Parametric Curves
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Parametric Representations

m 3 basic representation strategies:
m Explicit: y=mx +b
® Implicit: ax + by + ¢ =0
m Parametric: P=P,+ t (P,-P,)
m Advantages of parametric forms
m More degrees of freedom
m Directly transformable
® Dimension independent
® No infinite slope problems
m Separates dependent and independent variables
® Inherently bounded
m Easy to express in vector and matrix form

® Common form for many curves and surfaces
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Algebraic Representation

m All of these curves are just parametric algebraic polynomials expressed
in different bases

m Parametric linear curve (in E3) X =a,u+b,
y=au+b,

p(u)=au+Db

Z=au+b,
. . : 3 2
m Parametric cubic curve (inE’) x=au +bu"+cu+d,
3 2
y=au +bu +cu+d,

p(u)=au’ +bu’ +cu+d
Z= azu3 + bzu2 +cu+d,

m Basis (monomial or power) [u 1]
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Hermite Curves

m 12 degrees of freedom (4 3-d vector constraints)
m Specify endpoints and tangent vectors at endpoints

p0)=d J
pl)=a+b+c+d p”(u)sd—l;(u)
p'0)=c

p‘(l)=3a+2b+c TP“(O) p“(1)

m Solving for the coefficients:

a = 2p(0) - 2p(1) + p"(0) + p"(1) '
b=-3p(0)+3p(1)-2p"(0)-p"()  fu=0
¢ =p“(0) p(0)
d=p(0)
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Hermite Curves - Hermite Basis

m Substituting for the coefficients and collecting terms gives

p(u) = Qu’ - 3u” + Dp0) + (21’ + 3u”)p() + (1° = 2u” + w)p“(0) + (° — u”)p“ (D)

- Hermite Blending
oor H; Functions H,
m Call 09
H, (1) = Qu’ -3u’ +1) y
H,(u) = (-2u’ + 3u®) y
H,(u) = (> =2u” + u) y H,
H4 (u) B (u3 D uz) -D?‘; 0.1 2 0.3 04 05 06 0.7 0.8 049 'I’L\‘I
. H,

the Hermite blending functions or basis functions

s Then P(u)=H,(@)p(0)+H,w)p()+H,)p"(0)+H,(w)p (1)
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Hermite Curves - Matrix Form

m Putting this in matrix form H=[H1(u) H,(u) H;(u) H4(u)]

2 2 1 1]
=[u3 ol 1] -3 3 =2 -1
O 0 1 O
1 0 0 O
= UM,
m M, is called the Hermite characteristic matrix
m Collecting the Hermite geometric [ p(0) ]
coefficients into a geometry vector B, p(1)
we have a matrix formulation for B=|"
the Hermite curve p(u) p ()
p (D))
p(u) =UM,B
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Hermite and Algebraic Forms

m M, transforms geometric coefficients
(“coordinates”) from the Hermite basis to the
algebraic coefficients of the monomial basis

»
b
A=
; 0 0 0 1]
”UA UM.B M} T
B & SiUM H70 0 1 0
A =M,B
32 1 0
B-MA - :
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Cubic Bézier Curves

m Specifying tangent vectors at endpoints isn’ t always convenient for
geometric modeling

®m We may prefer making all the geometric coefficients points, let’ s call
them control points, and label them p, p,, p,, and p;

m For cubic curves, we can proceed by letting the tangents at the
endpoints for the Hermite curve be defined by a vector between a pair
of control points, so that:

p(0) = p,
p(D) = p;
P (0) =k (p, —py)
p'(D)=k,(p; -p,)
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Cubic Bézier Curves

m Substituting this into the Hermite curve expression
and rearranging, we get

() = [(2- k)’ + (2k = 3)u’ = kyu + 1|p, + [ ku® = 2k’ + kyue|p,
+ [—k2u3 + kzuz]p2 + [(k2 —2)u’ +(3- kz)uz]p3

® [n matrix form, this 1s

(G [ ) |
2k -3 =2k k, 3-k p
p(w)=UM,P M, =|"" ! - 2 P=|
_kl kl 0 0 P,
1 0 0 0 D,
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Cubic Bézier Curves

®m What values should we choose for k, and k,?

