
University of Texas at Austin Computer Graphics Fall 2010 Don Fussell

Parametric Curves

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

Parametric Representations
  3 basic representation strategies:

Explicit: y = mx + b
Implicit: ax + by + c = 0
Parametric: P = P0 + t (P1 - P0)

  Advantages of parametric forms
More degrees of freedom
Directly transformable
Dimension independent
No infinite slope problems
Separates dependent and independent variables
Inherently bounded
Easy to express in vector and matrix form
Common form for many curves and surfaces

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

Algebraic Representation
  All of these curves are just parametric algebraic polynomials expressed

in different bases
  Parametric linear curve (in E3)

  Parametric cubic curve (in E3)

  Basis (monomial or power)

€

x = axu
3 + bxu

2 + cxu + dx
y = ayu

3 + byu
2 + cyu + dy

z = azu
3 + bzu

2 + czu + dz

€

x = axu + bx
y = ayu + by
z = azu + bz

€

p(u) = au + b

€

p(u) = au3 + bu2 + cu + d

€

u 1[]
u3 u2 u 1[]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

Hermite Curves
  12 degrees of freedom (4 3-d vector constraints)
 Specify endpoints and tangent vectors at endpoints

 Solving for the coefficients:

€

p(0) = d
p(1) = a + b+ c + d
pu(0) = c
pu(1) = 3a + 2b+ c

€

a = 2p(0) − 2p(1) + pu(0) + pu(1)
b = −3p(0) + 3p(1) − 2pu(0) −pu(1)
c = pu(0)
d = p(0)

€

pu(u) ≡ dp
du
(u)

•

•
pu(0)

u = 0

u = 1

p(0)

p(1)

pu(1)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

Hermite Curves - Hermite Basis
  Substituting for the coefficients and collecting terms gives

  Call

the Hermite blending functions or basis functions

  Then

€

p(u) = (2u3 − 3u2 +1)p(0) + (−2u3 + 3u2)p(1) + (u3 − 2u2 + u)pu(0) + (u3 − u2)pu(1)

€

H1(u) = (2u3 − 3u2 +1)
H2(u) = (−2u3 + 3u2)
H3(u) = (u3 − 2u2 + u)
H4 (u) = (u3 − u2)

€

p(u) =H1(u)p(0) +H2(u)p(1) +H3(u)p
u(0) +H4(u)p

u(1)

H1 H2

H3

H4

 n

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

Hermite Curves - Matrix Form
  Putting this in matrix form

  MH is called the Hermite characteristic matrix
  Collecting the Hermite geometric
 coefficients into a geometry vector B,
 we have a matrix formulation for
 the Hermite curve p(u)

€

H = H1(u) H2(u) H3(u) H4 (u)[]

= u3 u2 u 1[]

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

=UMH

€

B =

p(0)
p(1)
pu(0)
pu(1)

"

$
$
$
$

%

&

'
'
'
'

p(u) =UMHB

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

Hermite and Algebraic Forms

 MH transforms geometric coefficients
(“coordinates”) from the Hermite basis to the
algebraic coefficients of the monomial basis

€

A =

a
b
c
d

"

$
$
$
$

%

&

'
'
'
'

p(u) =UA =UMHB
A =MHB
B =MH

−1A

€

MH
−1 =

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

Cubic Bézier Curves
  Specifying tangent vectors at endpoints isn’t always convenient for

geometric modeling
  We may prefer making all the geometric coefficients points, let’s call

them control points, and label them p0, p1, p2, and p3
  For cubic curves, we can proceed by letting the tangents at the

endpoints for the Hermite curve be defined by a vector between a pair
of control points, so that:

€

p(0) = p0
p(1) = p3
pu(0) = k1(p1 −p0)
pu(1) = k2(p3 −p2) p0

p1

p2

• p3 p(u)

k2
k1

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

Cubic Bézier Curves

 Substituting this into the Hermite curve expression
and rearranging, we get

  In matrix form, this is €

p(u) = 2 − k1()u3 + 2k1 − 3()u2 − k1u +1[]p0 + k1u
3 − 2k1u

2 + k1u[]p1
+ −k2u

3 + k2u
2[]p2 + k2 − 2()u3 + 3− k2()u2[]p3

€

p(u) =UMBP

€

MB =

2 − k1 k1 −k2 k2 − 2
2k1 − 3 −2k1 k2 3− k2
−k1 k1 0 0
1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

