
additional operations that can be applied to individual fragments after
the fragment shader has completed, including alpha blending.

e ‘“Per-Primitive Antialiasing” presents how blending can be used to
smooth the appearance of individual primitives.

e ‘“Framebuffer Objects” explains how to create and render to your own
framebuffers.

e ““Writing to Multiple Renderbuffers Simultaneously’’ describes
rendering to multiple buffers simultaneously.

o “Reading and Copying Pixel Data” explains how OpenGL represents
pixel data and the operations you can use to process is.

e “Copying Pixel Rectangles” discusses how to copy a block of pixels
from one section of the framebuffer to another in OpenGL.

Basic Color Theory

In the physical world, light is composed of photons—in simplest terms,
tiny particles traveling along a straight path! each with their own “color”,

1. Ignoring gravitational effects, of course.

Chapter 4: Color, Pixels, and Framebuffers

which in terms of physical quantities, is represented by their wavelength
(or frequency).? Photons that we can see have wavelengths in the visible
spectrum, which ranges from about 390 nanometers (the color violet) to
720 nanometers (the color red). The colors in between form the dominant
colors of the rainbow: violet, indigo, blue, green, yellow, orange, and red.

Your eye is capable of seeing many more colors than the seven that
compose the colors of the rainbow. In fact, what we really see is a mixture
of photons of different wavelengths that combine to form a unique color.
For example, ideal white light is composed of a equal quantities of photons
at all visible wavelengths. By comparison, laser light is monochromatic,
with all the photons having an identical frequency.

So what does this have to do with computer graphics and OpenGL, you
may ask? Modern display devices have a much more restricted range of
colors they can display—only a small portion of the entire visible
spectrum. In fact, the set of colors a device can display is often represented
as its gamut. Most display devices you'll work with while using OpenGL
create their colors using a combination of three primary colors—red, green,
and blue—which form the spectrum of colors that the device can display.
We'll call that the RGB color space, and use a set of three values for each
color. In OpenGL, we'll often pack those three components with a fourth
component alpha (which we discuss later in “Blending’’), which we’ll
predictably call the RGBA color space. In addition to RGB, OpenGL also
supports the sRGB color space. We'll encounter more about sSRGB when we
discuss framebuffer objects and texture maps.

Note: There are many color spaces, like HSV (Hue-Saturation-Value), or
CMYK (Cyan-Magenta-Yellow-Black) . If your data is in a color
space different than RGB, you'll need to convert it from that space
into RGB (or sRGB) to process it with OpenGL.

Unlike light in the physical world, where frequencies and intensities range
continuously, computer framebuffers can only represent a comparatively
small number of discrete values (although usually numbering in the
millions of colors). This quantization of intensities limits the number of
colors we can display. Normally, each component’s intensity is stored
using a certain number of bits (usually called its bit depth), and the sum of
each component’s bit depth (excluding alpha) determines the color
buffer’s depth, which also determines the total number of display colors.

2. A photon’s frequency and wavelength are related by the equation ¢ = v\, where c is the
speed of light (3 x 108meters/second), v is the photon’s frequency, and) its wavelength. And
for those who want to debate the wave-particle duality of light, we’re always open to that
discussion over a beer.

Basic Color Theory

143

144

For example, a common format for the color buffer is eight bits for each
red, green, and blue. This yields a 24-bit deep color buffer, which is capable
of displaying 2** unique colors. “Data in OpenGL Buffers” in Chapter 3
expanded on the types of buffers that OpenGL makes available and
describes how to control interactions with those buffers.

Buffers and Their Uses

An important goal of almost every graphics program is to draw pictures on
the screen (or into an off-screen buffer). The framebuffer (which is most
often the screen) is composed of a rectangular array of pixels, each capable
of displaying a tiny square of color at that point in the image. After the
rasterization stage, which is where the fragment shader was executed, the
data are not pixels yet—just fragments. Each fragment has coordinate data
that corresponds to a pixel, as well as color and depth values.

As shown in Figure 4.1, the lower-left pixel in an OpenGL window is pixel
(0,0), corresponding to the window coordinates of the lower-left corner of
the 1 x 1 region occupied by this pixel. In general, pixel (x, y) fills the
region bounded by x on the left, x + 1 on the right, y on the bottom, and
y+ 1 on the top.

y window
coordinate

3.0

2.0

Lower left corner —/fo.o 1.0 2.0 3.0 xwindow coordinate
of the window

Figure 4.1 Region occupied by a pixel

As an example of a buffer, let’s look more closely at the color buffer, which
holds the color information that’s to be displayed on the screen. Let’s

say that the screen is 1920 pixels wide and 1080 pixels high and that it’s

a full 24-bit color screen—in other words, that there are 22 (or 16,777,216)
different colors that can be displayed. Since 24 bits translate to 3 bytes

(8 bits per byte), the color buffer in this example has to store at least 3 bytes

Chapter 4: Color, Pixels, and Framebuffers

of data for each of the 2,073,600 (1920 x 1080) pixels on the screen. A
particular hardware system might have more or fewer pixels on the physical
screen, as well as more or less color data per pixel. Any particular color
buffer, however, has the same amount of data for each pixel on the screen.

The color buffer is only one of several buffers that hold information about
a pixel. In fact, a pixel may have many color buffers associated with it,
which are called renderbuffers, which we’ll discuss more in “Framebuffer
Obijects”” on Page 180. The framebuffer on a system comprises all of these
buffers, and you can use multiple framebuffers within your application.
With the exception of the primary color buffer, you don't view these other
buffers directly; instead, you use them to perform such tasks as
hidden-surface removal, stenciling, dynamic texture generation, and other
operations.

Within an OpenGL system the following types of buffers are available:
e Color buffers, of which there might be one or several active

e Depth buffer
e Stencil buffer

All of those buffers collectively form the framebuffer, although it’s up to
you to decide which of those buffers you need to use. When your
application starts, you're using the default framebuffer, which is the one
related to the windows of your application. The default framebuffer will
always contain a double-buffered, color buffer. You can create additional
framebuffer objects for doing off-screen rendering.

Your particular OpenGL implementation determines which buffers are
available and how many bits per pixel each buffer holds. Additionally, you
can have multiple visuals, or window types, that also may have different
buffers available. As we describe each of the types of buffers, we'll also cover
ways you can query their capabilities, in terms of data storage and precision.

We now briefly describe the type of data that each buffer type stores, and
then move to discussing operations that you do with each type of buffer.

Color Buffers

The color buffers are the ones to which you usually draw. They contain the
RGB or sRGB color data, and may also contain alpha values for each pixel
in the framebuffer. There may be multiple color buffers in a framebuffer.
The “main”’ color buffer of the default framebuffer is special because it’s
the one associated with your window on the screen and where you will
draw to have your image shown on the screen (assuming you want to
display an image there)—all other color buffers are off screen.

Buffers and Their Uses

145

146

The pixels in a color buffer may store a single color per pixel, or may
logically divide the pixel into subpixels, which enables an antialiasing
technique called multisampling. We discuss multisampling in detail in
“Multisampling’’ on Page 153.

You've already used double buffering for animation. Double buffering is
done by making the main color buffer have two parts: a front buffer that’s
displayed in your window; and a back buffer, which is where you render
the new image. When you swap the buffers (by calling glutSwapBuffers(),
for example), the front and back buffers are exchanged. Only the main
color buffer of the default framebuffer is double buffered.

Additionally, an OpenGL implementation might support stereoscopic
viewing, in which case the color buffer (even if it’s double buffered) will
have left and right color buffers for the respective stereo images.

Depth Buffer

The depth buffer stores a depth value for each pixel, and is used for
determining the visibility of objects in a three-dimensional scene. Depth is
measured in terms of distance to the eye, so pixels with larger depth-buffer
values are overwritten by pixels with smaller values. This is just a useful
convention, however, and the depth buffer’s behavior can be modified as
described in “Depth Test” on Page 163. The depth buffer is sometimes
called the z-buffer (the z comes from the fact that x- and y-values measure
horizontal and vertical displacement on the screen, and the z-value
measures distance perpendicular to the screen).

Stencil Buffer

Finally, the stencil buffer is used to restrict drawing to certain portions of the
screen. Think of it like a cardboard stencil that can be used with a can of
spray paint to make fairly precise painted images. For example, a classic use
is to simulate the view of a rear-view mirror in a car. You render the shape
of the mirror to the stencil buffer, and then draw the entire scene. The
stencil buffer prevents anything that wouldn’t be visible in the mirror from
being drawn. We discuss the stencil buffer in “Stencil Buffer”” on Page 146.

Clearing Buffers

Probably the most common graphics activity after rendering is clearing
buffers. You will probably do it once per frame (at least), and as such,
OpenGL tries to optimize that operation by clearing all of the active
buffers at the same time. As you've seen in our examples, we set the value

Chapter 4: Color, Pixels, and Framebuffers

that each type of buffer should be initialized to in init() (if we don’t use
the default values), and then clear all the buffers we need.

The following commands set the clearing values for each buffer:

void glClearColor(GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha);

void glClearDepth(GLclampd depth);

void glClearDepthf(GLclampf depth);

void glClearStencil(GLint s);

Specifies the current clearing values for the active color buffers, the depth
buffer, and the stencil buffer. The GLclampf and GLclampd types
(clamped GLfloat and clamped GLdouble) are clamped to be between 0.0
and 1.0. The default depth-clearing value is 1.0; all the other default
clearing values are 0. The values set with the clear commands remain in
effect until they’re changed by another call to the same command.

After you've selected your clearing values and you're ready to clear the
buffers, use glClear().

void glClear(GLbitfield mask);

Clears the specified buffers. The value of mask is the bitwise logical OR of
some combination of GL_COLOR_BUFFER _BIT, GL_DEPTH_BUFFER_BIT,
and GL_STENCIL_BUFFER_BIT to identify which buffers are to be cleared.
GL_COLOR_BUFFER_BIT clears the RGBA color buffer, and all the color
buffers that are enabled for writing (see “Selecting Color Buffers for
Writing and Reading’’ on Page 195). The pixel ownership test, scissor test,
and dithering, if enabled, are applied to the clearing operation, as are
masking operations as specified by glColorMask(). The depth and stencil
tests, however, do not affect the operation of glClear().

Masking Buffers
Before OpenGL writes data into the enabled color, depth, or stencil buffers,

a masking operation is applied to the data, as specified with one of the
following commands:

Buffers and Their Uses

147

148

void glColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha);

void glColorMaski(GLuint buffer, GLboolean red,
GLboolean green, GLboolean blue,
GLboolean alpha);

void glDepthMask(GLboolean flag);

void glStencilMask(GLboolean mask);

void glStencilMaskSeparate(GLenum face, GLuint mask);

Sets the masks used to control writing into the indicated buffers.

If flag is GL_TRUE for glDepthMask(), the depth buffer is enabled for
writing; otherwise, it’s disabled. The mask for glStencilMask() is used for
stencil data with a one in a bit in the mask indicating that writing to bit
in a pixel’s stencil value is enabled; a zero indicated that writing is
disabled.

The default values of all the GLboolean masks are GL_TRUE, and the
default values for the GLuint masks are all ones.

glStencilMaskSeparate() provides different stencil mask values for front-
and back-facing polygons.

glColorMaski() allows setting of the color mask for an individual buffer
specified by buffer when rendering to multiple color buffers.

Note: The mask specified by glStencilMask() controls which stencil
bitplanes are written. This mask isn’t related to the mask that’s
specified as the third parameter of glStencilFunc(), which specifies
which bitplanes are considered by the stencil function.

Color and OpenGL

How do we use color in OpenGL? As you've seen, it’s the job of the
fragment shader to assign a fragment’s color. There are many ways this can
be done.

e The fragment shader can generate the fragment’s color without using
any “external’ data (i.e., data passed into the fragment shader). A very
limited example of this was done in our shaders from Chapter 1 where
we assigned a constant color to each fragment.

e Additional color data could be provided with each input vertex,
potentially modified by another shading stage (e.g., vertex shading),

Chapter 4: Color, Pixels, and Framebuffers

and passed to the fragment shader, which uses that data to determine a
color. We'll demonstrate that in “Vertex Colors” on Page 150 in this
chapter.

e Supplemental data—but not specifically colors—could be provided to
the fragment shader and used in a computation that generates a color
(we'll use this technique in Chapter 7, “Light and Shadow"’).

e External data, like a digital image, can be referenced in a fragment
shader, which can look up colors (or other data values as well). Such
data are stored in a texture map, yielding a technique called texture
mapping, which we describe in Chapter 6, “Textures”.

Color Representation and OpenGL

Before we analyze those techniques in depth, let’s discuss how OpenGL
internally works with colors. We know that the framebuffer requires red,
green, and blue values to specify a color for a pixel, so hopefully it’s clear
that we’ll need to provide enough information to the fragment shader to
generate those values.

In the most common cases, OpenGL internally represents a color
component as a floating-point value and maintains its precision until that
value is stored in the framebuffer. Put another way, unless you specify
otherwise, a fragment shader will receive its inputs as floating-point
values, which it assigns to its fragment’s color, and those values are
expected to be in the range [0.0, 1.0]—what we'll called a normalized value.?
That color, as it’s written into the framebuffer, will be mapped into the
range of values the framebuffer can support. For instance, if the
framebuffer once again has eight bits for each of red, green, and blue, the
possible range for any color component is [0, 255].

Your application can provide data into OpenGL in almost any basic “C"”
data type (e.g., int, or £loat). You have the choice of requesting OpenGL
automatically convert nonfloating-point values into normalized
tloating-point values. You do this with the glVertexAttribPointer() or
glVertexAttribN*() routines, where OpenGL will convert the values from
the input data type into the suitable normalized-value range (depending
on whether the input data type was signed or unsigned). Table 4.1
describes how those data values are converted.

