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Parametric Representations 
  3 basic representation strategies: 

Explicit: y = mx + b 
Implicit: ax + by + c = 0 
Parametric: P = P0 + t (P1 - P0) 

  Advantages of parametric forms 
More degrees of freedom 
Directly transformable 
Dimension independent 
No infinite slope problems 
Separates dependent and independent variables 
Inherently bounded 
Easy to express in vector and matrix form 
Common form for many curves and surfaces 
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Algebraic Representation 
  All of these curves are just parametric algebraic polynomials expressed 

in different bases 
  Parametric linear curve (in E3) 

 
 
  Parametric cubic curve (in E3) 

 

  Basis (monomial or power) 

€ 

x = axu
3 + bxu

2 + cxu + dx
y = ayu

3 + byu
2 + cyu + dy

z = azu
3 + bzu

2 + czu + dz

€ 

x = axu + bx
y = ayu + by
z = azu + bz

€ 

p(u) = au + b

€ 

p(u) = au3 + bu2 + cu + d

€ 

u 1[ ]
u3 u2 u 1[ ]
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Hermite Curves 
  12 degrees of freedom (4  3-d vector constraints) 
 Specify endpoints and tangent vectors at endpoints 

 
 
 Solving for the coefficients: 

€ 

p(0) = d
p(1) = a + b+ c + d
pu(0) = c
pu(1) = 3a + 2b+ c

€ 

a = 2p(0) − 2p(1) + pu(0) + pu(1)
b = −3p(0) + 3p(1) − 2pu(0) −pu(1)
c = pu(0)
d = p(0)

€ 

pu(u) ≡ dp
du
(u)

•

•
pu(0) 

u = 0 

u = 1 

p(0) 

p(1) 

pu(1) 
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Hermite Curves - Hermite Basis 
  Substituting for the coefficients and collecting terms gives 

 
 
  Call 

 
 
 
 
 

the Hermite blending functions or basis functions 
 

  Then 

€ 

p(u) = (2u3 − 3u2 +1)p(0) + (−2u3 + 3u2)p(1) + (u3 − 2u2 + u)pu(0) + (u3 − u2)pu(1)

€ 

H1(u) = (2u3 − 3u2 +1)
H2(u) = (−2u3 + 3u2)
H3(u) = (u3 − 2u2 + u)
H4 (u) = (u3 − u2)

€ 

p(u) =H1(u)p(0) +H2(u)p(1) +H3(u)p
u(0) +H4(u)p

u(1)

H1 H2 

H3 

H4 

  n 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010  Don Fussell                 6 

Hermite Curves - Matrix Form 
  Putting this in matrix form 

 
 

  MH is called the Hermite characteristic matrix 
  Collecting the Hermite geometric 
 coefficients into a geometry vector B, 
 we have a matrix formulation for 
 the Hermite curve p(u) 

€ 

H = H1(u) H2(u) H3(u) H4 (u)[ ]

= u3 u2 u 1[ ]

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=UMH

€ 

B =

p(0)
p(1)
pu(0)
pu(1)

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

p(u) =UMHB
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Hermite and Algebraic Forms 

 MH transforms geometric coefficients 
(“coordinates”) from the Hermite basis to the 
algebraic coefficients of the monomial basis 

€ 

A =

a
b
c
d

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

p(u) =UA =UMHB
A =MHB
B =MH

−1A

€ 

MH
−1 =

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
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Cubic Bézier Curves 
  Specifying tangent vectors at endpoints isn’t always convenient for 

geometric modeling 
  We may prefer making all the geometric coefficients points, let’s call 

them control points, and label them p0, p1, p2, and p3 
  For cubic curves, we can proceed by letting the tangents at the 

endpoints for the Hermite curve be defined by a vector between a pair 
of control points, so that: 