€

P =

p0
p1
p2
p3

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Cubic Bézier Curves
  What values should we choose for k1 and k2?
  If we let the control points be evenly spaced in parameter
space, then p0 is at u = 0, p1 at u = 1/3, p2 at u = 2/3 and p3
at u = 1. Then

 and k1 = k2 = 3, giving a nice symmetric characteristic

matrix:

  So

€

MB =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

$

%
%
%
%

&

'

(
(
(
(

€

p(u) = −u3 + 3u2 − 3u +1() p0 + 3u3 − 6u2 + 3u()p1 + −3u3 + 3u2()p2 + u3p3

€

pu(0) = (p1 −p0) (1/3− 0) = 3(p1 −p0)
pu(1) = (p3 −p2) (1− 2 /3) = 3(p3 −p2)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

General Bézier Curves
 This can be rewritten as

 Note that the binomial expansion of

 (u + (1 - u))n is

  This suggests a general formula for Bézier curves
of arbitrary degree

€

p(u) = (1− u)3p0 + 3u(1− u)2p1 + 3u2(1− u)p2 + u3p3 =
3
i

$
%
&

'
(ui 1− u()3− ipi

i= 0

3

∑

€

n
i
"

$
%

&
' ui 1− u()n− i

i= 0

n

∑

€

p(u) =
n
i
"

$
%

&
' ui 1− u()n− ipi

i= 0

n

∑

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

General Bézier Curves
  The binomial expansion gives the Bernstein basis (or Bézier blending

functions) Bi,n for arbitrary degree Bézier curves

  Of particular interest to us (in addition to cubic curves):

Linear: p(u) = (1 - u)p0 + up1
Quadratic: p(u) = (1 - u)2p0 + 2u(1 - u)p1 + u2p2

€

p(u) =
n
i
"

$
%

&
' ui 1− u()n− ipi

i= 0

n

∑

Bi,n (u) =
n
i
"

$
%

&
' ui 1− u()n− i

p(u) = Bi,n (u) pi
i= 0

n

∑

Cubic Bézier
Blending Functions

B0,3

B1,3 B2,3

B3,3

 n

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Bézier Curve Properties
  Interpolates end control points, not middle ones
  Stays inside convex hull of control points

Important for many algorithms
Because it’s a convex

 combination of points,
 i.e. affine with positive weights

  Variation diminishing
Doesn’t “wiggle” more

 than control polygon

p0

p1

p2

p3

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Rendering Bézier Curves
  We can obtain a point on a Bézier curve by just evaluating
the function for a given value of u
  Fastest way, precompute A=MBP once control points are
known, then evaluate p(ui)=[ui

3 ui
2 ui 1]A, i = 0,1,2,…,n

 for n fixed increments of u
  For better numerical stability, take e.g. a quadratic curve
(for simplicity) and rewrite

  This is just a linear interpolation of two points, each of
which was obtained by interpolating a pair of adjacent
control points €

p(u) = (1− u)2p0 + 2u(1− u)p1 + u2p2
= (1− u)[(1− u)p0 + up1]+ u[(1− u)p1 + up2]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

de Casteljau Algorithm
  This hierarchical linear interpolation works for general
Bézier curves, as given by the following recurrence

 where pi,0 i = 0,1,2,…,n are the control points for a
degree n Bézier curve and p0,n = p(u)
  For efficiency this should not be implemented recursively.
  Useful for point evaluation in a recursive subdivision
algorithm to render a curve since it generates the control
points for the subdivided curves.

€

pi, j = (1− u)pi, j−1 + upi+1, j−1
i = 0,1,2,…,n − j
j =1,2,…,n

$
%

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

de Casteljau Algorithm

p0

p1

p2

p3

Starting with the control points
and a given value of u

In this example, u≈0.25

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

de Casteljau Algorithm

p0

q0

p1

p2

p3

q2

q1

€

q0(u) = (1− u)p0 + up1
q1(u) = (1− u)p1 + up2
q2(u) = (1− u)p2 + up3

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

de Casteljau Algorithm

q0

q2

q1

r1

r0

€

r0(u) = (1− u)q0(u) + uq1(u)
r1(u) = (1− u)q1(u) + uq2(u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

de Casteljau Algorithm

r1 p(u)

r0
•

€

p(u) = (1− u)r0(u) + ur1(u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

de Casteljau algorihm

•
p0

p1

p2

p3

p(u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

Drawing Bézier Curves

 How can you draw a curve?
Generally no low-level support for drawing curves
Can only draw line segments or individual pixels