3. Signed normalized values are clamped to the range [-1.0, 1.0].

Color and OpenGL

149

Table 4.1 Converting Data Values to Normalized Floating-Point Values

OpenGL OpenGL Minimum Min Value Maximum Max Value
Type Enum Value Maps to Value Maps to
GLbyte GL_BYTE —128 —-1.0 127 1.0
GLshort GL_SHORT —32,768 —-1.0 32,767 1.0

GLint GL_INT —2,147,483,648 —1.0 2,147,483,647 1.0
GLubyte GL_UNSIGNED_BYTE 0 0.0 255 1.0
GLushort GL_UNSIGNED_SHORT 0O 0.0 65,535 1.0

GLint GL_UNSIGNED_INT 0 0.0 4,294,967,295 1.0
GLfixed GL_FIXED —32,767 —-1.0 32,767 1.0

Vertex Colors

Let’s take a closer look at specifying color data with a vertex. Recall from
Chapter 1 that vertices can have multiple data values associated with
them, and colors can be among them. As with any other vertex data, the
color data must be stored in a vertex-buffer object. In Example 4.1, we
interleave the vertices’ color and position data, and use an integer-valued
type to illustrate having OpenGL normalize our values.

Example 4.1 Specifying Vertex Color and Position Data: gouraud.cpp

J1170700777777070777
/7

// Gouraud.cpp

//

L1717 77000777 777070777 777177777

#include <iostream>
using namespace std;

#include "vgl.h"
#include "LoadShaders.h"

enum VAO_IDs { Triangles, NumVAOs };
enum Buffer IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0, vColor = 1 };

GLuint VAOs [NumVAOs] ;
GLuint Buffers[NumBuffers];

const GLuint NumVertices = 6;

150 Chapter 4: Color, Pixels, and Framebuffers

// i
//

void
init

{

Exam

nit

(void)

glGenVertexArrays (NumVAOs, VAOs) ;
glBindVertexArray (VAOs [Triangles]) ;

struct VertexData {
GLubyte color([4];
GLfloat position([4];
}i

VertexData vertices[NumVertices] = {
{{ 255, 0, 0, 255 3}, { -0.90, -0.90 }}, // Triangle 1
{{ 0, 255, 0, 255 3}, { 0.85, -0.90 }},
{{ 0, 0, 255, 255 3}, { -0.90, 0.85 }}
{{ 10, 10, 10, 255 3}, { 0.90, -0.85 }}, // Triangle 2
{{ 100, 100, 100, 255 3}, { 0.90, 0.90 }}
{{ 255, 255, 255, 255 1}, { -0.85, 0.90 }}

}i

glGenBuffers (NumBuffers, Buffers);

glBindBuffer (GL_ARRAY_ BUFFER, Buffers[ArrayBuffer]);

glBufferData (GL_ARRAY_BUFFER, sizeof (vertices),
vertices, GL_STATIC_DRAW) ;

ShaderInfo shaders([] = {
{ GL_VERTEX_SHADER, "gouraud.vert" },
{ GL_FRAGMENT_SHADER, "gouraud.frag" },
{ GL_NONE, NULL }

}i

GLuint program = LoadShaders (shaders) ;
glUseProgram (program) ;

glVertexAttribPointer (vColor, 4, GL_UNSIGNED_BYTE,
GL_TRUE, sizeof (VertexData),
BUFFER_OFFSET (0)) ;
glVertexAttribPointer (vPosition, 2, GL_FLOAT,
GL_FALSE, sizeof (VertexData),
BUFFER_OFFSET (sizeof (vertices[0].color)));

glEnableVertexAttribArray (vColor) ;
glEnableVertexAttribArray (vPosition) ;

ple 4.1 is only a slight modification of our example from Chapter 1,

triangles.cpp. First, we created a simple structure VertexData that
encapsulates all of the data for a single vertex: an RGBA color for the
vertex, and its spatial position. Like before, we packed all the data into an

Color and OpenGL

151

152

array that we'll load into our vertex buffer object. As there are now two
vertex attributes for our vertex data, we needed to add a second vertex
attribute pointer to address the new vertex colors so we can work with that
data in our shaders. For the vertex colors, we also ask OpenGL to
normalize our colors by setting the fourth parameter to GL_TRUE.

To use our vertex colors, we need to modify our shaders to take the new
data into account. First, let’s look at the vertex shader:

Example 4.2 A Simple Vertex Shader for Gouraud Shading
#version 330 core

layout (location
layout (location

0) in vec4d4 vPosition;
1) in vec4 vColor;

out vecd color;

void

main ()

{
color = vColor;
gl_Position = vPosition;

}

Modifying our vertex shader in Example 4.2 to use the new vertex colors is
straightforward. We added new input and output variables: vColor, and
color to complete the plumbing for getting our vertex colors into and out
of our vertex shader. In this case, we'll simply pass through our color data
for use in the fragment shader.

Example 4.3 A Simple Fragment Shader for Gouraud Shading
#version 330 core
in vec4d color;
out vec4d fColor;

void
main ()
{

fColor = color;

}

The fragment shader in Example 4.3, looks pretty simple as well; just
assigning the shader’s input color to the fragment’s output color. However,
what's different is that the colors passed into the fragment shader don't
come directly from the immediately preceding shader stage (i.e., the vertex
shader), but from the rasterizer.

Chapter 4: Color, Pixels, and Framebuffers

Rasterization

Within the OpenGL pipeline, between the vertex shading stages (vertex,
tessellation, and geometry shading) and fragment shading, is the rasterizer.
Its job is to determine which screen locations are covered by a particular
piece of geometry (point, line, or triangle). Knowing those locations, along
with the input vertex data, the rasterizer linearly interpolates the data
values for each varying variable in the fragment shader and sends those
values as inputs into your fragment shader. This process of linear
interpolation when applied to color values has a special name in computer
graphics: Gouraud shading.* Colors are not the only values that are
interpolated across a geometric primitive. We’ll see in Chapter 7, “Light
and Shadow"’ that a quantity called the surface normal can also be
interpolated, as are texture coordinates used with texture mapping
(described in Chapter 6, “Textures”).

Note: How an OpenGL implementation rasterizes and interpolates
values is platform-dependent; you should not expect that different
platforms will interpolate values identically.

While rasterization starts a fragment’s life, and the computations done in
the fragment shader are essential in computing the fragment’s final color,
it's by no means all the processing that can be applied to a fragment. In the
next sections, we'll describe the tests and operations that are applied to
each fragment in its travels to becoming a pixel in the framebuffer.

Multisampling

Multisampling is a technique for smoothing the edges of geometric
primitives—commonly known as antialiasing. There are many ways to do
antialiasing, and OpenGL supports different methods for supporting
antialiasing. Other methods require some techniques we haven't discussed
yet, so we'll defer that conversation until “Per-Primitive Antialiasing’’ on
Page 178.

Multisampling works by sampling each geometric primitive multiple times
per pixel. Instead of keeping a single color (and depth and stencil values, if
present) for each pixel, multisampling uses multiple samples, which are
like mini-pixels, to store color, depth, and stencil values at each sample
location. When it comes time to present the final image, all of the samples

4. When all of the color values for a primitive’s vertices are the same, each fragment will receive
the same color value. This is called flat shading.

Multisampling 153

154

for the pixel are resolved to determine the final pixel’s color. Aside from a
little initialization work, and turning on the feature, multisampling
requires very little modification to an application.

Your application begins by requesting a multisampled buffer (which is
done when creating your window). You can determine if the request was
successful (as not all implementations support multisampling) by querying
GL_SAMPLE_BUFFERS using glGetIntegerv(). If the value is one, then
multisampled rasterization can be used; if not, then single-sample
rasterization just like normal will be used. To engage multisampling during
rendering, call glEnable() with GL_MULTISAMPLE. Since multisampling
takes additional time in rendering each primitive, you may not always
want to multisample all of your scene’s geometry.

Next, it’s useful to know how many samples per pixel will be used when
multisampling, which you can determine by calling glGetIntegerv() with
GL_SAMPLES. This value is useful if you wish to know the sample
locations within a pixel, which you can find using the
glGetMultisampletfv() function.

void glGetMultisamplefv(GLenum pname, GLuint index,
GLfloat *val);

With pname set to GL_SAMPLE_POSITION, glGetMultisamplefv() will
return the location of sample index as a pair of floating-point values in
val. The locations will be in the range [0, 1], representing the sample’s
offset from the pixel’s lower-left corner.

A GL_INVALID_VALUE error is generated if index is greater than or equal
to the number of samples supported (as returned by a call to
glGetIntegerv() when passed GL_SAMPLES).

From within a fragment, you can get the same information by reading the
value of g1_SamplePosition. Additionally, you can determine which
sample your fragment shader is processing by using the gl_SampleID
variable.

With multisampling only enabled, the fragment shader will be executed as
normal, and the resulting color will be distributed to all samples for the
pixels. That is, the color value will be the same, but each sample will
receive individual depth and stencil values from the rasterizer. However, if
your fragment shader uses either of the previously mentioned
gl_samplex variables, or modifies any of its shader input variables with
the sample keyword, the fragment shader will be executed multiple times
for that pixel, once for each active sample location.

Chapter 4: Color, Pixels, and Framebuffers

Example 4.4 A Multisample-Aware Fragment Shader

#version 430 core
sample in vec4 color;
out vec4d fColor;

void main ()
{
fColor = color;

}

The simple addition of the sample keyword in Example 4.4 causes each
instance of the sample shader (which is the terminology used when a
fragment shader is executed per sample) to receive slightly different values
based on the sample’s location. Using these, particularly when sampling a
texture map, will provide better results.

Sample Shading

If you can’t modify a fragment shader to use the sample keyword (e.g.,
you're creating a library that accepts shaders created by another
programmer), you can have OpenGL do sample shading by passing
GL_SAMPLE_SHADING to glEnable(). This will cause unmodified
fragment shader in variables to be interpolated to sample locations
automatically.

In order to control the number of samples that receive unique
sample-based interpolated values to be evaluated in a fragment shader, you
can specify the minimum-sample-shading ratio with
gIMinSampleShading().

void gIMinSampleShading(GLfloat value);

Specifies the fraction of samples per pixels that should be individually
shaded. value specifies the ratio of samples to be shaded over total
samples, and is clamped to the range [0, 1], with 1.0 representing each
sample receives a unique set of sample data.

You might ask why specify a fraction, as compared to an absolute number
of samples? Various OpenGL implementations may have differing
numbers of samples per pixel. Using a fraction-based approach reduces the
need to test multiple sample configurations.

Multisampling

155

156

Additionally, multisampling using sample shading can add a lot more
work in computing the color of a pixel. If your system has four samples per
pixels, you've quadrupled the work per pixel in rasterizing primitives,
which can potentially hinder your application’s performance.
gIMinSampleShading() controls how many samples per pixel receive
individually shaded values (i.e., each executing its own version of the
bound fragment shader at the sample location). Reducing the
minimum-sample-shading ratio can help improve performance in
applications bound by the speed at which it can shade fragments.

We'll visit multisampling again in “Testing and Operating on Fragments”
on Page 156, because a fragment’s alpha value can be modified by the
results of shading at sample locations.

Testing and Operating on Fragments

When you draw geometry on the screen, OpenGL starts processing it by
executing the currently bound vertex shader; then the tessellation, and
geometry shaders, if they’re bound; and then assembles the final geometry
into primitives that get sent to the rasterizer, which figures out which
pixels in the window are affected. After OpenGL determines that an
individual fragment should be generated, its fragment shader is executed,
and then several processing stages, which control how and whether the
fragment is drawn as a pixel into the framebuffer, remain. For example, if
the fragment is outside a rectangular region or if it’s farther from the
viewpoint than the pixel that’s already in the framebuffer, its processing is
stopped, and it’s not drawn. In another stage, the fragment’s color is
blended with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must
pass before it goes into the framebuffer and the possible final operations
that can be performed on the fragment as it’s written. Most of these tests
and operations are enabled and disabled using glEnable() and glDisable(),
respectively. The tests and operations occur in the following order—if a
fragment is eliminated in an enabled earlier test, none of the later enabled
tests or operations are executed:

1. Scissor test
Multisample fragment operations

Stencil test

W

Depth test

Chapter 4: Color, Pixels, and Framebuffers

5. Blending
6. Dithering

7. Logical operations

All of these tests and operations are described in detail in the following
subsections.

Note: As we'll see in “Framebuffer Objects”” on Page 180, we can render
into multiple buffers at the same time. For many of the fragment
tests and operations, they can be controlled on a per-buffer basis,
as well as for all of the buffers collectively. In many cases, we
describe both the OpenGL function that will set the operation for
all buffers, as well as the routine for affecting a single buffer. In
most cases, the single buffer version of a function will have an i’
appended to the function’s name.

Scissor Test

The first additional test you can enable to control fragment visibility is the
scissor test. The scissor box is a rectangular portion of your window and
restricts all drawing to its region. You specify the scissor box using the
glScissor() command, and enable the test by specifying GL_SCISSOR_TEST
with glEnable(). If a fragment lies inside the rectangle, it passes the scissor
test.

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

Sets the location and size of the scissor rectangle (also known as the
scissor box). The parameters define the lower left corner (x, y) and the
width and height of the rectangle. Pixels that lie inside the rectangle pass
the scissor test. Scissoring is enabled and disabled by passing
GL_SCISSOR_TEST to glEnable() and glDisable(). By default, the
rectangle matches the size of the window and scissoring is disabled.

All rendering—including clearing the window—is restricted to the scissor
box if the test is enabled (as compared to the viewport, which doesn’t limit
screen clears). To determine whether scissoring is enabled and to obtain
the values that define the scissor rectangle, you can use GL_SCISSOR_TEST
with gllsEnabled() and GL_SCISSOR_BOX with glGetIntegerv().

Testing and Operating on Fragments

157

158

Multisample Fragment Operations

By default, multisampling calculates fragment coverage values that are
independent of alpha. However, if you glEnable() one of the following
special modes, then a fragment’s alpha value is taken into consideration
when calculating the coverage, assuming that multisampling itself is
enabled and that there is a multisample buffer associated with the
framebuffer. The special modes are as follows:

e GL_SAMPLE_ALPHA_TO_COVERAGE uses the alpha value of the
fragment in an implementation-dependent manner to compute the
final coverage value.

e GL_SAMPLE_ALPHA_TO_ONE sets the fragment’s alpha value the
maximum alpha value, and then uses that value in the coverage
calculation.

e GL_SAMPLE_COVERAGE uses the value set with the
glSampleCoverage() routine, which is combined (ANDed) with the
calculated coverage value. Additionally, the generated sample mask can
be inverted by setting the invert flag with the glSampleCoverage()
routine.

void glSampleCoverage(GLfloat value, GLboolean invert);

Sets parameters to be used to interpret alpha values while computing
multisampling coverage. value is a temporary coverage value that is used
it GL_SAMPLE_COVERAGE or GL_SAMPLE_ALPHA_TO_COVERAGE has
been enabled. invert is a Boolean that indicates whether the temporary
coverage value ought to be bitwise inverted before it is used (ANDed)
with the fragment coverage.

o GL_SAMPLE_MASK specifies an exact bit-representation for the
coverage mask (as compared to it being generated by the OpenGL
implementation). This mask is once again ANDed with the sample
coverage for the fragment. The sample mask is specified using the
glSampleMaski() function.