€ 

p(0) = p0
p(1) = p3
pu(0) = k1(p1 −p0)
pu(1) = k2(p3 −p2) p0 

p1 

p2 

• p3 p(u) 

k2 
k1 
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Cubic Bézier Curves 

 Substituting this into the Hermite curve expression 
and rearranging, we get 

  In matrix form, this is € 

p(u) = 2 − k1( )u3 + 2k1 − 3( )u2 − k1u +1[ ]p0 + k1u
3 − 2k1u

2 + k1u[ ]p1
+ −k2u

3 + k2u
2[ ]p2 + k2 − 2( )u3 + 3− k2( )u2[ ]p3

€ 

p(u) =UMBP

€ 

MB =

2 − k1 k1 −k2 k2 − 2
2k1 − 3 −2k1 k2 3− k2
−k1 k1 0 0
1 0 0 0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

€ 

P =

p0
p1
p2
p3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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Cubic Bézier Curves 
  What values should we choose for k1 and k2? 
  If we let the control points be evenly spaced in parameter 
space, then p0 is at u = 0, p1 at u = 1/3, p2 at u = 2/3 and p3 
at u = 1.  Then 

 
 
  and k1 = k2 = 3, giving a nice symmetric characteristic 

matrix: 

 
  So 

€ 

MB =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

€ 

p(u) = −u3 + 3u2 − 3u +1( ) p0 + 3u3 − 6u2 + 3u( )p1 + −3u3 + 3u2( )p2 + u3p3

€ 

pu(0) = (p1 −p0) (1/3− 0) = 3(p1 −p0)
pu(1) = (p3 −p2) (1− 2 /3) = 3(p3 −p2)
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General Bézier Curves 
 This can be rewritten as 

 
 
 Note that the binomial expansion of 

 
 

  (u + (1 - u))n  is 
 
 

   This suggests a general formula for Bézier curves 
of arbitrary degree 

€ 

p(u) = (1− u)3p0 + 3u(1− u)2p1 + 3u2(1− u)p2 + u3p3 =
3
i
# 

$ 
% 
& 

' 
( ui 1− u( )3− ipi

i= 0

3

∑

€ 

n
i
" 

# 
$ 
% 

& 
' ui 1− u( )n− i

i= 0

n

∑

€ 

p(u) =
n
i
" 

# 
$ 
% 

& 
' ui 1− u( )n− ipi

i= 0

n

∑
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General Bézier Curves 
  The binomial expansion gives the Bernstein basis (or Bézier blending 

functions) Bi,n for arbitrary degree Bézier curves 

 

 
 
  Of particular interest to us (in addition to cubic curves): 

Linear: p(u) = (1 - u)p0 + up1 
Quadratic: p(u) = (1 - u)2p0 + 2u(1 - u)p1 + u2p2 

€ 

p(u) =
n
i
" 

# 
$ 
% 

& 
' ui 1− u( )n− ipi

i= 0

n

∑

Bi,n (u) =
n
i
" 

# 
$ 
% 

& 
' ui 1− u( )n− i

p(u) = Bi,n (u) pi
i= 0

n

∑

Cubic Bézier 
Blending Functions 

B0,3 

B1,3 B2,3 

B3,3 

  n 
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Bézier Curve Properties 
  Interpolates end control points, not middle ones 
  Stays inside convex hull of control points 

Important for many algorithms 
Because it’s a convex 

 combination of points, 
 i.e. affine with positive weights 

  Variation diminishing 
Doesn’t “wiggle” more 

  than control polygon 

p0 

p1 

p2 

p3 
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Rendering Bézier Curves 
  We can obtain a point on a Bézier curve by just evaluating 
the function for a given value of u 
  Fastest way, precompute A=MBP once control points are 
known, then evaluate p(ui)=[ui

3 ui
2 ui 1]A, i = 0,1,2,…,n 

 for n fixed increments of u 
  For better numerical stability, take e.g. a quadratic curve 
(for simplicity) and rewrite 

  This is just a linear interpolation of two points, each of 
which was obtained by interpolating a pair of adjacent 
control points € 

p(u) = (1− u)2p0 + 2u(1− u)p1 + u2p2
= (1− u)[(1− u)p0 + up1]+ u[(1− u)p1 + up2]
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de Casteljau Algorithm 
  This hierarchical linear interpolation works for general 
Bézier curves, as given by the following recurrence 

 where pi,0    i = 0,1,2,…,n  are the control points for a 
degree n Bézier curve and p0,n = p(u) 
  For efficiency this should not be implemented recursively.  
  Useful for point evaluation in a recursive subdivision 
algorithm to render a curve since it generates the control 
points for the subdivided curves. 