 Approximate the curve as a series of line segments
Analogous to tessellation of a surface
Methods:

 Sample uniformly
 Sample adaptively
 Recursive Subdivision

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 22

Uniform Sampling
  Approximate curve with n line segments

n chosen in advance
Evaluate

For an arbitrary cubic curve

Connect the points with lines

  Too few points?
Bad approximation
“Curve” is faceted

  Too many points?
Slow to draw too many line segments
Segments may draw on top of each other

p4

p0

p1

p2

p3

p(u)
€

pi = p(ui) where ui =
i
n

i = 0,1,...,n

€

pi = a i3 n3() + b i2 n2() + c i n() + d

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 23

Adaptive Sampling

  Use only as many line segments as you need
Fewer segments needed where curve is mostly flat
More segments needed where curve bends
No need to track bends that are smaller than a pixel

  Various schemes for sampling,
checking results, deciding whether
to sample more

  Or, use knowledge of curve structure:
Adapt by recursive subdivision

p(u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 24

Recursive Subdivision

 Any cubic curve segment can be expressed as a
Bézier curve
 Any piece of a cubic curve is itself a cubic curve
 Therefore:

Any Bézier curve can be broken up into smaller Bézier
curves
But how…?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 25

 de Casteljau construction
points are the control points
of two Bézier sub-segments

x p0

p1

p2

p3

de Casteljau subdivision

q0
r0

r1

q2

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 26

Adaptive subdivision algorithm

 Use de Casteljau construction to split Bézier
segment
 Examine each half:

If flat enough: draw line segment
Else: recurse

 To test if curve is flat enough
Only need to test if hull is flat enough

 Curve is guaranteed to lie within the hull
e.g., test how far the handles are from a straight
segment

 If it’s about a pixel, the hull is flat

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 27

Composite Curves
  Hermite and Bézier curves generalize line segments to higher degree

polynomials. But what if we want more complicated curves than we
can get with a single one of these? Then we need to build composite
curves, like polylines but curved.

  Continuity conditions for composite curves
C0 - The curve is continuous, i.e. the endpoints of consecutive curve
segments coincide
C1 - The tangent (derivative with respect to the parameter) is continuous,
i.e. the tangents match at the common endpoint of consecutive curve
segments
C2 - The second parametric derivative is continuous, i.e. matches at
common endpoints
G0 - Same as C0
G1 - Derivatives wrt the coordinates are continuous. Weaker than C1, the
tangents should point in the same direction, but lengths can differ.
G2 - Second derivatives wrt the coordinates are continuous
…

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 28

Composite Bézier Curves
  C0, G0 - Coincident end control points
  C1 - p3 - p2 on first curve equals p1 - p0 on second
  G1 - p3 - p2 on first curve proportional to p1 - p0 on second
  C2, G2 - More complex, use B-splines to automatically
control continuity across curve segments

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 29

Polar form for Bézier Curves
  A much more useful point labeling scheme
  Start with knots, “interesting” values in parameter space
  For Bézier curves, parameter space is normally [0, 1], and the knots

are at 0 and 1.

  Now build a knot vector, a non-decreasing sequence of knot values.
  For a degree n Bézier curve, the knot vector will have n 0’s followed

by n 1’s [0,0,…,0,1,1,…,1]
Cubic Bézier knot vector [0,0,0,1,1,1]
Quadratic Bézier knot vector [0,0,1,1]

  Polar labels for consecutive control points are sequences of n knots
from the vector, incrementing the starting point by 1 each time

Cubic Bézier control points: p0 = p(0,0,0), p1 = p(0,0,1),
 p2 = p(0,1,1), p3 = p(1,1,1)

Quadratic Bézier control points: p0 = p(0,0), p1 = p(0,1), p2 = p(1,1)

u 0 1
knot knot

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

Polar form rules
  Polar values are symmetric in their arguments, i.e. all
permutations of a polar label are equivalent.
 p(0,0,1) = p(0,1,0) = p(1,0,0), etc.
  Given p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b), for any
value c we can compute