Chapter 4: Color, Pixels, and Framebuffers

void glSampleMaski(GLuint index, GLbitfield mask);

Sets one 32-bit word of the sample mask, mask. The word to set is
specified by index and the new value of that word is specified by mask. As
samples are written to the framebuffer, only those whose corresponding
bits in the current sample mask will be updated and the rest will be
discarded.

The sample mask can also be specified in a fragment shader by writing to
the g1_SampleMask variable. Details of using g1_SampleMask are covered
in “Built-in GLSL Variables and Functions”’.

Stencil Test

The stencil test takes place only if there is a stencil buffer, which you need
to request when your window is created. (If there is no stencil buffer, the
stencil test always passes.) Stenciling applies a test that compares a
reference value with the value stored at a pixel in the stencil buffer.
Depending on the result of the test, the value in the stencil buffer can be
modified. You can choose the particular comparison function used, the
reference value, and the modification performed with the glStencilFunc()
and glStencilOp() commands.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
void glStencilFuncSeparate(GLenum face, GLenum func,
GLint ref, GLuint mask);

Sets the comparison function (func), the reference value (ref), and a mask
(mask) for use with the stencil test. The reference value is compared with
the value in the stencil buffer using the comparison function, but the
comparison applies only to those bits for which the corresponding bits of
the mask are 1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS,
GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or
GL_NOTEQUAL.

If it’s GL_LESS, for example, then the fragment passes if ref is less than the
value in the stencil buffer. If the stencil buffer contains s bitplanes, the
low-order s bits of mask are bitwise ANDed with the value in the stencil
buffer and with the reference value before the comparison is performed.

Testing and Operating on Fragments

159

160

The masked values are all interpreted as nonnegative values. The stencil
test is enabled and disabled by passing GL_STENCIL_TEST to glEnable()
and glDisable(). By default, func is GL_ALWAYS, ref is zero, mask is all
ones, and stenciling is disabled.

glStencilFuncSeparate() allows separate stencil function parameters to
be specified for front- and back-facing polygons (as set with
glCullFace()).

void glIStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
void glStencilOpSeparate(GLenum face, GLenum fail,
GLenum zfail, GLenum zpass);

Specifies how the data in the stencil buffer is modified when a fragment
passes or fails the stencil test. The three functions fail, zfail, and zpass can
be GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP,
GL_DECR, GL_DECR_WRAP, or GL_INVERT. They correspond to keeping
the current value, replacing it with zero, replacing it with the reference
value, incrementing it with saturation, incrementing it without
saturation, decrementing it with saturation, decrementing it without
saturation, and bitwise-inverting it. The result of the increment and
decrement functions is clamped to lie between zero and the maximum
unsigned integer value (2° — 1 if the stencil buffer holds s bits).

The fail function is applied if the fragment fails the stencil test; if it
passes, then zfail is applied if the depth test fails and zpass is applied if
the depth test passes, or if no depth test is performed. By default, all three
stencil operations are GL_KEEP.

glStencilOpSeparate() allows separate stencil tests to be specified for
front- and back-facing polygons (as set with glCullFace()).

“With saturation” means that the stencil value will clamp to extreme
values. If you try to decrement zero with saturation, the stencil value
remains zero. “Without saturation” means that going outside the indicated
range wraps around. If you try to decrement zero without saturation, the
stencil value becomes the maximum unsigned integer value (quite large!).

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the
query function glGetIntegerv() and one of the values shown in Table 4.2.

Chapter 4: Color, Pixels, and Framebuffers

You can also determine whether the stencil test is enabled by passing
GL_STENCIL_TEST to glIsEnabled().

Table 4.2 Query Values for the Stencil Test

Query Value Meaning

GL_STENCIL_FUNC stencil function

GL_STENCIL_REF stencil reference value
GL_STENCIL_VALUE_MASK stencil mask

GL_STENCIL_FAIL stencil fail action
GL_STENCIL_PASS_DEPTH_FAIL stencil pass and depth buffer fail action
GL_STENCIL_PASS_DEPTH_PASS stencil pass and depth buffer pass action

Stencil Examples

Probably the most typical use of the stencil test is to mask out an
irregularly shaped region of the screen to prevent drawing from occurring
within it. To do this, fill the stencil mask with zeros, and then draw the
desired shape in the stencil buffer with ones. You can’t draw geometry
directly into the stencil buffer, but you can achieve the same result by
drawing into the color buffer and choosing a suitable value for the zpass
tunction (such as GL_REPLACE). Whenever drawing occurs, a value is also
written into the stencil buffer (in this case, the reference value). To prevent
the stencil-buffer drawing from affecting the contents of the color buffer,
set the color mask to zero (or GL_FALSE). You might also want to disable
writing into the depth buffer. After you've defined the stencil area, set the
reference value to one, and set the comparison function such that the
fragment passes if the reference value is equal to the stencil-plane value.
During drawing, don’t modity the contents of the stencil planes.

Example 4.5 Using the Stencil Test: stencil.c

void
init (void)
{

...// Set up our vertex arrays and such

// Set the stencil’s clear value
glClearStencil (0x0) ;

glEnable (GL_DEPTH_TEST) ;
glEnable (GL_STENCIL_TEST) ;

Testing and Operating on Fragments

161

162

// Draw a sphere in a diamond-shaped section in the
// middle of a window with 2 tori.

void
display(void)
{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

// draw sphere where the stencil is 1
glStencilFunc (GL_EQUAL, O0x1, 0x1);
glStencilOp (GL_KEEP, GL_KEEP, GL_KEEP) ;
drawSphere () ;

// draw the tori where the stencil is not 1
glStencilFunc (GL_NOTEQUAL, O0Ox1, 0x1);
drawTori () ;

}

// Whenever the window is reshaped, redefine the
// coordinate system and redraw the stencil area.

void
reshape (int width, int height)

{
glViewport (0, 0, width, height);

// create a diamond shaped stencil area

glClear (GL_STENCIL_BUFFER_BIT) ;

glStencilFunc (GL_ALWAYS, Ox1, 0x1);

glStencilOp (GL_REPLACE, GL_REPLACE, GL_REPLACE);

drawMask () ;

}

Example 4.5 demonstrates how to use the stencil test in this way. Two tori
are drawn, with a diamond-shaped cutout in the center of the scene. Within
the diamond-shaped stencil mask, a sphere is drawn. In this example,
drawing into the stencil buffer takes place only when the window is
redrawn, so the color buffer is cleared after the stencil mask has been created.

The following examples illustrate other uses of the stencil test.

1. Capping—Suppose you're drawing a closed convex object (or several of
them, as long as they don't intersect or enclose each other) made up of
several polygons, and you have a clipping plane that may or may not
slice off a piece of it. Suppose that if the plane does intersect the
object, you want to cap the object with some constant-colored surface,
rather than see the inside of it. To do this, clear the stencil buffer to
zeros, and begin drawing with stenciling enabled and the stencil
comparison function set always to accept fragments. Invert the value
in the stencil planes each time a fragment is accepted.

Chapter 4: Color, Pixels, and Framebuffers

After all the objects are drawn, regions of the screen where no capping
is required have zeros in the stencil planes, and regions requiring
capping are nonzero. Reset the stencil function so that it draws only
where the stencil value is nonzero, and draw a large polygon of the
capping color across the entire screen.

2. Stippling—Suppose you want to draw an image with a stipple pattern.
You can do this by writing the stipple pattern into the stencil buffer
and then drawing conditionally on the contents of the stencil buffer.
After the original stipple pattern is drawn, the stencil buffer isn’t
altered while drawing the image, so the object is stippled by the
pattern in the stencil planes.

Depth Test

For each pixel on the screen, the depth buftfer keeps track of the distance
between the viewpoint and the object occupying that pixel. Then, if the
specified depth test passes, the incoming depth value replaces the value
already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new
candidate color for that pixel appears, it’s drawn only if the corresponding
object is closer than the previous object. In this way, after the entire scene
has been rendered, only objects that aren’t obscured by other items
remain. Initially, the clearing value for the depth buffer is a value that’s as
tar from the viewpoint as possible, so the depth of any object is nearer
than that value. If this is how you want to use the depth buffer, you simply
have to enable it by passing GL_DEPTH_TEST to glEnable() and remember
to clear the depth buffer before you redraw each frame. (See “Clearing
Buffers” on Page 146.) You can also choose a different comparison function
for the depth test with glDepthFunc().

void glDepthFunc(GLenum func);

Sets the comparison fun for the depth test. The value for func must be
GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. An incoming fragment
passes the depth test if its z-value has the specified relation to the value
already stored in the depth buffer. The default is GL_LESS, which means
that an incoming fragment passes the test if its z-value is less than that
already stored in the depth buffer. In this case, the z-value represents the
distance from the object to the viewpoint, and smaller values mean that
the corresponding objects are closer to the viewpoint.

Testing and Operating on Fragments

163

More context is provided in “OpenGL Transformations” in Chapter 5 for
setting a depth range.

Polygon Offset

If you want to highlight the edges of a solid object, you might draw the
object with polygon mode set to GL_FILL, and then draw it again, but in a
different color and with the polygon mode set to GL_LINE. However,
because lines and filled polygons are not rasterized in exactly the same
way, the depth values generated for the line and polygon edge are usually
not the same, even between the same two vertices. The highlighting lines
may fade in and out of the coincident polygons, which is sometimes called
“stitching” and is visually unpleasant.

This undesirable effect can be eliminated by using polygon offset, which
adds an appropriate offset to force coincident z-values apart, separating a
polygon edge from its highlighting line. (The stencil buffer, can also be
used to eliminate stitching. However, polygon offset is almost always faster
than stenciling.) Polygon offset is also useful for applying decals to surfaces
by rendering images with hidden-line removal. In addition to lines and filled
polygons, this technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type
of polygon rasterization mode: GL_FILL, GL_LINE, and GL_POINT. You
enable the polygon offset by passing the appropriate parameter to
glEnable()—either GL_POLYGON_OFFSET FILL,
GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT. You must
also call glPolygonMode() to set the current polygon rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);

When enabled, the depth value of each fragment is modified by adding a
calculated offset value before the depth test is performed. The offset value
is calculated by

offset = m - factor + r - units

where m is the maximum depth slope of the polygon (computed during
rasterization), and r is the smallest value guaranteed to produce a
resolvable difference in depth values and is an implementation-specific
constant. Both factor and units may be negative.

164 Chapter 4: Color, Pixels, and Framebuffers

To achieve a nice rendering of the highlighted solid object without visual
artifacts, you can add either a positive offset to the solid object (push it
away from you) or a negative offset to the wireframe (pull it toward you).
The big question is: How much offset is enough? Unfortunately, the offset
required depends on various factors, including the depth slope of each
polygon and the width of the lines in the wireframe.

OpenGL calculates the depth slope, as illustrated in Figure 4.2, which is
the z (depth) value divided by the change in either the x- or y-coordinates
as you traverse the polygon. The depth values are clamped to the range

[0, 1], and the x- and y-coordinates are in window coordinates. To estimate
the maximum depth slope of a polygon (m in the offset equation above),

use the formula
m= % ’ + % ’
o\ \ox dy

or an implementation may use the approximation

m:max(

oz 07
ox’ dy

Polygon with depth slope = 0

Polygon with depth slope > 0

Figure 4.2 Polygons and their depth slopes

For polygons that are parallel to the near and far clipping planes, the depth
slope is zero. Those polygons can use a small constant offset, which you
can specify by setting factor = 0.0 and units = 1.0 in your call to
glPolygonOffset().

Testing and Operating on Fragments

165

166

For polygons that are at a great angle to the clipping planes, the depth
slope can be significantly greater than zero, and a larger offset may be
needed. A small, nonzero value for factor, such as 0.75 or 1.0, is probably
enough to generate distinct depth values and eliminate the unpleasant
visual artifacts.

In some situations, the simplest values for factor and units (1.0 and 1.0)
aren’t the answer. For instance, if the widths of the lines that are
highlighting the edges are greater than 1, then increasing the value of
factor may be necessary. Also, since depth values while using a perspective
projection are unevenly transformed into window coordinates, less offset
is needed for polygons that are closer to the near clipping plane, and more
offset is needed for polygons that are farther away. You may need to
experiment with the values you pass to glPolygonOffset() to get the result
you're looking for.

Blending

Once an incoming fragment has passed all of the enabled fragment tests, it
can be combined with the current contents of the color buffer in one of
several ways. The simplest way, which is also the default, is to overwrite
the existing values, which admittedly isn’t much of a combination.
Alternatively, you might want to combine the color present in the
framebuffer with the incoming fragment color—a process called blending.
Most often, blending is associated with the fragment’s alpha value (or
commonly just alpha), but that’s not a strict requirement. We've
mentioned alpha several times but haven't given it a proper description.
Alpha is the fourth color component, and all colors in OpenGL have an
alpha value (even if you don't explicitly set one). However, you don't see
alpha, but rather you see alpha’s effect: it's a measure of translucency, and
is what'’s used when you want to simulate translucent objects, like colored
glass for example.

However, unless you enable blending by calling glEnable() with
GL_BLEND, or employ advanced techniques like order-independent
transparency (discussed in “Order-Independent Transparency” in

Chapter 11), alpha is pretty much ignored by the OpenGL pipeline. You
see, just like the real world, where color of a translucent object is a
combination of that object’s color with the colors of all the objects you see
behind it. For OpenGL to do something useful with alpha, the pipeline
needs more information than the current primitive’s color (which is the
color output from the fragment shader); it needs to know what color is
already present for that pixel in the framebuffer.

Chapter 4: Color, Pixels, and Framebuffers

Blending Factors

In basic blending mode, the incoming fragment’s color is linearly
combined with the current pixel’s color. As with any linear combination,
coefficients control the contributions of each term. For blending in
OpenGL, those coefficients are called the source- and destination-blending
factors. The source-blending factor is associated with the color output from
the fragment shader, and similarly, the destination-blending factor is
associated with the color in the framebuffer.