  

€ 

pi, j = (1− u)pi, j−1 + upi+1, j−1
i = 0,1,2,…,n − j
j =1,2,…,n

# 
$ 
% 
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de Casteljau Algorithm 

p0 

p1 

p2 

p3 

Starting with the control points 
and a given value of u 

In this example, u≈0.25 
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de Casteljau Algorithm 

p0 

q0 

p1 

p2 

p3 

q2 

q1 

€ 

q0(u) = (1− u)p0 + up1
q1(u) = (1− u)p1 + up2
q2(u) = (1− u)p2 + up3



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010  Don Fussell                 18 

de Casteljau Algorithm 

q0 

q2 

q1 

r1 

r0 

€ 

r0(u) = (1− u)q0(u) + uq1(u)
r1(u) = (1− u)q1(u) + uq2(u)
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de Casteljau Algorithm 

r1 p(u) 

r0 
• 

€ 

p(u) = (1− u)r0(u) + ur1(u)
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de Casteljau algorihm 

• 
p0 

p1 

p2 

p3 

p(u) 
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Drawing Bézier Curves 

 How can you draw a curve? 
Generally no low-level support for drawing curves 
Can only draw line segments or individual pixels 

 Approximate the curve as a series of line segments 
Analogous to tessellation of a surface 
Methods: 

 Sample uniformly 
 Sample adaptively 
 Recursive Subdivision 
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Uniform Sampling 
  Approximate curve with n line segments 

n chosen in advance 
Evaluate 

For an arbitrary cubic curve 

 
Connect the points with lines 

  Too few points? 
Bad approximation 
“Curve” is faceted 

  Too many points? 
Slow to draw too many line segments 
Segments may draw on top of each other 

p4 

p0 

p1 

p2 

p3 

p(u) 
€ 

pi = p(ui) where ui =
i
n

i = 0,1,...,n

€ 

pi = a i3 n3( ) + b i2 n2( ) + c i n( ) + d
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Adaptive Sampling 

  Use only as many line segments as you need 
Fewer segments needed where curve is mostly flat 
More segments needed where curve bends 
No need to track bends that are smaller than a pixel 

  Various schemes for sampling, 
checking results, deciding whether 
to sample more 

  Or, use knowledge of curve structure: 
Adapt by recursive subdivision 

p(u) 
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Recursive Subdivision 

 Any cubic curve segment can be expressed as a 
Bézier curve 
 Any piece of a cubic curve is itself a cubic curve 
 Therefore: 

Any Bézier curve can be broken up into smaller Bézier 
curves 
But how…? 
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 de Casteljau construction 
points are the control points 
of two Bézier sub-segments 

x p0 

p1 

p2 

p3 

de Casteljau subdivision 

q0 
r0 

r1 

q2 
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Adaptive subdivision algorithm 

 Use de Casteljau construction to split Bézier 
segment 
 Examine each half: 

If flat enough: draw line segment 
Else: recurse 

 To test if curve is flat enough 
Only need to test if hull is flat enough 

 Curve is guaranteed to lie within the hull 
e.g., test how far the handles are from a straight 
segment 

 If it’s about a pixel, the hull is flat  
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Composite Curves 
  Hermite and Bézier curves generalize line segments to higher degree 

polynomials.  But what if we want more complicated curves than we 
can get with a single one of these?  Then we need to build composite 
curves, like polylines but curved. 

  Continuity conditions for composite curves 
C0 - The curve is continuous, i.e. the endpoints of consecutive curve 
segments coincide 
C1 - The tangent (derivative with respect to the parameter) is continuous, 
i.e. the tangents match at the common endpoint of consecutive curve 
segments 
C2 - The second parametric derivative is continuous, i.e. matches at 
common endpoints 
G0 - Same as C0 
G1 - Derivatives wrt the coordinates are continuous.  Weaker than C1, the 
tangents should point in the same direction, but lengths can differ. 
G2 - Second derivatives wrt the coordinates are continuous 
… 
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Composite Bézier Curves 
  C0, G0 - Coincident end control points 
  C1 - p3 - p2 on first curve equals p1 - p0 on second 
  G1 - p3 - p2 on first curve proportional to p1 - p0 on second 
  C2, G2 - More complex, use B-splines to automatically 
control continuity across curve segments 
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Polar form for Bézier Curves 
  A much more useful point labeling scheme 
  Start with knots, “interesting” values in parameter space 
  For Bézier curves, parameter space is normally [0, 1], and the knots 

are at 0 and 1. 