m [f we let the control points be evenly spaced in parameter
space, then p,isatu =0, p, atu = 1/3, p, at u =2/3 and p,

atu=1. Then ,u)~ (p, -p,)/(1/3-0)=3(p, -p,)
p‘()=(p,-p,)/1-2/3)=3(p;-p,)

and k, = k, = 3, giving a nice symmetric characteristic

matrix: e
3 -6 3 0
MB =
-3 3 0 O
= So 10 0 0

p(u) = (—u3 +3u’ - 3u+ 1) P, + (3u3 —6u’ + 3”)1’1 B (—3u3 N 3u2)p2 +up,
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General Bezier Curves

m This can be rewritten as
3

3) 3i
p(u) = (- u)3po + 3u(l - u)2p1 + 3u2(1 - u)p, + l/t3p3 = E( .)ul(l - u) P;
l

i=0

m Note that the binomial expansion of

(u+(1-u)is i(’:)u’(l - u)n_i

m This suggests a general formula for Bézier curves
of arbitrary degree

p(u) = E(':)u"(l -u)"'p,
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General Bezier Curves

m The binomial expansion gives the Bernstein basis (or Bézier blending

functions) B, , for arbitrary degree Bézier curves

r.z ui(l — u)n_i
l

p(u)= Y B, (1) p,

24

By, Cubic Bézier B;;

Blending Functions

-0.1

-0.2

Y

01 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

m Of particular interest to us (in addition to cubic curves):

® Linear: p(u) = (1 - w)p, + up,

= Quadratic: p(u) = (1 - u)?p, + 2u(l - u)p, + u?p,
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Bézier Curve Properties

m Interpolates end control points, not middle ones
m Stays inside convex hull of control points
® Important for many algorithms
m Because it’ s a convex
combination of points,

1.e. affine with positive weights

m Variation diminishing
m Doesn’ t “wiggle” more

than control polygon

P, P3

Po D /
\ / Py

Po
P>
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Rendering Beézier Curves

m We can obtain a point on a Bézier curve by just evaluating
the function for a given value of u

m Fastest way, precompute A=Mg;P once control points are
known, then evaluate p(u,)=[u u? u; 11A,i=0,1,2,...,n

for n fixed increments of u

m For better numerical stability, take e.g. a quadratic curve
(for simplicity) and rewrite

p(u) = (1-u)°p, + 2u(l - w)p, + u’p,
= -w)[(d-uwp,+ up,]+ u[(1-uw)p, + up,]

m This is just a linear interpolation of two points, each of
which was obtained by interpolating a pair of adjacent
control points
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de Casteljau Algorithm

m This hierarchical linear interpolation works for general
Bézier curves, as given by the following recurrence

1=012,....n-j

pi,j = (1 — u)pi,j_l + upi+1,j—1 J - 1,2, .

where p;, i=0,1,2,...,n are the control points for a
degree n Bezier curve and p, , = p(u)

m For efficiency this should not be implemented recursively.

m Useful for point evaluation 1n a recursive subdivision
algorithm to render a curve since i1t generates the control
points for the subdivided curves.
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de Casteljau Algorithm

Py

Starting with the control points

and a given value of u
In this example, u=0.25

P3
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de Casteljau Algorithm

I,l
’ S
- ~
s ~
-,
-,
-,

q,(u) =(1-uwp, + up,
q, () =1 -uwp, + up,
q,(u) = (1-u)p, + up, |

P3
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ry(u) =1-u)q,(u)+ uq,(u)
r,(u) =-wq,(u)+ uq,(u)
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p(w) = (1 —wr,(u) + ur,(u)
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Drawing Bezier Curves

®m How can you draw a curve?
m Generally no low-level support for drawing curves

m Can only draw line segments or individual pixels

m Approximate the curve as a series of line segments

m Analogous to tessellation of a surface
® Methods:

m Sample uniformly
m Sample adaptively

m Recursive Subdivision
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Uniform Sampling

m Approximate curve with n line segments
m 7 chosen 1n advance

m Evaluate p, =p(y;) where u;, = L i=0,1,...,n
n

® For an arbitrary cubic curve
p, = a(i3/n3) + b(iz/nz) +c(i/n)+d

m Connect the points with lines

m Too few points?
m Bad approximation
m “Curve” is faceted

® Too many points?
m Slow to draw too many line segments
m Segments may draw on top of each other
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Adaptive Sampling

m Use only as many line segments as you need
m Fewer segments needed where curve is mostly flat
m More segments needed where curve bends

m No need to track bends that are smaller than a pixel
p(u

m Various schemes for sampling,
checking results, deciding whether
to sample more

® Or, use knowledge of curve structure:

m Adapt by recursive subdivision
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Recursive Subdivision

® Any cubic curve segment can be expressed as a
Bézier curve

® Any piece of a cubic curve 1s itself a cubic curve
m Therefore:

m Any Bézier curve can be broken up into smaller Bézier
Curves

m But how...?
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de Casteljau subdivision
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de Casteljau construction
points are the control points
of two Bézier sub-segments