If we let (S, Sg, Sp, Sa) represent the source-blending factors, and likewise let
(Dy, Dy, Dy, D,) represent the destination factors, and use (Ry, Gs, Bs, As),
and (Ry, G4, By, A) represent the colors of the source fragment and
destination pixel respectively, the blending equation yields a final color of

(SrRs + Der; SgGs + Dng/ Sst + Dde; SaAs + DaAd)

The default blending operation is addition, but we’ll see in “The Blending
Equation” on Page 170 that we can also control the blending operator.

Controlling Blending Factors

You have two different ways to choose the source and destination blending
factors. You may call glBlendFunc() and choose two blending factors: the
tirst factor for the source RGBA and the second for the destination RGBA.
Or, you may use glBlendFuncSeparate() and choose four blending factors,
which allows you to use one blending operation for RGB and a different
one for its corresponding alpha.

Note: We also list the functions glBlendFunci() and
glBlendFuncSeparatei(), which are used when you'’re drawing to
multiple buffers simultaneously. This is an advanced topic that we
describe in “Framebuffer Objects”’ on Page 180, but since the
functions are virtually identical actions to glBlendFunc() and
glBlendFuncSeparate(), we include them here.

void glBlendFunc(GLenum srcfactor, GLenum destfactor);
void glBlendFunci(GLuint buffer, GLenum srcfactor,
GLenum destfactor);

Controls how color values in the fragment being processed (the source)
are combined with those already stored in the framebuffer (the
destination). The possible values for these arguments are explained in

Testing and Operating on Fragments

167

168

Table 4.3. The argument srcfactor indicates how to compute a source
blending factor; destfactor indicates how to compute a destination
blending factor.

glBlendFunc() specifies the blending factors for all drawable buffers,
while glBlendFunci() specifies the blending factors only for buffer buffer.

The blending factors are clamped to either the range [0, 1] or [—1, 1] for
unsigned-normalized or signed-normalized framebuffer formats
respectively. If the framebuffer format is floating point, then no clamping
of factors occurs.

void glBlendFuncSeparate(GLenum srcRGB, GLenum destRGB,
GLenum srcAlpha,
GLenum destAlpha);

void glBlendFuncSeparatei(GLuint buffer, GLenum srcRGB,
GLenum destRGB, GLenum srcAlpha,
GLenum destAlpha);

Similar to glBlendFunc(), glBlendFuncSeparate() also controls how
source color values (fragment) are combined with destination values (in
the framebuffer). glBlendFuncSeparate() also accepts the same
arguments (shown in Table 4.3) as glBlendFunc(). The argument srcRGB
indicates the source-blending factor for color values; destRGB is the
destination-blending factor for color values. The argument srcAlpha
indicates the source-blending factor for alpha values; destAlpha is the
destination-blending factor for alpha values.

glBlendFuncSeparatei() specifies the blending factors for all drawable
buffers, while glBlendFuncSeparatei() specifies the blending factors only
for bufter buffer.

Note: In Table 4.3, the values with the subscript ;; are for dual-source
blending factors, which are described in “Dual-Source Blending”
on Page 198.

If you use one of the GL_CONSTANT blending functions, you need to use
glBlendColor() to specify the constant color.

Chapter 4: Color, Pixels, and Framebuffers

Table 4.3 Source and Destination Blending Factors
Constant RGB Blend Factor Alpha Blend
Factor
GL_ZERO (0,0,0) 0
GL_ONE (1L1,1) 1
GL_SRC_COLOR (Rs, Gs, By) Ay
GL_ONE_MINUS_SRC_COLOR (1,1,1) — (R, Gs, By) 1- A
GL_DST_COLOR (R4, G, By) Ag
GL_ONE_MINUS_DST_COLOR (1,1,1) — (Ry4, Gg, By) 1-Ay
GL_SRC_ALPHA (As, As, As) Ag
GL_ONE_MINUS_SRC_ALPHA (1,1,1) — (As, As, As) 1— A
GL_DST_ALPHA (Ag,Aa, Ag) Ag
GL_ONE_MINUS_DST_ALPHA (1,1,1) — (Ag, Ag, Ag) 1-Ay
GL_CONSTANT_COLOR (R, Ge, Be) Ac
GL_ONE_MINUS_CONSTANT_COLOR (1,1,1) — (R, G, Be) 1-— A
GL_CONSTANT_ALPHA (Ac, Ac, Ac) A
GL_ONE_MINUS_CONSTANT_ALPHA (1,1,1) — (A, Ac, Ac) 1-A
GL_SRC_ALPHA_SATURATE (f,f,f),f=min(A;, 1-A,) 1
GL_SRC1_COLOR (Rs1, Gs1, Bs1) Ag
GL_ONE_MINUS_SRC1_COLOR (1,1,1) — (Ra, Gs1, Bs1) 1-Ag
GL_SRC1_ALPHA (As1, A1, As1) As
GL_ONE_MINUS_SRC1_ALPHA (1,1,1) — (As1, A1, A1) 1-Aqg

void glBlendColor(GLclampf red, GLclampf green, GLclampf blue,

GLclampf alpha);

Sets the current red, blue, green, and alpha values for use as the constant
color (R, G, B;, A;) in blending operations.

Similarly, use glDisable() with GL_BLEND to disable blending. Note that
using the constants GL_ONE (as the source factor) and GL_ZERO (for the
destination factor) gives the same results as when blending is disabled;

these values are the default.

Testing and Operating on Fragments

169

Advanced

OpenGL has the ability to render into multiple buffers simultaneously (see
“Writing to Multiple Renderbuffers Simultaneously’’ on Page 193 for
details). All buffers can have blending enabled and disabled
simultaneously (using glEnable() and glDisable()). Blending settings can
be managed on a per-buffer basis using glEnablei() and glDisablei().

The Blending Equation

With standard blending, colors in the framebuffer are combined (using
addition) with incoming fragment colors to produce the new framebuffer
color. Either glBlendEquation() or glBlendEquationSeparate() may be
used to select other mathematical operations to compute the difference,
minimum, or maximum between color fragments and framebuffer pixels.

void glBlendEquation(GLenum mode);
void glBlendEquationi(GLuint buffer, GLenum mode);

Specifies how framebuffer and source colors are blended together. The
allowable values for mode are GL_FUNC_ADD (the default),
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, and
GL_MAX. The possible modes are described in Table 4.4.

glBlendEquation() specifies the blending mode for all buffers, while
glBlendEquationi() sets the mode for the buffer specified by the buffer
argument, which is the integer index of the buffer.

void glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha);

void glBlendEquationSeparatei(GLuint buffer,
GLenum modeRGB,
GLenum modeAlpha);

Specifies how framebuffer and source colors are blended together, but
allows for different blending modes for the rgb and alpha color
components. The allowable values for modeRGB and modeAlpha are
identical for the modes accepted by glBlendEquation().

Again, glBlendEquationSeparate() sets the blending modes for all
bufters, while glBlendEquationSeparatei() sets the modes for the buffer
whose index is specified in buffer.

170 Chapter 4: Color, Pixels, and Framebuffers

In Table 4.4, C; and C, represent the source and destination colors. The §
and D parameters in the table represent the source- and
destination-blending factors as specified with glBlendFunc() or
glBlendFuncSeparate().

Table 4.4 Blending Equation Mathematical Operations

Blending Mode Parameter Mathematical Operation
GL_FUNC_ADD CsS +CyaD
GL_FUNC_SUBTRACT CS —CyD
GL_FUNC_REVERSE_SUBTRACT CaD — CsS

GL_MIN min(CsS, C4D)
GL_MAX max(CsS, C4D)
Dithering

On systems with a small number of color bitplanes, you can improve the
color resolution at the expense of spatial resolution by dithering the color
in the image. Dithering is like half-toning in newspapers. Although The
New York Times has only two colors—black and white—it can show
photographs by representing the shades of gray with combinations of
black and white dots. Comparing a newspaper image of a photo (having
no shades of gray) with the original photo (with grayscale) makes the loss
of spatial resolution obvious. Similarly, systems with a small number of
color bitplanes may dither values of red, green, and blue on neighboring
pixels for the appearance of a wider range of colors.

The dithering operation that takes place is hardware-dependent; all
OpenGL allows you to do is to turn it on and off. In fact, on some
machines, enabling dithering might do nothing at all, which makes sense
if the machine already has high color resolution. To enable and disable
dithering, pass GL_DITHER to glEnable() and glDisable(). Dithering is
enabled by default.

Logical Operations

The final operation on a fragment is the logical operation, such as an OR,
XOR, or INVERT, which is applied to the incoming fragment values
(source) and/or those currently in the color buffer (destination). Such
fragment operations are especially useful on bit-blt-type machines, on
which the primary graphics operation is copying a rectangle of data from

Testing and Operating on Fragments

171

172

one place in the window to another, from the window to processor
memory, or from memory to the window. Typically, the copy doesn’t write
the data directly into memory but instead allows you to perform an
arbitrary logical operation on the incoming data and the data already
present; then it replaces the existing data with the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many
such machines are available. As an examplese of using a logical operation,
XOR can be used to draw on an image in a revertible way; simply XOR the
same drawing again, and the original image is restored.

You enable and disable logical operations by passing
GL_COLOR_LOGIC_OP to glEnable() and glDisable(). You also must
choose among the 16 logical operations with glLogicOp(), or you'll just
get the effect of the default value, GL_COPY.

void glLogicOp(GLenum opcode);

Selects the logical operation to be performed, given an incoming (source)
fragment and the pixel currently stored in the color buffer (destination).
Table 4.5 shows the possible values for opcode and their meaning (s
represents source and d destination). The default value is GL_COPY.

Table 4.5 Sixteen Logical Operations

Parameter Operation Parameter Operation
GL_CLEAR 0 GL_AND snd
GL_COPrY GL_OR svd
GL_NOOP d GL_NAND =(sAd)
GL_SET GL_NOR —(svd)
GL_COPY_INVERTED - GL_XOR sXORd
GL_INVERT —d GL_EQUIV —(s XOR d)
GL_AND_REVERSE SA—d GL_AND_INVERTED -sAd
GL_OR_REVERSE sV —d GL_OR_INVERTED —sVd

Chapter 4: Color, Pixels, and Framebuffers

For floating-point buffers, or those in sSRGB format, logical operations are
ignored.

Occlusion Query

Advanced

The depth buffer determines visibility on a per-pixel basis. For
performance reasons, it would be nice to be able to determine if a geometric
object is visible before sending all of its (perhaps complex) geometry for
rendering. Occlusion querys enable you to determine if a representative set
of geometry will be visible after depth testing.

This is particularly useful for complex geometric objects with many
polygons. Instead of rendering all of the geometry for a complex object,
you might render its bounding box or another simplified representation
that require less rendering resources. If OpenGL returns that no fragments
or samples would have been modified by rendering that piece of geometry,
you know that none of your complex object will be visible for that frame,
and you can skip rendering that object for the frame.

The following steps are required to utilize occlusion queries:

1. Generate a query id for each occlusion query that you need.

2. Specify the start of an occlusion query by calling glBeginQuery().
3. Render the geometry for the occlusion test.
4

Specify that you've completed the occlusion query by calling
glEndQuery().

5. Retrieve the number of, or if any, samples passed the depth tests.

In order to make the occlusion query process as efficient as possible, you'll
want to disable all rendering modes that will increase the rendering time
but won't change the visibility of a pixel.

Generating Query Objects

In order to use queries, you'll first need to request identifiers for your query
tests. glGenQueries() will generate the requested number of unused query
ids for your subsequent use.

Testing and Operating on Fragments

173

174

void glGenQueries(GLsizei n, GLuint *ids);

Returns n currently unused names for occlusion query objects in the
array ids The names returned in ids do not have to be a contiguous set of
integers.

The names returned are marked as used for the purposes of allocating
additional query objects, but only acquire valid state once they have
been specified in a call to glBeginQuery().

Zero is a reserved occlusion query object name and is never returned as a
valid value by glGenQueries().

You can also determine if an identifier is currently being used as an
occlusion query by calling gllsQuery().

GLboolean glIsQuery(GLuint id);

Returns GL_TRUE if id is the name of an occlusion query object. Returns
GL_FALSE if id is zero or if id is a nonzero value that is not the name of a
buffer object.

Initiating an Occlusion Query Test

To specify geometry that’s to be used in an occlusion query, merely bracket
the rendering operations between calls to glBeginQuery() and
glEndQuery(), as demonstrated in Example 4.6

Example 4.6 Rendering Geometry with Occlusion Query: occquery.c

glBeginQuery (GL_SAMPLES_PASSED, Query) ;
glDrawArrays (GL_TRIANGLES, 0, 3);
glEndQuery (GL_SAMPLES_PASSED) ;

All OpenGL operations are available while an occlusion query is active,
with the exception of glGenQueries() and glDeleteQueries(), which will
raise a GL_INVALID_OPERATION error.

void glBeginQuery(GLenum target, GLuint id);

Specifies the start of an occlusion query operation. target must be
GL_SAMPLES_PASSED, GL_ANY_SAMPLES_PASSED, or
GL_ANY_SAMPLES_PASSED_CONSERVATIVE. id is an unsigned integer
identifier for this occlusion query operation.

Chapter 4: Color, Pixels, and Framebuffers

void glEndQuery(GLenum target);

Ends an occlusion query. target must be GL_SAMPLES_PASSED, or
GL_ANY_SAMPLES_PASSED.

Determining the Results of an Occlusion Query

Once you've completed rendering the geometry for the occlusion query,
you need to retrieve the results. This is done with a call to
glGetQueryObjectiv() or glGetQueryObjectuiv(), as shown in
Example 4.7, which will return the number of fragments, or samples, if
you're using multisampling.

void glGetQueryObjectiv(GLenum id, GLenum pname,
GLint *params);
void glGetQueryObjectuiv(GLenum id, GLenum pname,
GLuint *params);

Queries the state of an occlusion query object. id is the name of a query
object. If pname is GL_QUERY_RESULT, then params will contain the
number of fragments or samples (if multisampling is enabled) that passed
the depth test, with a value of zero representing the object being entirely
occluded.

There may be a delay in completing the occlusion query operation. If
pname is GL_QUERY_RESULT AVAILABLE, params will contain GL_TRUE
if the results for query id are available, or GL_FALSE otherwise.