  Now build a knot vector, a non-decreasing sequence of knot values. 
  For a degree n Bézier curve, the knot vector will have n 0’s followed 

by n 1’s [0,0,…,0,1,1,…,1] 
Cubic Bézier knot vector [0,0,0,1,1,1] 
Quadratic Bézier knot vector [0,0,1,1] 

  Polar labels for consecutive control points are sequences of n knots 
from the vector, incrementing the starting point by 1 each time 

Cubic Bézier control points: p0 = p(0,0,0), p1 = p(0,0,1),   
              p2 = p(0,1,1), p3 = p(1,1,1) 

Quadratic Bézier control points: p0 = p(0,0), p1 = p(0,1), p2 = p(1,1) 

u 0 1 
knot knot 
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Polar form rules 
  Polar values are symmetric in their arguments, i.e. all 
permutations of a polar label are equivalent. 
 p(0,0,1) = p(0,1,0) = p(1,0,0), etc. 
  Given p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b), for any 
value c we can compute 

 That is, p(u1, u2,…,un-1, c) is an affine combination of 
  p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b) . 
 Examples: € 

p(u1,u2,...,un−1,c) =
(b − c)p(u1,u2,...,un−1,a) + (c − a)p(u1,u2,...,un−1,b)

b − a

€ 

p(0,u,1) = (1− u)p(0,0,1) + up(0,1,1)

p(0,u) =
(4 − u)p(0,2) + (u − 2)p(0,4)

2

p(1,2,3,u) =
(u2 − u)p(2,1,3,u1) + (u − u1)p(3,2,1,u2)

u2 − u1
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de Casteljau in polar form 

p(0,0,0) 

p(1,1,1) 

p(0,1,1) 

p(0,0,1) 
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de Casteljau in polar form 

p(0,0,0) 

p(1,1,1) 

p(0,1,1) 

p(0,0,1) 

p(0,0,u) 

p(0,u,1) 

p(u,1,1) 
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de Casteljau in polar form 

p(0,0,0) 

p(1,1,1) 

p(0,1,1) 

p(0,0,1) 

p(0,0,u) 

p(0,u,1) 

p(u,1,1) 

p(0,u,u) 

p(u,u,1) 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010  Don Fussell                 34 

de Casteljau in polar form 

p(0,0,0) 

p(1,1,1) 

p(0,1,1) 

p(0,0,1) 

p(0,0,u) 

p(0,u,1) 

p(u,1,1) 

p(0,u,u) 

p(u,u,1) • p(u,u,u) 
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de Casteljau in polar form 

p(0,0,0) 

p(1,1,1) 

p(0,1,1) 

p(0,0,1) 

p(0,0,u) 

p(0,u,1) 

p(u,1,1) 

p(0,u,u) 

p(u,u,1) • p(u,u,u) 
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Composite curves in polar form 
  Suppose we want to glue two cubic Bézier curves together 
in a way that automatically guarantees C2 continuity 
everywhere.  We can do this easily in polar form. 
  Start with parameter space for the pair of curves 

1st curve [0,1], 2nd curve (1,2] 

  Make a knot vector: [000,1,222] 
  Number control points as before: 
  p(0,0,0), p(0,0,1), p(0,1,2), p(1,2,2), p(2,2,2) 
  Okay, 5 control points for the two curves, so 3 of them 
must be shared since each curve needs 4.  That’s what 
having only 1 copy of knot 1 achieves, and that’s what 
gives us C2 continuity at the join point at u = 1 

u 0 1 
knot knot 

u 2 
knot 
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de Boor algorithm in polar form 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

u = 0.5 
Knot vector = [0,0,0,1,2,2,2] 
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Inserting a knot 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

u = 0.5 

p(0,0,0.5) 

p(0,0.5,1) 

p(0.5,1,2) 