 That is, p(u1, u2,…,un-1, c) is an affine combination of
 p(u1, u2,…,un-1, a) and p(u1, u2,…,un-1, b) .
 Examples: €

p(u1,u2,...,un−1,c) =
(b − c)p(u1,u2,...,un−1,a) + (c − a)p(u1,u2,...,un−1,b)

b − a

€

p(0,u,1) = (1− u)p(0,0,1) + up(0,1,1)

p(0,u) =
(4 − u)p(0,2) + (u − 2)p(0,4)

2

p(1,2,3,u) =
(u2 − u)p(2,1,3,u1) + (u − u1)p(3,2,1,u2)

u2 − u1

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 31

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 32

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)

p(0,u,1)

p(u,1,1)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 33

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)

p(0,u,1)

p(u,1,1)

p(0,u,u)

p(u,u,1)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 34

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)

p(0,u,1)

p(u,1,1)

p(0,u,u)

p(u,u,1) • p(u,u,u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 35

de Casteljau in polar form

p(0,0,0)

p(1,1,1)

p(0,1,1)

p(0,0,1)

p(0,0,u)

p(0,u,1)

p(u,1,1)

p(0,u,u)

p(u,u,1) • p(u,u,u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 36

Composite curves in polar form
  Suppose we want to glue two cubic Bézier curves together
in a way that automatically guarantees C2 continuity
everywhere. We can do this easily in polar form.
  Start with parameter space for the pair of curves

1st curve [0,1], 2nd curve (1,2]

  Make a knot vector: [000,1,222]
  Number control points as before:
 p(0,0,0), p(0,0,1), p(0,1,2), p(1,2,2), p(2,2,2)
  Okay, 5 control points for the two curves, so 3 of them
must be shared since each curve needs 4. That’s what
having only 1 copy of knot 1 achieves, and that’s what
gives us C2 continuity at the join point at u = 1

u 0 1
knot knot

u 2
knot

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 37

de Boor algorithm in polar form

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

u = 0.5
Knot vector = [0,0,0,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 38

Inserting a knot

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

Knot vector = [0,0,0,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 39

Inserting a 2nd knot

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

p(0,0.5,0.5)
p(0.5,0.5,1)

Knot vector = [0,0,0,0.5,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 40

Inserting a 3rd knot to get a point

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

u = 0.5

p(0,0,0.5)

p(0,0.5,1)

p(0.5,1,2)

p(0,0.5,0.5)
p(0.5,0.5,1)

p(0.5,0.5,0.5)

Knot vector = [0,0,0,0.5,0.5,0.5,1,2,2,2]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 41

Recovering the Bézier curves

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

Knot vector = [0,0,0,1,1,2,2,2]

p(0,1,1)

p(1,1,2)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 42

Recovering the Bézier curves

p(0,0,0)

p(0,0,1)

p(0,1,2)

p(1,2,2)

p(2,2,2)

Knot vector = [0,0,0,1,1,1,2,2,2]

p(0,1,1)

p(1,1,2)

p(1,1,1)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 43

B-Splines
  B-splines are a generalization of Bézier curves that allows grouping them

together with continuity across the joints
  The B in B-splines stands for basis, they are based on a very general class of

spline basis functions
  Splines is a term referring to composite parametric curves with guaranteed

continuity
  The general form is similar to that of Bézier curves

Given m + 1 values ui in parameter space (these are called knots), a degree n B-spline
curve is given by:

 where m ≥ i + n + 1

€

p(u) = N i,n (u)pi
i= 0

m−n−1

∑

N i,0 (u) =
1 ui ≤ u < ui+1
0 otherwise
%
&
'

N i,n (u) =
u − ui
ui+n − ui

N i,n−1(u) +
ui+n+1 − u
ui+n+1 − ui+1

N i+1,n−1(u)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 44

Uniform periodic basis

  Let N(u) be a global basis
 function for our uniform
 cubic B-splines
  N(u) is piecewise cubic

0 4
u

N(u)

N(u) =

1
6 u

3

− 1
2 (u−1)3 + 1

2 (u−1)2 + 1
2 (u−1)+ 1

6

1
2 (u− 2)3 − (u− 2)2 + 2

3

− 1
6 (u−3)3 + 1

2 (u−3)2 − 1
2 (u−3)+ 1

6

if u <1
if u < 2
if u < 3
otherwise

"