Example 4.7 Retrieving the Results of an Occlusion Query

count = 1000; /% counter to avoid a possible infinite loop */

while (!queryReady && count-) {
glGetQueryObjectiv (Query, GL_QUERY_RESULT_AVAILABLE, &queryReady) ;
}

if (queryReady) {
glGetQueryObjectiv (Query, GL_QUERY_RESULT, &samples);

cerr << "Samples rendered: " << samples << endl;

}

else {
cerr << " Result not ready ... rendering anyways" << endl;
samples = 1; /* make sure we render x/

Testing and Operating on Fragments

175

if (samples > 0) {
glDrawArrays (GL_TRIANGLE_FAN}, 0, NumVertices);
}

Cleaning Up Occlusion Query Objects

After you've completed your occlusion query tests, you can release the
resources related to those queries by calling glDeleteQueries().

void glDeleteQueries(GLsizei n, const GLuint *ids);

Deletes n occlusion query objects, named by elements in the array ids.
The freed query objects may now be reused (for example, by
glGenQueries()).

Conditional Rendering

Advanced

One of the issues with occlusion queries is that they require OpenGL to
pause processing geometry and fragments, count the number of affected
samples in the depth buffer, and return the value to your application.
Stopping modern graphics hardware in this manner usually
catastrophically affects performance in performance-sensitive applications.
To eliminate the need to pause OpenGL's operation, conditional rendering
allows the graphics server (hardware) to decide if an occlusion query
yielded any fragments, and to render the intervening commands.
Conditional rendering is enabled by surrounding the rendering operations
you would have conditionally executed using the results of glGetQuery*().

void glBeginConditionalRender(GLuint id, GLenum mode);
void glEndConditionalRender(void);

Delineates a sequence of OpenGL rendering commands that may be
discarded based on the results of the occlusion query object id. mode
specifies how the OpenGL implementation uses the results of the
occlusion query, and must be one of: GL_QUERY_WAIT,
GL_QUERY_NO_WAIT, GL_QUERY_BY_REGION_WAIT, or
GL_QUERY_BY_REGION_NO_WAIT.

A GL_INVALID_VALUE is set if id is not an existing occlusion query. A
GL_INVALID_OPERATION is generated if glBeginConditionalRender()
is called while a conditional-rendering sequence is in operation;

176 Chapter 4: Color, Pixels, and Framebuffers

if glEndConditionalRender() is called when no conditional render is
underway; if id is the name of an occlusion query object with a target
different than GL_SAMPLES_PASSED; or if id is the name of an occlusion
query in progress.

The code shown in Example 4.8 completely replaces the sequence of code
in Example 4.7. Not only is it the code more compact, it is far more
efficient as it completely removes the results query to the OpenGL server,
which is a major performance inhibitor.

Example 4.8 Rendering Using Conditional Rendering

glBeginConditionalRender (Query, GL_QUERY_WAIT) ;
glDrawArrays (GL_TRIANGLE_FAN, 0, NumVertices);
glEndConditionalRender () ;

You may have noticed that there is a mode parameter to
glBeginConditionalRender(), which may be one of GL_QUERY_WAIT,
GL_QUERY_NO_WAIT, GL_QUERY_BY_REGION_WAIT, or
GL_QUERY_BY_REGION_NO_WAIT. These modes control whether the
GPU will wait for the results of a query to be ready before continuing to
render, and whether it will consider global results or results only
pertaining to the region of the screen that contributed to the original
occlusion query result.

e If mode is GL_QUERY_WAIT then the GPU will wait for the result of the
occlusion query to be ready before determining whether it will
continue with rendering.

e If mode is GL_QUERY_NO_WAIT then the GPU may not wait for the
result of the occlusion query to be ready before continuing to render. If
the result is not ready, then it may choose to render the part of the
scene contained in the conditional rendering section anyway.

e If mode is GL_QUERY_BY_REGION_WAIT then the GPU will wait for
anything that contributes to the region covered by the controled
rendering to be completed. It may still wait for the complete occlusion
query result to be ready.

o If modeis GL_QUERY_BY_REGION_NO_WAIT, then the GPU will
discard any rendering in regions of the framebuffer that contributed no
samples to the occlusion query, but may choose to render into other
regions if the result was not available in time.

By using these modes wisely, you can improve performance of the system.
For example, waiting for the results of an occlusion query may actually

Testing and Operating on Fragments

177

178

take more time than just rendering the conditional part of the scene. In
particular, if it is expected that most results will mean that some rendering
should take place, then on aggregate, it may be faster to always use one of
the NO_WAIT modes even if it means more rendering will take place
overall.

Per-Primitive Antialiasing

You might have noticed in some of your OpenGL images that lines,
especially nearly horizontal and nearly vertical ones, appear jagged. These
jaggies appear because the ideal line is approximated by a series of pixels
that must lie on the pixel grid. The jaggedness is called aliasing, and this
section describes one antialiasing technique for reducing it. Figure 4.3
shows two intersecting lines, both aliased and antialiased. The pictures
have been magnified to show the effect.

A

Figure 4.3 Aliased and antialiased lines

Figure 4.3 shows how a diagonal line 1 pixel wide covers more of some
pixel squares than others. In fact, when performing antialiasing, OpenGL
calculates a coverage value for each fragment based on the fraction of the
pixel square on the screen that it would cover. OpenGL multiplies the
fragment’s alpha value by its coverage. You can then use the resulting
alpha value to blend the fragment with the corresponding pixel already in
the framebuffer.

The details of calculating coverage values are complex, and difficult to
specify in general. In fact, computations may vary slightly depending on
your particular implementation of OpenGL. You can use the glHint()
command to exercise some control over the trade-off between image
quality and speed, but not all implementations will take the hint.

Chapter 4: Color, Pixels, and Framebuffers

void glHint(GLenum target, GLenum hint);

Controls certain aspects of OpenGL behavior. The target parameter
indicates which behavior is to be controlled; its possible values are shown
in Table 4.6. The hint parameter can be GL_FASTEST to indicate that the
most efficient option should be chosen, GL_NICEST to indicate the
highest-quality option, or GL_DONT_CARE to indicate no preference.
The interpretation of hints is implementation-dependent; an OpenGL
implementation can ignore them entirely.

Table 4.6 Values for Use with glHint()

Parameter Specifies
GL_LINE_SMOOTH_HINT Line antialiasing quality
GL_POLYGON_SMOOTH_HINT Polygon edge antialiasing quality
GL_TEXTURE_COMPRESSION_HINT Quality and performance of

texture-image compression (See
Chapter 6, “Textures’” for more
detail)

GL_FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment
processing built-in functions
dFdx, dFdy, and fwidth (See
Appendix C for more details)

We've discussed multisampling before as a technique for antialiasing;
however, it’s not usually the best solution for lines. Another way to
antialias lines, and polygons if the multisample results are quite what you
want, is to turn on antialiasing with glEnable(), and passing in
GL_LINE_SMOOTH or GL_POLYGON_SMOOTH, as appropriate. You
might also want to provide a quality hint with glHint(). We'll describe the
steps for each type of primitive that can be antialiased in the next sections.

Antialiasing Lines

First, you need to enable blending. The blending factors you most likely
want to use are GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Alternatively, you can use
GL_ONE for the destination factor to make lines a little brighter where
they intersect. Now you're ready to draw whatever points or lines you want
antialiased. The antialiased effect is most noticeable if you use a fairly high
alpha value. Remember that since you're performing blending, you might
need to consider the rendering order. However, in most cases, the ordering
can be ignored without significant adverse effects.

Per-Primitive Antialiasing

179

180

Example 4.9 shows the initialization for line antialiasing.

Example 4.9 Setting Up Blending for Antialiasing Lines: antilines.cpp

glEnable (GL_LINE_SMOOTH) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE) ;

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing lines.
When different polygons have overlapping edges, you need to blend the
color values appropriately.

To antialias polygons, you use the alpha value to represent coverage values
of polygon edges. You need to enable polygon antialiasing by passing
GL_POLYGON_SMOOTH to glEnable(). This causes pixels on the edges of
the polygon to be assigned fractional alpha values based on their coverage,
as though they were lines being antialiased. Also, if you desire, you can
supply a value for GL_POLYGON_SMOOTH_HINT.

In order to have edges blend appropriately, set the blending factors to
GL_SRC_ALPHA_SATURATE (source) and GL_ONE (destination). With this
specialized blending function, the final color is the sum of the destination
color and the scaled source color; the scale factor is the smaller of either
the incoming source alpha value or one minus the destination alpha value.
This means that for a pixel with a large alpha value, successive incoming
pixels have little effect on the final color because one minus the
destination alpha is almost zero. With this method, a pixel on the edge of
a polygon might be blended eventually with the colors from another
polygon that’s drawn later. Finally, you need to sort all the polygons in
your scene so that theyre ordered from front to back before drawing them.

Note: Antialiasing can be adversely affected when using the depth buffer,
in that pixels may be discarded when they should have been
blended. To ensure proper blending and antialiasing, you’ll need to
disable the depth buffer.

Framebuffer Objects

Advanced

Up to this point, all of our discussion regarding buffers has focused on the
buffers provided by the windowing system, as you requested when you

Chapter 4: Color, Pixels, and Framebuffers

called glutCreateWindow() (and configured by your call to
glutInitDisplayMode()). Although you can quite successfully use any
technique with just those buffers, quite often various operations require
moving data between buffers superfluously. This is where framebuffer
objects enter the picture. Using framebuffer objects, you can create our
own framebuffers and use their attached renderbuffers to minimize data
copies and optimize performance.

Framebuffer objects are quite useful for performing off-screen-rendering,
updating texture maps, and engaging in buffer ping-ponging (a data-transfer
techniques used in GPGPU).

The framebuffer that is provided by the windowing system is the only
framebuffer that is available to the display system of your graphics
server—that is, it is the only one you can see on your screen. It also places
restrictions on the use of the buffers that were created when your window
opened. By comparison, the framebuffers that your application creates
cannot be displayed on your monitor; they support only off-screen rendering.

Another difference between window-system-provided framebuffers and
framebuffers you create is that those managed by the window system
allocate their buffers—color, depth, and stencil—when your window is
created. When you create an application-managed framebuffer object, you
need to create additional renderbuffers that you associate with the
framebuffer objects you created. The buffers with the window-system-
provided buffers can never be associated with an application-created
framebuffer object, and vice versa.

To allocate an application-generated framebuffer object name, you need to
call glGenFramebuffers(), which will allocate an unused identifier for the
framebuffer object.

void glGenFramebuffers(GLsizei n, GLuint *ids);

Allocate n unused framebuffer object names, and return those names in
ids.

A GL_INVALID_VALUE error will be generated if n is negative.

Allocating a framebuffer object name doesn't actually create the
framebuffer object or allocate any storage for it. Those tasks are handled
through a call to glBindFramebuffer(). glBindFramebuffer() operates in a
similar manner to many of the other glBind*() routines you've seen in
OpenGL. The first time it is called for a particular framebuffer, it causes

Framebuffer Objects

181

182

storage for the object to be allocated and initialized. Any subsequent calls
will bind the provided framebuffer object name as the active one.

void glBindFramebuffer(GLenum target, GLuint framebuffer);

Specifies a framebuffer for either reading or writing. When target is
GL_DRAW_FRAMEBUFFER, framebuffer specifies the destination
framebuffer for rendering. Similarly, when target is set to
GL_READ_FRAMEBUFFER, framebuffer specifies the source of read
operations. Passing GL. FRAMEBUFFER for target sets both the read and
write framebuffer bindings to framebuffer.

framebuffer must either be zero, which binds target to the default
window-system-provided framebuffer, or a framebuffer object generated
by a call to glGenFramebuffers().

A GL_INVALID_OPERATION error is generated if framebuffer is neither
zero nort a valid framebuffer object previously generated by calling
glGenFramebuffers() but not deleted by calling glDeleteFramebuffers().

As with all of the other objects you have encountered in OpenGL, you can
release an application-allocated framebuffer by calling
glDeleteFramebuffers(). That function will mark the framebuffer object’s
name as unallocated and release any resources associated with the
framebuffer object.

void glDeleteFramebuffers(GLsizei n, const GLuint *ids);

Deallocates the n framebuffer objects associated with the names provided
in ids. If a framebuffer object is currently bound (i.e., its name was passed
to the most recent call to glBindFramebuffer()) and is deleted, the
framebuffer target is immediately bound to id zero (the window-system
provided framebuffer), and the framebuffer object is released.

A GL_INVALID_VALUE error is generated by glDeleteFramebuffers() if n
is negative. Passing unused names or zero does not generate any errors;
they are simply ignored.

For completeness, you can determine whether a particular unsigned integer
is an application-allocated framebuffer object by calling gllsFramebuffer():

Chapter 4: Color, Pixels, and Framebuffers

GLboolean gllsFramebuffer(GLuint framebuffer);

Returns GL_TRUE if framebuffer is the name of a framebuffer returned
from glGenFramebuffers(). Returns GL_FALSE if framebuffer is zero (the
window-system default framebuffer) or a value that'’s either unallocated
or been deleted by a call to glDeleteFramebuffers().

void glFramebufferParameteri(GLenum target, GLenum pname,
GLint param);

Sets parameters of a framebuffer object, when the framebuffer object has
no attachments, otherwise the values for these parameters are specified
by the framebuffer attachments.

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
pname specifies the parameter of the framebuffer object bound to target
to set, and must be one of GL_FRAMEBUFFER_DEFAULT WIDTH,
GL_FRAMEBUFFER_DEFAULT_HEIGHT,
GL_FRAMEBUFFER_DEFAULT_LAYERS,
GL_FRAMEBUFFER_DEFAULT_SAMPLES, or
GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS.

Once a framebuffer object is created, you still can’t do much with it,
generally speaking. You need to provide a place for drawing to go and
reading to come from; those places are called framebuffer attachments. We'll
discuss those in more detail after we examine renderbuffers, which are one
type of buffer you can attach to a framebuffer object.

Renderbuffers

Renderbuffers are effectively memory managed by OpenGL that contains
formatted image data. The data that a renderbuffer holds takes meaning
once it is attached to a framebuffer object, assuming that the format of the
image buffer matches what OpenGL is expecting to render into (e.g., you
can’t render colors into the depth buffer).