Knot vector = [0,0,0,0.5,1,2,2,2] 
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Inserting a 2nd knot 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

u = 0.5 

p(0,0,0.5) 

p(0,0.5,1) 

p(0.5,1,2) 

p(0,0.5,0.5) 
p(0.5,0.5,1) 

Knot vector = [0,0,0,0.5,0.5,1,2,2,2] 
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Inserting a 3rd knot to get a point 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

u = 0.5 

p(0,0,0.5) 

p(0,0.5,1) 

p(0.5,1,2) 

p(0,0.5,0.5) 
p(0.5,0.5,1) 

p(0.5,0.5,0.5) 

Knot vector = [0,0,0,0.5,0.5,0.5,1,2,2,2] 
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Recovering the Bézier curves 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

Knot vector = [0,0,0,1,1,2,2,2] 

p(0,1,1) 

p(1,1,2) 
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Recovering the Bézier curves 

p(0,0,0) 

p(0,0,1) 

p(0,1,2) 

p(1,2,2) 

p(2,2,2) 

Knot vector = [0,0,0,1,1,1,2,2,2] 

p(0,1,1) 

p(1,1,2) 

p(1,1,1) 
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B-Splines 
  B-splines are a generalization of Bézier curves that allows grouping them 

together with continuity across the joints 
  The B in B-splines stands for basis, they are based on a very general class of 

spline basis functions 
  Splines is a term referring to composite parametric curves with guaranteed 

continuity 
  The general form is similar to that of Bézier curves 

Given m + 1 values ui in parameter space (these are called knots), a degree n B-spline 
curve is given by:  

 where m ≥ i + n + 1 

€ 

p(u) = N i,n (u)pi
i= 0

m−n−1

∑

N i,0 (u) =
1 ui ≤ u < ui+1
0 otherwise
% 
& 
' 

N i,n (u) =
u − ui
ui+n − ui

N i,n−1(u) +
ui+n+1 − u
ui+n+1 − ui+1

N i+1,n−1(u)
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Uniform periodic basis 

  Let N(u) be a global basis 
 function for our uniform 
 cubic B-splines 
  N(u) is piecewise cubic 

 

 

0 4 
u 

N(u) 

N(u) =

1
6 u

3

− 1
2 (u−1)3 + 1

2 (u−1)2 + 1
2 (u−1)+ 1

6

1
2 (u− 2)3 − (u− 2)2 + 2

3

− 1
6 (u−3)3 + 1

2 (u−3)2 − 1
2 (u−3)+ 1

6

if u <1
if u < 2
if u < 3
otherwise

"

#

$
$$

%

$
$
$

1 2 3 p0 p1 p2 p3 



  Pieces of single basis 
function associated with 4 
overlapping copies for active 
control points 

 
 

p(u) = N0(u) p3+ N1(u) p2 + 
N2(u) p1 + N3(u)p0 

 

Basis over [0,1] 
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© 2003 Steve Marschner • 1Cornell CS417 Spring 2003 • Lecture 13

B-splines

CS 417 Lecture 13 (part 1)

© 2003 Steve Marschner • 2Cornell CS417 Spring 2003 • Lecture 13

B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity
• Various ways to think of construction

– a simple one is convolution
– relationship to sampling and reconstruction
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Cubic B-spline basis
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Cubic B-spline basis
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Construction of B-splines

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence
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B-spline construction

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve
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Uniform periodic B-Spline 
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p(u) = (–1/6u3  + 1/2u2 – 1/2u + 1/6)p0 + 
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Composite B-Spline 
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B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity
• Various ways to think of construction

– a simple one is convolution
– relationship to sampling and reconstruction
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Cubic B-spline basis
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Cubic B-spline basis
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Construction of B-splines

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence
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B-spline construction

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve



Uniform periodic B-Spline 
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De�Boor�Algorithm
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Composite B-Spline 
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Example:�General�Case
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Example:�General�Case
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Composite B-Spline 
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Example:�General�Case
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Composite B-Spline 
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Example:�General�Case
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Composite B-Spline 
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