P3
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Adaptive subdivision algorithm

m Use de Casteljau construction to split Bézier
segment
m Examine each half:
m [f flat enough: draw line segment
m Else: recurse

m To test if curve 1s flat enough
® Only need to test if hull 1s flat enough
m Curve 1s guaranteed to lie within the hull

m c.g., test how far the handles are from a straight
segment
m Ifit’ s about a pixel, the hull is flat
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Composite Curves

m Hermite and Beézier curves generalize line segments to higher degree
polynomials. But what if we want more complicated curves than we
can get with a single one of these? Then we need to build composite
curves, like polylines but curved.

m Continuity conditions for composite curves

m CY- The curve is continuous, i.e. the endpoints of consecutive curve
segments coincide

m C! - The tangent (derivative with respect to the parameter) is continuous,
1.e. the tangents match at the common endpoint of consecutive curve
segments

m C? - The second parametric derivative is continuous, i.e. matches at
common endpoints

m GO- Same as CY

m G! - Derivatives wrt the coordinates are continuous. Weaker than C!, the
tangents should point in the same direction, but lengths can differ.

m G? - Second derivatives wrt the coordinates are continuous
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Composite Bezier Curves

m CY GO - Coincident end control points
m C!-p,-p,on first curve equals p, - p, on second
m G!- p, - p, on first curve proportional to p, - p, on second

m C?, G? - More complex, use B-splines to automatically
control continuity across curve segments
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Polar torm for Bézier Curves

A much more useful point labeling scheme
Start with Knots, “interesting” values in parameter space

For Bézier curves, parameter space is normally [0, 1], and the knots

arec at 0 and 1. | |
0 u 1
knot knot

Now build a knot vector, a non-decreasing sequence of knot values.

For a degree n Bézier curve, the knot vector will have n 0" s followed
byn1's[0,0,...,0,1,1,...,1]

m Cubic Bézier knot vector [0,0,0,1,1,1]

m Quadratic Bézier knot vector [0,0,1,1]
Polar labels for consecutive control points are sequences of n knots
from the vector, incrementing the starting point by 1 each time

m Cubic Bézier control points: p, = p(0,0,0), p, = p(0,0,1),
p2: p(O,l,l), p3 i p(lalal)
® Quadratic Bézier control points: p, = p(0,0), p, = p(0,1), p,=p(1,1)
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Polar form rules

m Polar values are symmetric in their arguments, 1.¢€. all
permutations of a polar label are equivalent.

p(0,0,1) = p(0,1,0) = p(1,0,0), etc.
m Given p(ula Ups... .Uy 15 a) and p(ula Up,..
value ¢ we can compute
(b-c)p(u,,u,,...u, _,a)+(c—-ap(u,u,,...u,_,,b)
b-a

c) 1s an affine combination of

b), for any

nl?

p(u,,uy,....u,_,C) =

That is, p(u,, u,,..

Uy 1
p(uy, u,,...,u, 1, a) and p(u,, u,,...,u, 1, b) .
Examples: PO, =(1- M)P(O,O,l) + up(0,L,1)
4 —u)p0,2) + (u-2)p(0,4

o) - (4 -wp0,2) ; (u-2)p(0,4)
(u2 B u)p(291’39ul) + (l/l u ul)p(3a2919u2)

U, =4
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de Casteljau 1n polar form

p(0,0.1)

p(0,0,0)
p(0,1,1)

p(1,1,1)
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de Casteljau 1n polar form

p(0.0.1)
¢ \\\\ p(oausl)

Top(0,1,1)

/! p(ualsl)

v
p(1,1,1)
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de Casteljau 1n polar form

p(0,9,1)
T T p(0,u,])
Odiu) - .

p(0.00) PO T
// —O\p@%’{, 1)
p(0,0,0) ) \\\\

°op(0,1,1)
Pp@u,1,1)

i

p(1,1,1)
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p(0,0,1)
/’// \ \\\ p(oausl)
p(o O p(95t[7u) ————————— —O\\‘\
s St ) T -~ :::‘-. __________ ) o
o pluuay TRPED
p(0,0,0) \ e
°p(0,1,1)
Pp(u,1,1)
O/I
p(1,1,1)
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Composite curves in polar form

m Suppose we want to glue two cubic Bezier curves together
in a way that automatically guarantees C? continuity
everywhere. We can do this easily in polar form.

m Start with parameter space for the pair of curves
m st curve [0,1], 2nd curve (1,2]

0 u 1 u 2
knot knot knot

m Make a knot vector: [000,1,222]
® Number control points as before:

p(0,0,0), p(0,0,1), p(0,1,2), p(1,2,2), p(2,2,2)

m Okay, 5 control points for the two curves, so 3 of them
must be shared since each curve needs 4. That’ s what
having only 1 copy of knot 1 achieves, and that’ s what
gives us C? continuity at the join point at u = 1