As with many other buffers in OpenGL, the process of allocating and
deleting buffers is similar to what you've seen before. To create a new
renderbuffer, you would call glGenRenderbuffers().

Framebuffer Objects

183

void glGenRenderbuffers(GLsizei n, GLuint *ids);

Allocate n unused renderbuffer object names, and return those names in
ids. Names are unused until bound with a call to glBindRenderbuffer().

Likewise, a call to glDeleteRenderbuffers() will release the storage
associated with a renderbuffer.

void glDeleteRenderbuffers(GLsizei n, const GLuint *ids);

Deallocates the n renderbuffer objects associated with the names
provided in ids. If one of the renderbuffers is currently bound and passed
to glDeleteRenderbuffers(), a binding of zero replaces the binding at the
current framebuffer attachment point, in addition to the renderbuffer
being released.

No errors are generated by glDeleteRenderbuffers(). Unused names or
zero are simply ignored.

Likewise, you can determine whether a name represents a valid
renderbuffer by calling gllIsRenderbuffer().

void glIsRenderbuffer(GLuint renderbuffer);

Returns GL_TRUE if renderbuffer is the name of a renderbuffer returned
from glGenRenderbuffers(). Returns GL_FALSE if framebuffer is zero (the
window-system default framebuffer) or a value that'’s either unallocated
or deleted by a call to glDeleteRenderbuffers().

Similar to the process of binding a framebuffer object so that you can
modify its state, you call glBindRenderbuffer() to affect a renderbuffer’s
creation and to modify the state associated with it, which includes the
format of the image data that it contains.

void glBindRenderbuffer(GLenum target, GLuint renderbuffer);

Creates a renderbuffer and associates it with the name renderbuffer. target
must be GL_RENDERBUFFER. renderbuffer must either be zero, which
removes any renderbuffer binding, or a name that was generated by a call
to glGenRenderbuffers(); otherwise, a GL_INVALID_OPERATION error
will be generated.

184 Chapter 4: Color, Pixels, and Framebuffers

Creating Renderbuffer Storage

When you first call glBindRenderbuffer() with an unused renderbuffer
name, the OpenGL server creates a renderbuffer with all its state
information set to the default values. In this configuration, no storage has
been allocated to store image data. Before you can attach a renderbuffer to
a framebuffer and render into it, you need to allocate storage and specity
its image format. This is done by calling either glRenderbufferStorage() or
glRenderbufferStorageMultisample().

void glRenderbufferStorage(GLenum farget,
GLenum internalformat,
GLsizei width, GLsizei height);
void glRenderbufferStorageMultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height);

Allocates storage for image data for the bound renderbuffer. target must
be GL_RENDERBUFFER. For a color-renderable buffer, internalformat must
be one of:

GL_RED GL_RS8 GL_R16
GL_RG GL_RG8 GL_RG16
GL_RGB GL_R3_G3_B2 GL_RGB4
GL_RGBS GL_RGBS8 GL_RGB10
GL_RGB12 GL_RGB16 GL_RGBA
GL_RGBA2 GL_RGBA4 GL_RGBS_A1
GL_RGBAS GL_RGB10_A2 GL_RGBA12
GL_RGBA16 GL_SRGB GL_SRGBS

GL_SRGB_ALPHA GL_SRGB8_ALPHA8 GL_R16F

Framebuffer Objects

185

GL_R32F GL_RG16F GL_RG32F

GL_RGB16F GL_RGB32F GL_RGBA16F
GL_RGBA32F GL_R11F G11F B10F GL_RGB9_ES
GL_RS8I GL_R8UI GL_R16I
GL_R16UI GL_R32I GL_R32UI
GL_RGS8I GL_RG8UI GL_RG16l
GL_RG16UI GL_RG32I GL_RG32UI
GL_RGBS8I GL_RGB8UI GL_RGB16I
GL_RGB16UI GL_RGB321 GL_RGB32UI
GL_RGBASI GL_RGBASUI GL_RGBA1l6I
GL_RGBA16UI GL_RGBA32I GL_R8_SNORM
GL_R16_SNORM GL_RG8_SNORM GL_RG16_SNORM

GL_RGB8_SNORM GL_RGB16_SNORM GL_RGBA8_SNORM
GL_RGBA16_SNORM

To use a renderbuffer as a depth buffer, it must be depth-renderable,
which is specified by setting internalformat to either
GL_DEPTH_COMPONENT, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT32, GL_DEPTH_COMPONENT32, or
GL_DEPTH_COMPONENT32F.

For use exclusively as a stencil buffer, internalformat should be specified
as either GL_STENCIL_INDEX, GL_STENCIL_INDEX1,
GL_STENCIL_INDEX4, GL_STENCIL_INDEXS, or
GL_STENCIL_INDEX16.

For packed depth-stencil storage, internalformat must be
GL_DEPTH_STENCIL, which allows the renderbuffer to be attached as
the depth buffer, stencil buffer, or at the combined depth-stencil
attachment point.

width and height specify the size of the renderbuffer in pixels, and
samples specifies the number of multisample samples per pixel. Setting
samples to zero in a call to glRenderbufferStorageMultisample() is
identical to calling glRenderbufferStorage().

A GL_INVALID_VALUE is generated if width or height is greater than the
value returned when querying GL_MAX_RENDERBUFFER_SIZE, or if
samples is greater than the value returned when querying
GL_MAX_SAMPLES. A GL_INVALID_OPERATION is generated if
internalformat is a signed- or unsigned-integer format (e.g., a format
containing a “I”, or “UI” in its token), and samples is not zero, and the
implementation doesn’t support multisampled integer buffers. Finally, if
the renderbuffer size and format combined exceed the available memory
able to be allocated, then a GL_OUT_OF_MEMORY error is generated.

186 Chapter 4: Color, Pixels, and Framebuffers

Example 4.10 Creating a 256 x 256 RGBA Color Renderbuffer

glGenRenderbuffers (1, &color);
glBindRenderbuffer (GL_RENDERBUFFER, color) ;
glRenderbufferStorage (GL_RENDERBUFFER, GL_RGBA, 256, 256) ;

Once you have created storage for your renderbuffer as shown in
Example 4.10, you need to attach it to a framebuffer object before you can
render into it.

Framebuffer Attachments

When you render, you can send the results of that rendering to a number
of places:

e The color buffer to create an image, or even multiple color buffers if
you're using multiple render targets (see “Writing to Multiple
Renderbuffers Simultaneously’” on Page 193).

e The depth buffer to store occlusion information.

e The stencil buffer for storing per-pixel masks to control rendering. Each
of those buffers represents a framebuffer attachment, to which you can
attach suitable image buffers that you later render into, or read from.
The possible framebuffer attachment points are listed in Table 4.7.

Table 4.7 Framebuffer Attachments

Attachment Name Description

GL_COLOR_ATTACHMENT:i The i color buffer. i can range from
zero (the default color buffer) to
GL_MAX_COLOR_ATTACHMENTS - 1

GL_DEPTH_ATTACHMENT The depth buffer
GL_STENCIL_ATTACHMENT The stencil buffer

GL_DEPTH_STENCIL_ATTACHMENT A special attachment for packed
depth-stencil buffers (which require the
renderbuffer to have been allocated as a
GL_DEPTH_STENCIL pixel format)

Currently, there are two types of rendering surfaces you can associate with
one of those attachments: renderbuffers and a level of a texture image.

We'll first discuss attaching a renderbuffer to a framebuffer object, which is
done by calling glFramebufferRenderbuffer().

Framebuffer Objects

187

void glFramebufferRenderbuffer(GLenum target,
GLenum attachment,
GLenum renderbuffertarget,
GLuint renderbuffer);

Attaches renderbuffer to attachment of the currently bound framebuffer
object. target must either be GL_READ FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to
GL_DRAW_FRAMEBUFFER).

attachment is one of GL_COLOR_ATTACHMENT],
GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT, or
GL_DEPTH_STENCIL_ATTACHMENT.

renderbuffertarget must be GL_RENDERBUFFER, and renderbuffer must
either be zero, which removes any renderbuffer attachment at
attachment, or a renderbuffer name returned from glGenRenderbuffers(),
or a GL_INVALID_OPERATION error is generated.

In Example 4.11, we create and attach two renderbuffers: one for color,
and the other for depth. We then proceed to render, and finally copy the
results back to the window-system-provided framebuffer to display the
results. You might use this technique to generate frames for a movie
rendering off-screen, where you don’t have to worry about the visible
framebuffer being corrupted by overlapping windows or someone resizing
the window and interrupting rendering.

One important point to remember is that you might need to reset the
viewport for each framebuffer before rendering, particularly if the size of
your application-defined framebuffers differs from the window-system
provided framebuffer.

Example 4.11 Attaching a Renderbuffer for Rendering

enum { Color, Depth, NumRenderbuffers };

GLuint framebuffer, renderbuffer [NumRenderbuffers]

void

init ()

{
glGenRenderbuffers (NumRenderbuffers, renderbuffer);
glBindRenderbuf fer (GL_RENDERBUFFER, renderbuffer[Color]);

glRenderbufferStorage (GL_RENDERBUFFER, GL_RGBA, 256, 256);

glBindRenderbuffer (GL_RENDERBUFFER, renderbuffer|[Depthl]);

188 Chapter 4: Color, Pixels, and Framebuffers

void

glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 256, 256);

glGenFramebuffers(l, &framebuffer);
glBindFramebuffer (GL_DRAW_FRAMEBUFFER, framebuffer);

glFramebufferRenderbuffer (GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,

GL_RENDERBUFFER, renderbuffer[Color]);

glFramebufferRenderbuffer (GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, renderbuffer[Depthl]) ;

glEnable (GL_DEPTH_TEST) ;

display ()

{

// Prepare to render into the renderbuffer
glBindFramebuffer (GL_DRAW_FRAMEBUFFER, framebuffer);
glViewport (0, 0, 256, 256);

// Render into renderbuffer

glClearColor (1.0, 0.0, 0.0, 1.0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

// Set up to read from the renderbuffer and draw to
// window-system framebuffer

glBindFramebuffer (GL_READ_FRAMEBUFFER, framebuffer);
glBindFramebuf fer (GL_DRAW_FRAMEBUFFER, 0);

glViewport (0, 0, windowWidth, windowHeight) ;
glClearColor (0.0, 0.0, 1.0, 1.0);

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
/* Do the copy =*/
glBlitFramebuffer (0, 0, 255, 255, 0, 0, 255, 255,

GL_COLOR_BUFFER_BIT, GL_NEAREST) ;
glutSwapBuffers() ;

Framebuffer Objects

189

190

Framebuffer Completeness

Given the myriad of combinations between texture and buffer formats,
and between framebuffer attachments, various situations can arise that
prevent the completion of rendering when you are using
application-defined framebuffer objects. After modifying the attachments
to a framebuffer object, it’s best to check the framebuffer’s status by calling
glCheckFramebufferStatus().

GLenum glCheckFramebufferStatus(GLenum target);

Returns one of the framebuffer completeness status enums listed in

Table 4.8. target must be one of GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to
GL_DRAW_FRAMEBUFFER).

If glCheckFramebufferStatus() generates an error, zero is returned.

The errors representing the various violations of framebuffer
configurations are listed in Table 4.8.

Of the listed errors, GL_FRAMEBUFFER_UNSUPPORTED is very
implementation dependent, and may be the most complicated to debug.

Advanced

glClear(GL_COLOR_BUFFER_BIT) will clear all of the bound color buffers
(we have see in “Framebuffer Objects’”” on Page 180 how to configure
multiple color buffers). You can use the glClearBuffer*() commands to
clear individual buffers.

If you're using multiple draw buffers—particularly those that have
floating-point or nonnormalized integer pixel formats—you can clear each
individually bound buffer using glClearBuffer*() functions. Unlike
functions such as glClearColor() and glClearDepth(), which set a clear
value within OpenGL that’s used when glClear() is called, glClearBuffer*()
uses the values passed to it to immediately clear the bound drawing
buffers. Additionally, to reduce the number of function calls associated
with using multiple draw buffers, you can call glClearBufferfi() to
simultaneously clear the depth and stencil buffers (which is effectively
equivalent to calling glClearBuffer*() twice—once for the depth buffer and
once for the stencil buffer).

Chapter 4: Color, Pixels, and Framebuffers

Table 4.8 Errors Returned by glCheckFramebufferStatus()

Framebuffer Completeness Status Enum

Description

GL_FRAMEBUFFER_COMPLETE

GL_FRAMEBUFFER_UNDEFINED

GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT

GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT

GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER

GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER

GL_FRAMEBUFFER_UNSUPPORTED

GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE

The framebuffer and its
attachments match the
rendering or reading state
required.

The bound framebuffer is
specified to be the default
framebuffer (i.e.,
glBindFramebuffer()
with zero specified as the
framebuffer), and the
default framebuffer
doesn'’t exist.

A necessary attachment
to the bound framebuffer
is uninitialized

There are no images (e.g.,
texture layers or
renderbuffers) attached
to the framebuffer.

Every drawing buffer
(e.g., GL_LDRAW_BUFFERi
as specified by
glDrawBuffers()) has an
attachment.

An attachment exists for
the buffer specified for
the buffer specified by
glReadBuffer().

The combination of
images attached to the
framebuffer object is
incompatible with the
requirements of the
OpenGL
implementation.

The number of samples
for all images across the
framebuffer’s
attachments do not
match.

Framebuffer Objects 191

192

void glClearBuffer{fi ui}v(GLenum buffer, GLint drawbuffer,
const TYPE *value);
void glClearBufferfi(GLenum buffer, GLint drawbulffer,
GLfloat depth, GLint stencil);

Clears the buffer indexed by drawbuffer associated with buffer to value.
buffer must be one of GL_COLOR, GL_DEPTH, or GL_STENCIL.

If buffer is GL_COLOR, drawbuffer specifies an index to a particular draw
buffer, and value is a four-element array containing the clear color. If the
buffer indexed by drawbuffer has multiple draw buffers (as specified by a
call the glDrawBuffers()), all draw buffers are cleared to value.

If buffer is GL_DEPTH or GL_STENCIL, drawbuffer must be zero, and value
is a single-element array containing an appropriate clear value (subject to
clamping and type conversion for depth values, and masking and type
conversion for stencil values). Use only glClearBufferfv() for clearing the
depth buffer, and glClearBufferiv() for clearing the stencil buffer.

glClearBufferfi() can be used to clear both the depth and stencil buffers
simultaneously. buffer in this case must be GL_DEPTH_STENCIL.