#

$
$$

%

$
$
$

1 2 3 p0 p1 p2 p3

  Pieces of single basis
function associated with 4
overlapping copies for active
control points

p(u) = N0(u) p3+ N1(u) p2 +
N2(u) p1 + N3(u)p0

Basis over [0,1]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 45

© 2003 Steve Marschner • 1Cornell CS417 Spring 2003 • Lecture 13

B-splines

CS 417 Lecture 13 (part 1)

© 2003 Steve Marschner • 2Cornell CS417 Spring 2003 • Lecture 13

B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity
• Various ways to think of construction

– a simple one is convolution
– relationship to sampling and reconstruction

© 2003 Steve Marschner • 3Cornell CS417 Spring 2003 • Lecture 13

Cubic B-spline basis

© 2003 Steve Marschner • 3Cornell CS417 Spring 2003 • Lecture 13

Cubic B-spline basis

© 2003 Steve Marschner • 4Cornell CS417 Spring 2003 • Lecture 13

Construction of B-splines

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence

© 2003 Steve Marschner • 5Cornell CS417 Spring 2003 • Lecture 13

B-spline construction

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve

N(u) =

1
6 u

3

− 1
2 u

3 + 1
2 u

2 + 1
2 u+ 1

6

1
2 u

3 −u2 + 2
3

− 1
6 u

3 + 1
2 u

2 − 1
2 u+ 1

6

"

#

$
$$

%

$
$
$

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 46

Uniform periodic B-Spline

p0

p1

p2

p3

p(u) = (–1/6u3 + 1/2u2 – 1/2u + 1/6)p0 +
 (1/2u3

 – u2 + 2/3)p1 +
 (–1/2u3 + 1/2u2

 + 1/2u + 1/6)p2 +
 (1/6u3)p3

p(u) = 1
6

u3 u2 u 1!
"#

$
%&

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

!

"

#
#
#
#

$

%

&
&
&
&

p0
p1
p2
p3

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Composite B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 47

© 2003 Steve Marschner • 1Cornell CS417 Spring 2003 • Lecture 13

B-splines

CS 417 Lecture 13 (part 1)

© 2003 Steve Marschner • 2Cornell CS417 Spring 2003 • Lecture 13

B-splines

• We may want more continuity than C1

• We may not need an interpolating spline
• B-splines are a clean, flexible way of making long

splines with arbitrary order of continuity
• Various ways to think of construction

– a simple one is convolution
– relationship to sampling and reconstruction

© 2003 Steve Marschner • 3Cornell CS417 Spring 2003 • Lecture 13

Cubic B-spline basis

© 2003 Steve Marschner • 3Cornell CS417 Spring 2003 • Lecture 13

Cubic B-spline basis

© 2003 Steve Marschner • 4Cornell CS417 Spring 2003 • Lecture 13

Construction of B-splines

• B-splines defined for all orders
– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence

© 2003 Steve Marschner • 5Cornell CS417 Spring 2003 • Lecture 13

B-spline construction

• Recurrence
– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve

Uniform periodic B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 48 Geometric�Modeling�SoSem�2010��– Blossoming�and�Polar�Forms 54 /�75

De�Boor�Algorithm

p(3,1,2)

p(0,1,2)
p(t,1,2)

p(4,2,3)

p(1,2,3)
p(t,3,2)

3
3 t�

p(5,3,4)

p(2,3,4)
p(t,3,4)

p(t,t,2)

p(t,t,3)

p(t,t,t)

»¼
º

«¬
ª �
��
3
31 t

3
4 t�

»¼
º

«¬
ª �
��
3
41 t

3
5 t�

»¼
º

«¬
ª �
��
3
51 t

2
3 t�

»¼
º

«¬
ª �
��
2
31 t

2
4 t�

»¼
º

«¬
ª �
��
2
41 t

1
3 t�

»¼
º

«¬
ª �
��
1
31 t

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

6
1

2
1

6
1

4
1

4
1

2
1

Composite B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 49 Geometric�Modeling�SoSem�2010��– Blossoming�and�Polar�Forms 55 /�75

Example:�General�Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Geometric�Modeling�SoSem�2010��– Blossoming�and�Polar�Forms 56 /�75

Example:�General�Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Composite B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 50

Geometric�Modeling�SoSem�2010��– Blossoming�and�Polar�Forms 57 /�75

Example:�General�Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Composite B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 51

Geometric�Modeling�SoSem�2010��– Blossoming�and�Polar�Forms 58 /�75

Example:�General�Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Composite B-Spline

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 52