University of Texas at Austin  CS384G - Computer Graphics Fall 2010 Don Fussell
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de Boor algorithm 1n polar form

p(0,0,1)
p(0,1,2)

p(0,0,0)

| __— p222)

p(1,2,2)
u=0.5
Knot vector = [0,0,0,1,2,2,2]
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Inserting a knot

p(00 1) p(0,0.5,1)

p(0,0,0.5) &
o} :"
p(0,0,0) ,
-
p(1.2.2)
u=20.5

Knot vector = [0,0,0,0.5,1,2,2,2]
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R p(0.5,0.5,]
p(0,0.5,05) 03031 p,1,2)

e
e
P
7’
e

/ -
~
S 1
~
S 1

A T9p(0.5,1,2)
o] '."
p(0,0,0) ,
Tl B= p(2.2.2)
p(1,2,2)
u=20.5

Knot vector = [0,0,0,0.5,0.5,1,2,2,2]
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Inserting a 3rd knot to get a point

(001) p(0051)

-
-

5_
_ ~—
-

__

(o 5 0.5.0. 5) .
p(G.0.0 5) o $p(0.5,1,2)
d ,,"
p(0,0,0) |
PR o p(2.2.2)
p(1,2,2)
u=20.5

Knot vector = [0,0,0,0.5,0.5,0.5,1,2,2,2]
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o
p(0,0,0)

Knot vector = [0,0,0,1,1,2,2,2]
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,p(1,1,2)

| _— p22)

p(1,2,2)

p(0,0,0)

Knot vector = [0,0,0,1,1,1,2,2,2]
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B-Splines

m B-splines are a generalization of Bézier curves that allows grouping them
together with continuity across the joints

m The B in B-splines stands for basis, they are based on a very general class of
spline basis functions

m Splines is a term referring to composite parametric curves with guaranteed
continuity
m The general form is similar to that of Bézier curves

Given m + 1 values u; in parameter space (these are called knots), a degree n B-spline

curve is given by:
m-n-1

p(u) = ENi,n (u)p,

l/ll- SU< I/ti+1
Ni,o(u) = :
0O otherwise
u-—u. u. - U
Ni,n(u) = l Ni,n—l(u) + Ni+1,n—1(u)
ui+n _ ui ui+n+1 = )

wherem=i+n+1
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Uniform periodic basis

m Let N(u) be a global basis N(u) / \
function for our uniform
cubic B-splines / \

m N(u) 1s piecewise cubic
() P OP31P22P13P04

u

147

’ ifu<l

—$@-1 +3@-1’ +3@-D+3  jfyu<2
N(u) =+ 1 : ) ’

s(U=2) —(u=-2)"+3% ifu<3

—%(u—3)3+%(u—3)2—%(u—3)+% otherwise
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Basis over [0,1]

m Pieces of single basis
function associated with 4
overlapping copies for active
control points

f

14,3
Eu
3 2
—tu+iu"+iu+t
Nu) =+
e 2_|_2
U —U +3x
1,343 1,2 _1,,41
U S U — U+

"

p(u) = Ny(u) p3t Ny(u) p, +
Ny(u) p; + N;(w)p,
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Uniform periodic B-Spline

P

p(u) = (-1/6u° + 172u*— 1/2u + 1/6)p, +

( 1217 — u? +2/3)p, +
(—12u3 + 12u>+ 12u + 1/6)p, + |
( /6w )P;
Po e
i . D3
-1 3 =3 1| Po
p(u)=l u3 u2 1 1 3 —6 3 O pl
6 -3 0 3 0 P,
L. 4 O P,
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Composite B-Spline

-~ O

-1 k k+1 k+2
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=+ p(0,1,2)
- 220 p(t,1,2) R p(3,4,5)
{1——} p(3,1,2) 2 il
21 p(tt
" p(1,2,3) {1—%}
1., ,_, P(t,3,2) p(t,t,t)
s L J1-27 eiet.3)

% PR 34) {I_T} p(t,3,4)

{1%} p(5,3,4)
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Composite B-Spline

p(2,3,4) p(7,8,9)

p(1,2,3)

p(8,9,10)

p(0,1,2)

p(9,10,11)

p(4,5,6) p(6,7,8)

p(5,6,7)
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Composite B-Spline

p(2,3,4) p(7,8,9)

p(1,2,3)

p(9,10,11)
p(6,7,8)

p(5,6,7)
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Composite B-Spline

p(2,3,4) p(7,8,9)

p(9,10,11)

p(6,7,8)

p(5,6,7)
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Composite B-Spline

p(7,8,9)

0(9,10,11)
\J p(6,7,8)
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