GL_INVALID_ENUM is generated by glClearbuffer{if ui}v if buffer is not
one of the accepted values listed above. GL_INVALID_ENUM is generated
by glClearBufferfi() if buffer is not GL_DEPTH_STENCIL.
GL_INVALID_VALUE is generated if buffer is GL_COLOR, and drawbuffer
is less than zero, or greater than or equal to GL_MAX_DRAW_BUFFERS;
or if buffer is GL_DEPTH, GL_STENCIL, or GL_DEPTH_STENCIL and
drawbuffer is not zero.

Invalidating Framebuffers

Implementations of OpenGL (including OpenGL ES on mobile or
embedded devices, most often) may work in limited memory
environments. Framebuffers have the potential of taking up considerable
memory resources (particularly for multiple, multisampled color
attachments and textures). OpenGL provides a mechanism to state that a
region or all of a framebuffer is no longer needed and can be released. This
operation is done with either glinvalidateSubFramebuffer() or
glinvalidateFramebuffer().

Chapter 4: Color, Pixels, and Framebuffers

void glinvalidateFramebuffer(GLenum target,
GLsizei numAttachments,
const GLenum *attachments);
void glinvalidateSubFramebuffer(GLenum farget,
GLsizei numAttachmens,
const GLenum *attachments,
GLint x, GLint y,
GLsizei width, GLsizei height);

Specifies that a portion, or the entirety, of the bound framebuffer object
are not necessary to preserve. For either function, farget must be either
GL_DRAW_FRAMEBUFFER, GL_READ_FRAMEBUFFER, or
GL_FRAMEBUFFER specifying both the draw and read targets at the same
time. attachments provides a list of attachment tokens:
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, or
GL_STENCIL_ATTACHMENT; and numAttachments specifies how many
entries are in the attachments list.

For glinvalidateSubFramebuffer(), the region specified by lower-left
corner (x, y) with width width, and height height (measured from (x, y)), is
marked as invalid for all attachments in attachments.

Various errors are returned from the calls: A GL_INVALID_ENUM is
generated if any tokens are not from those listed above; A
GL_INVALID_OPERATION is generated if an index of an attachment
(e.g., i from GL_COLOR_ATTACHMENT]) is greater than or equal to the
maximum number of color attachments; A GL_INVALID_VALUE is
generated if any of numAttachments, width, or height are negative.

Writing to Multiple Renderbuffers Simultaneously

Advanced

One feature of using framebuffer objects with multiple renderbuffer (or
textures, as described in Chapter 6, “Textures”) is the ability to write to
multiple buffers from a fragment shader simultaneously, often called MRT
(for multiple-render target) rendering. This is mostly a performance
optimization, saving processing the same list of vertices multiple times and
rasterizing the same primitives multiple times.

Writing to Multiple Renderbuffers Simultaneously

193

194

While this technique is used often in GPGPU, it can also be used when
generating geometry and other information (like textures or normal map)
which is written to different buffers during the same rendering pass.
Enabling this technique requires setting up a framebuffer object with
multiple color (and potentially depth and stencil) attachments, and
modification of the fragment shader. Having just discussed setting up
multiple attachments, we’ll focus on the fragment shader here.

As we've discussed, fragment shaders output values through their out
variables. In order to specify the correspondence between out variables
and framebuffer attachments, we simply need to use the layout qualifier
to direct values to the right places. For instance, Example 4.12
demonstrates associating two variables with color attachment locations
zero and one.

Example 4.12 Specifying layout Qualifiers for MRT Rendering

layout (location
layout (location

0) out vecd color;
1) out vecd normal;

If the attachments of the currently bound framebuffer don’t match those
of the currently bound fragment shader, misdirected data (i.e., fragment
shader data written to an attachment with nothing attached) accumulates
in dark corners of the universe, but is otherwise ignored.

Additionally, if you're using dual-source blending (see “Dual-Source
Blending”” on Page 198), with MRT rendering, you merely specify both the
location and index options to the layout directive.

Using the layout qualifier within a shader is the preferred way to associate
fragment shader outputs with framebuffer attachments, but if they are

not specified, then OpenGL will do the assignments during shader linking.
You can direct the linker to make the appropriate associations by using
the glBindFragDatalLocation(), or glBindFragDatal.ocationIndexed()

if you need to also specify the fragment index. Fragment shader

bindings specified in the shader source will be used if specified,

regardless of whether a location was specified using one of these functions.

Chapter 4: Color, Pixels, and Framebuffers

void glBindFragDataLocation(GLuint program,
GLuint colorNumber,
const GLchar *name);
void glBindFragDataLocationIndexed(GLuint program,
GLuint colorNumber,
GLuint index,
const GLchar *name);

Uses the value in color for fragment shader variable name to specify the
output location associated with shader program. For the indexed case,
index specifies the output index as well as the location.

A GL_INVALID_VALUE is generated if program is not a shader program, or
if either index is greater than one, or if colorNumber is greater than or
equal to the maximum number of color attachments.

After a program is linked, you can retrieve a fragment shader variable’s
output location, and source index, if applicable, by calling either
glGetFragDataLocation(), or glGetFragDataIndex().

GLint glGetFragDataLocation(GLuint program,
const GLchar *name);
GLint glGetFragDatalndex(GLuint program,
const GLchar *name);

Returns either the location or index of a fragment shader variable name
associated with the linked shader program program.

A —1 is returned if: name is not the name of applicable variable for
program; if program successfully linked, but doesn’t have an associated
fragment shader; or if program has not yet been, or failed, linking. In the
last case, a GL_INVALID_OPERATION error is also generated.

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from
any of the color buffers:

e front, back, front-left, back-left, front-right, or back-right for the
default framebuffer, or

e front, or any renderbuffer attachment for a user-defined framebuffer
object.

Writing to Multiple Renderbuffers Simultaneously

195

196

You can choose an individual buffer to be the drawing or reading target.
For drawing, you can also set the target to draw into more than one buffer
at the same time. You use glDrawBuffer(), or glDrawBuffers() to select the
buffers to be written and glReadBuffer() to select the buffer as the source
for glReadPixels(), glCopyTexImage*(), and glCopyTexSubImage*().

void glDrawBuffer(GLenum mode);
void glDrawBuffers(GLsizei n, const GLenum *buffers);

Selects the color buffers enabled for writing or clearing and disables
bufters enabled by previous calls to glDrawBuffer() or glDrawBuffers().
More than one buffer may be enabled at one time. The value of mode can
be one of the following:

GL_FRONT GL_FRONT_LEFT GL_NONE

GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_COLOR_ATTACHMENTi
GL_RIGHT GL_BACK_RIGHT

If mode, or the entries in buffers is not one of the above, a
GL_INVALID_ENUM error is generated. Additionally, if a framebuffer
object is bound that is not the default framebuffer, then only GL_NONE
and GL_COLOR_ATTACHMENTi are accepted, otherwise a
GL_INVALID_ENUM error is generated.

Arguments that omit LEFT or RIGHT refer to both the left and right stereo
buffers; similarly, arguments that omit FRONT or BACK refer to both.

By default, mode is GL_BACK for double-buffered contexts.

The glDrawBuffers() routine specifies multiple color buffers capable of
receiving color values. buffers is an array of buffer enumerates. Only
GL_NONE, GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, and
GL_BACK_RIGHT are accepted.

When you are using double-buffering, you usually want to draw only in the
back buffer (and swap the buffers when you're finished drawing). In some
situations, you might want to treat a double-buffered window as though

it were single-buffered by calling glDrawBuffer(GL_FRONT_AND_BACK)
to enable you to draw to both front and back buffers at the same time.

For selecting the read buffer, use glReadBuffer().

Chapter 4: Color, Pixels, and Framebuffers

void glReadBuffer(GLenum mode);

Selects the color buffer enabled as the source for reading pixels for
subsequent calls to glReadPixels(), glCopyTexImage*(),
glCopyTexSubImage*(), and disables buffers enabled by previous calls to
glReadBuffer(). The value of mode can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_NONE

GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_COLOR_ATTACHMENT;i
GL_RIGHT GL_BACK_RIGHT

If mode is not one of the above tokens, a GL_INVALID_ENUM is
generated.

As we've seen, when a framebuffer object has multiple attachments, you
can control various aspects of what happens with the renderbuffer at an
attachment, like controlling the scissors box, or blending. You use the
commands glEnablei() and glDisablei() to control capabilities on a
per-attachment granularity.

void glEnablei(GLenum capability, GLuint index);
void glDisablei(GLenum capability, GLuint index);

Enables or disables capability for buffer index.

A GL_INVALID_VALUE is generated if index is greater than or equal to
GL_MAX_DRAW_BUFFERS.

GLboolean glIsEnabledi(GLenum capability, GLuint index);

Specifies whether target is enabled for buffer index.

A GL_INVALID_VALUE is generated if index is outside of the range
supported for farget.

Writing to Multiple Renderbuffers Simultaneously

197

198

Dual-Source Blending

Advanced

Two of the blend factors already described in this chapters are the second
source blending factors and are special in that they are driven by a second
output in the fragment shader. These factors, GL_SRC1_COLOR and
GL_SRC1_ALPHA, are produced in the fragment shader by writing to an
output whose index is 1 (rather than the default 0). To create such an
output we use the index layout qualifier when declaring it in the fragment
shader. Example 4.13 shows an example of such a declaration.

Example 4.13 Layout Qualifiers Specifying the Index of Fragment
Shader Outputs

0, index

layout (location ,
0, index

layout (location

0) out vecd first_output;
1) out vecd second_output;

When calling glBlendFunc(), glBlendFunci(), glBlendFuncSeparate(), or
glBlendFuncSeparatei(), the GL_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_COLOR, or GL_ONE_MINUS_SRC_ALPHA factors
will cause the blending equation’s input to be taken from first_input.
However, passing GL_SRC1_COLOR, GL_SRC1_ALPHA
GL_ONE_MINUS_SRC1_COLOR, or GL_ONE_MINUS_SRC1_ALPHA to
these functions will cause the input to be taken from second_output.
This allows some interesting blending equations to be built up by using
combinations of the first and second sources in each of the source and
destination blend factors.

For example, setting the source factor to GL_SRC1_COLOR and the
destination factor to GL_ONE_MINUS_SRC1_COLOR using one of the
blending functions essentially allows a per-channel alpha to be created in
the fragment shader. This type of functionality is especially useful when
implementing subpixel accurate antialiasing techniques in the fragment
shader. By taking the location of the red, green, and blue color elements in
the pixels on the screen into account, coverage for each element can be
generated in the fragment shader and be used to selectively light each color
by a function of its coverage. Figure 4.4 shows a close-up picture of the red,
green and blue picture elements in a liquid crystal computer monitor. The
subpixels are clearly visible, although when viewed at normal distance, the
display appears white. By lighting each of the red, green, and blue
elements separately, very high-quality antialiasing can be implemented.

Chapter 4: Color, Pixels, and Framebuffers

Figure 4.4 Close-up of RGB color elements in an LCD panel

Another possible use is to set the source and destination factors in the
blending equation to GL_ONE and GL_SRC1_COLOR. In this
configuration, the first color output is added to the framebuffer’s content,
while the second color output is used to attenuate the framebuffer’s
content. The equation becomes:

RGBdst - RGBsrCO + RGBsrcl * RGBdst

This is a classic multiply-add operation and can be used for many
purposes. For example, if you want to render a translucent object with a
colored specular highlight, write the color of the object to
second_output and the highlight color to first_output.

Writing to Multiple Renderbuffers Simultaneously 199

Dual-Source Blending and Multiple Fragment Shader Outputs

Because the second output from the fragment shader that

is required to implement dual source blending may take from the resources
available to produce outputs for multiple framebuffer attachments (draw
buffers), there are special counting rules for dual-source blending. When
dual-source blending is enabled—that is, when any of the factors specified
to one of the glBlendFunc() functions is one of the tokens that includes
SRC1, the total number of outputs available in the fragment shader may be
reduced. To determine how many outputs may be used (and consequently,
how many framebuffer attachments may be active), query for the value

of GL_MAX_DUAL_SOURCE_DRAW_BUFFERS. Note that the OpenGL
specification only requires that GL_MAX_DUAL_SOURCE_DRAW_BUFFERS
be at least one. If GL_MAX_DUAL_SOURCE_DRAW_BUFFERS

is exactly one, this means that dual source blending and

multiple draw buffers are mutually exclusive and cannot be used together.

Reading and Copying Pixel Data

Once your rendering is complete, you may want to retrieve the rendered
image for posterity. In that case, you can use the glReadPixels() function
to read pixels from the read framebuffer and return the pixels to your
application. You can return the pixels into memory allocated by the
application, or into a pixel pack buffer, if one’s currently bound.

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, void *pixels);

Reads pixel data from the read framebuffer rectangle whose lower-left
corner is at (x,y) in window coordinates and whose dimensions are width
and height, and then stores the data in the array pointed to by pixels.
format indicates the kind of pixel data elements that are read (color,
depth, or stencil value as listed in Table 4.9), and type indicates the data
type of each element (see Table 4.10.)

glReadPixels() can generate a few OpenGL errors. A
GL_INVALID_OPERATION error will be generated if format is set to
GL_DEPTH and there is no depth buffer; or if format is GL_STENCIL and
there is no stencil buffer; or if format is set to GL_DEPTH_STENCIL and
there are not both a depth and a stencil buffer associated with the
framebuffer, or if type is neither GL_UNSIGNED_INT 24 _8 nor
GL_FLOAT_32_UNSIGNED_INT_24 8 REV, then GL_INVALID_ENUM is
set.

200 Chapter 4: Color, Pixels, and Framebuffers

Table 4.9 glReadPixels() Data Formats

Format Value

Pixel Format

GL_RED or
GL_RED_INTEGER

GL_GREEN or
GL_GREEN_INTEGER

GL_BLUE or
GL_BLUE_INTEGER

GL_ALPHA or
GL_ALPHA_INTEGER

GL_RG or
GL_RG_INTEGER

GL_RGB or
GL_RGB_INTEGER

GL_RGBA or
GL_RGBA_INTEGER

GL_BGR or
GL_BGR_INTEGER

GL_BGRA or
GL_BGRA_INTEGER

GL_STENCIL_INDEX

GL_DEPTH_COMPONENT

GL_DEPTH_STENCIL

a single red color component

a single green color component

a single blue color component

a single alpha color component

a red color component, followed by a
green component

a red color component, followed by green
and blue components

a red color component, followed by green,
blue, and alpha components

a blue color component, followed by
green and red components

a blue color component, followed by
green, red, and alpha components

a single stencil index
a single depth component

combined depth and stencil components

You may need to specity which buffer you want to retrieve pixel values
from. For example, in a double-buffered window, you could read the pixels
from the front buffer or the back buffer. You can use the glReadBuffer()

routine to specify which buffer to retrieve the pixels from.

Reading and Copying Pixel Data

201

Table 4.10 Data Types for glReadPixels()

Type Value Data Type Packed
GL_UNSIGNED_BYTE GLubyte No
GL_BYTE GLbyte No
GL_UNSIGNED_SHORT GLushort No
GL_SHORT GLshort No
GL_UNSIGNED_INT GLuint No
GL_INT GLint No
GL_HALF_FLOAT GLhalf
GL_FLOAT GLfloat No
GL_UNSIGNED_BYTE_3_3_2 GLubyte Yes
GL_UNSIGNED_BYTE_2_3_3_REV GLubyte Yes
GL_UNSIGNED_SHORT_5_6_5 GLushort Yes
GL_UNSIGNED_SHORT_5_6_5_REV GLushort Yes
GL_UNSIGNED_SHORT 4 _4 4 4 GLushort Yes
GL_UNSIGNED_SHORT _4_4 4 4 REV GLushort Yes
GL_UNSIGNED_SHORT_5_5_5_1 GLushort Yes
GL_UNSIGNED_SHORT_1_5_5_5_REV GLushort Yes
GL_UNSIGNED_INT_8 8 8 8 GLuint Yes
GL_UNSIGNED_INT_8 8 _8_8 REV GLuint Yes
GL_UNSIGNED_INT_10_10_10_2 GLuint Yes
GL_UNSIGNED_INT_2_10_10_10_REV GLuint Yes
GL_UNSIGNED_INT_24_8 GLuint Yes
GL_UNSIGNED_INT_10F_11F_11F_REV GLuint Yes
GL_UNSIGNED_INT_5_9_9_9 REV GLuint Yes

GL_FLOAT_32_UNSIGNED_INT_24_8 REV GLfloat Yes

Clamping Returned Values

Various types of buffers within OpenGL—most notably floating-point
buffers—can store values with ranges outside of the normal [0, 1] range of
colors in OpenGL. When you read those values back using glReadPixels(),

202 Chapter 4: Color, Pixels, and Framebuffers

you can control whether the values should be clamped to the normalized
range or left at their full range using glClampColor().

void glClampColor(GLenum target, GLenum clamp);

Controls the clamping of color values for floating- and fixed-point
bufters, when target is GL_CLAMP_READ_COLOR. If clamp is set to
GL_TRUE, color values read from buffers are clamped to the range [0, 1];
conversely, if clamp is GL_FALSE, no clamping is engaged. If your
application uses a combination of fixed- and floating-point buffers, set
clamp to GL_FIXED_ONLY to clamp only the fixed-point values;
floating-point values are returned with their full range.

Copying Pixel Rectangles

To copy pixels between regions of a buffer, or even different framebuffers,
use glBlitFramebuffer(). It uses greater pixel filtering during the copy
operation, much in the same manner as texture mapping (in fact, the same
filtering operations, GL_NEAREST and GL_LINEAR are used during the
copy). Additionally, this routine is aware of multisampled buffers and
supports copying between different framebuffers (as controlled by
framebuffer objects).

void glBlitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1,
GLint srcY1, GLint dstX0, GLint dstYO,
GLint dstX1, GLint dstY1,
GLbitfield buffers, GLenum filter);

Copies a rectangle of pixel values from one region of the read framebuffer
to another region of the draw framebuffer, potentially resizing, reversing,
converting, and filtering the pixels in the process. srcX0, srcYO0, srcX1,
srcY1 represent the source region where pixels are sourced from, and
written to the rectangular region specified by dstXO0, dstYO0, dstX1, and
dstY1. buffers is the bitwise-or of GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER _BIT, and GL_STENCIL_BUFFER BIT, which
represent the buffers in which the copy should occur. Finally, filter
specifies the method of interpolation done if the two rectangular regions
are of different sizes, and must be one of GL_NEAREST or GL_LINEAR; no
filtering is applied if the regions are of the same size.

If there are multiple-color draw buffers, each buffer receives a copy of the
source region.

Copying Pixel Rectangles

203

204

If srcX1 < srcXO0, or dstX1 < dstXO0, the image is reversed in the horizontal
direction. Likewise, if srcY1 < srcYO or dstY1 < dstY0, the image is reversed
in the vertical direction. However, If both the source and destination
sizes are negative in the same direction, no reversal is done.

If the source and destination buffers are of different formats, conversion
of the pixel values is done in most situations. However, if the read color
buffer is a floating-point format, and any of the write color buffers are
not, or vice versa; and if the read-color buffer is a signed (unsigned)
integer format and not all of the draw buffers are signed (unsigned)
integer values, the call will generate a GL_INVALID_OPERATION, and no
pixels will be copied.

Multisampled buffers also have an effect on the copying of pixels. If the
source buffer is multisampled, and the destination is not, the samples are
resolved to a single pixel value for the destination buffer. Conversely, if
the source buffer is not multisampled, and the destination is, the source
pixel’s data is replicated for each sample. Finally, if both buffers are
multisampled and the number of samples for each buffer is the same, the
samples are copied without modification. However, if the buffers have a
different number of samples, no pixels are copied, and a
GL_INVALID_OPERATION error is generated.

A GL_INVALID_VALUE error is generated if buffers have other bits set
than those permitted, or if filter is other than GL_LINEAR or
GL_NEAREST.

Chapter 4: Color, Pixels, and Framebuffers

Chapter 5

Viewing Transformations,
Clipping, and Feedback

Chapter Objectives

After reading this chapter, you'll be able to do the following:

e View a three-dimensional geometric model by transforming it to have
any size, orientation, and perspective.

e Understand a variety of useful coordinate systems, which ones are
required by OpenGL, and how to transform from one to the next.

e Transform surface normals.
e Clip your geometric model against arbitrary planes.

e Capture the geometric result of these transforms, before displaying
them.

205

206

Previous chapters hinted at how to manipulate your geometry to fit into
the viewing area on the screen, but we'll give a complete treatment in this
chapter. This includes feedback, the ability to send it back to the
application, as well as clipping, the intersection of your geometry with
planes either by OpenGL or by you.

Typically, you'll have many objects with independently specified
geometric coordinates. These need to be transformed (moved, scaled, and
oriented) into the scene. Then, the scene itself needs to be viewed from a
particular location, direction, scaling, and orientation.

This chapter contains the following major sections:

e ‘““Viewing” provides an overview of how computer graphics simulates
the three-dimensional world on a two-dimensional display.

e “User Transformations’’ characterize the various types of
transformations that you can employ in shaders to manipulate vertex
data.

o “OpenGL Transformations” are the transformations OpenGL
implements.

e ‘“Transform Feedback” describes processing and storing vertex data
using vertex-transforming shaders to optimize rendering performance.

Viewing

If we display a typical geometric model’s coordinates directly onto the
display device, we probably won't see much. The range of coordinates in
the model (e.g., —100 to +100 meters) will not match the range of
coordinates consumed by the display device (e.g., 0 to 1919 pixels) and it
is cumbersome to restrict ourselves to coordinates that would match. In
addition, we want to view the model from different locations, directions,
and perspectives. How do we compensate for this?

Fundamentally, the display is a flat, fixed, two-dimensional rectangle while
our model contains extended three-dimensional geometry. This chapter
will show how to project our model’s three-dimensional coordinates onto
the fixed two-dimensional screen coordinates.

The key tools for projecting three dimensions down to two are a viewing
model, use of homogeneous coordinates, application of linear transformations
by matrix multiplication, and setting up a viewportmapping. These tools
are each discussed in detail below.

Chapter 5: Viewing Transformations, Clipping, and Feedback

Viewing Model

For the time being, it is important to keep thinking in terms of
three-dimensional coordinates while making many of the decisions that
determine what is drawn on the screen. It is too early to start thinking
about which pixels need to be drawn. Instead, try to visualize
three-dimensional space. It is later, after the viewing transtormations are
completed, after the subjects of this chapter, that pixels will enter the
discussion.

Camera Model

The common transformation process for producing the desired view is
analogous to taking a photograph with a camera. As shown in Figure 5.1
the steps with a camera (or a computer) might be the following:

Rectangular
cone of view

Position
Camera

3. Select Lens &=

Figure 5.1 Steps in configuring and positioning the viewing frustum

1. Move your camera to the location you want to shoot from and point
the camera the desired direction (viewing transformation).

2. Move the subject to be photographed into the desired location in the
scene (modeling transformation).

3. Choose a camera lens or adjust the zoom (projection transformation).

4. Take the picture (apply the transformations).

Viewing

207

208

5. Stretch or shrink the resulting image to the desired picture size
(viewport transformation). For 3D graphics, this also includes
stretching or shrinking the depth (depth-range scaling). This is not to
be confused with Step 3, which selected how much of the scene to
capture, not how much to stretch the result.

Notice that Steps 1 and 2 can be considered doing the same thing, but in
opposite directions. You can leave the camera where you found it and
bring the subject in front of it, or leave the subject where it is and move
the camera toward the subject. Moving the camera to the left is the same
as moving the subject to the right. Twisting the camera clockwise is the
same as twisting the subject counterclockwise. It is really up to you which
movements you perform as part of Step 1, with the remainder belonging to
Step 2. Because of this, these two steps are normally lumped together as
the model-view transform. It will, though, always consist of some
sequence of movements (translations), rotations, and scalings. The
defining characteristic of this combination is in making a single, unified
space for all the objects assembled into one scene to view, or eye space.

In OpenGL, you are responsible for doing Steps 1 through 3 above in your
shaders. That is, you'll be required to hand OpenGL coordinates with the
model-view and projective transformations already done. You are also
responsible for telling OpenGL how to do the viewport transformation for
Step 5, but the fixed rendering pipeline will do that transformation for
you, as described in “OpenGL Transformations’’ on Page 236.

Figure 5.2 summarizes the coordinate systems required by OpenGL for the
tull process. So far, we have discussed the second box (user transforms) but
are showing the rest to set the context for the whole viewing stack,
finishing with how you specity your viewport and depth range to OpenGL.
The final coordinates handed to OpenGL for clipping and rasterization are
normalized homogeneous coordinates. That is, the coordinates to be drawn
will be in the range [-1.0, 1.0] until OpenGL scales them to fit the
viewport.

Chapter 5: Viewing Transformations, Clipping, and Feedback

Your starting (x, y, z) object/model Object units; could be
coordinates

coordinates meters, inches, etc.
Append w of 1.0
You need these
n orclier to " » (x, ¥, z, 1.0) homogeneous Same units
translate an model coordinates

project
| User/shader transforms: scale, rotate, translate, project
OpenGL » (x, v, z, w) homogeneous Units normalized such that divide by w
required input clip coordinates leaves visible points between -1.0 to +1.0
| OpenGL divide by w
Scaled by OpenGL to
your viewport and (x, y, z) normalized Range of -1.0 to +1.0 for xand y
depth range device coordinates | and 0.0 to 1.0 for z

| OpenGL clipping and viewport/depth-range transform |

(x, y) are window coordinates (x, y) units are in pixels (with fractions)
zis depth coordinate zisin range of 0.0 to 1.0, or depth range

Rasterization

Figure 5.2 Coordinate systems required by OpenGL

(The coordinate systems are the boxes on the left. The central boxes
transform from one coordinate system to the next. Units are described to
the right.)

It will be useful to name additional coordinate systems lying within the
view, model, and projection transforms. These are no longer part of the
OpenGL model, but still highly useful and conventional when using
shaders to assemble a scene or calculate lighting. Figure 5.3 shows an
expansion of the user transforms box from Figure 5.2. In particular, most
lighting calculations done in shaders will be done in eye space. Examples
making full use of eye space are provided in Chapter 7, “Light and
Shadow”’.

Viewing

209

(x, v, z, 1.0) homogeneous Object units
model coordinates

User/shader transforms

Model Transform:
Scale, rotate, translate object into scene

(x, y, z, 1.0) world
coordinates

View Transform:
Orient scene in front of viewer's eye

Most lighting » (% y, 2, 1.0) eye
needs eye space coordinates

Projection Transform:
Apply perspective and size the frustum

OpenGL needs » (x, ¥, z, w) homogeneous Units normalized such that divide by w
these clip coordinates leaves visible points between -1.0 to +1.0

Figure 5.3 User coordinate systems unseen by OpenGL
(These coordinate systems, while not used by OpenGL, are still vital for
lighting and other shader operations.)

Viewing Frustum

Step 3 in our camera analogy chose a lens, or zoom amount. This selects
how narrow or wide of a rectangular cone through the scene the camera
will capture. Only geometry falling within this cone will be in the final
picture. At the same time, Step 3 will also produce the information needed
(in the homogeneous fourth coordinate, w) to later create the
foreshortening effect of perspective.

210 Chapter 5: Viewing Transformations, Clipping, and Feedback

‘t..__-?
uﬁ‘._“L’Cu lled

Culled, ! r
w7 L
N,
(
Viewing
frustum
>
Culled !

Far plane

Near plane

Rectangular
cone of view

Figure 5.4 A view frustum

OpenGL will additionally exclude geometry that is too close or too far
away; that is, those in front of a near plane or those behind a far plane.
There is no counterpart to this in the camera analogy (other than cleaning
foreign objects from inside your lens), but is helpful in a variety of ways.
Most importantly, objects approaching the cone’s apex appear infinitely
large, which causes problems, especially if they should reach the apex. At
the other end of this spectrum, objects too far away to be drawn in the
scene are best excluded for performance reasons and some depth precision
reasons as well, if depth must span too large a distance.

Thus, we have two additional planes intersecting the four planes of the
rectangular viewing cone. As shown in Figure 5.4, these six planes define a
frustum-shaped viewing volume.

Frust