Subdivision curves
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Reading

m Recommended:

m Stollnitz, DeRose, and Salesin. Wavelets for
Computer Graphics: Theory and Applications,

1996, section 6.1-6.3, A.5.

m Note: there 1s an error 1in Stollnitz, et al.,
section A.5. Equation A.3 should read:

mMV =VA
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Subdivision curves

m [dea:

mrepeatedly refine the control polygon
Pl—=pP’—>pP>—..

mcurve 1s the limit of an infinite process
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Chaikin’ s algorithm

® Chaikin introduced the following “corner-cutting” scheme
in 1974
m Start with a piecewise linear curve
m Insert new vertices at the midpoints (the splitting step)
m Average each vertex with the “next” (clockwise) neighbor (the

averaging SteP) Old vertex New vertex
m Go to the splitting step X s
1. Split 2. Average
3. Split 4. Average
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Averaging masks

® The limit curve 1s a quadratic B-spline!

m Instead of averaging with the nearest
neighbor, we can generalize by applying an
averaging mask during the averaging step:

rF=(...r ,Iy,F,...)

m In the case of Chaikin’ s algorithm:

a3
r=|—,—
2 Y
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Can we generate other B-splines?

m Answer: Yes Lane-Riesenfeld algorithm (1980)
m Use averaging masks from Pascal s triangle:

-3(3-0

m Gives B-splines of degree n+1.

m n=0:
mn=1; 1
mn=2: 1
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Subdivide ad nauseum?

m After each split-average step, we are closer
to the limit curve.

® How many steps until we reach the final
(limait) position?

m Can we push a vertex to its limit position
without infinite subdivision? Yes!
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One subdivision step

m Consider the cubic B-spline subdivision

mask: i 12 1)

® Now consider what happens during splitting
and averaging:

B B B
A split Aaverage‘/&‘_’ ',B\'
a C d C da C
A T o W o 7 ‘

C

repeat
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Math for one subdivision step

m Subdivision mask: 1
L2

® One subdivision step:

B B B
ada C aC
A CcC A C A C

Split: a =l(A+B) Average:
2
a and c do not change

1
b=i(a+2B+c)=é(A+6B+C)

c=5(B+C)
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Consolidated math for one step

m Subdivision mask: 1 (12 1)

® One subdivision step: B
.
ohKHO
— 2P
A, C ‘
t
repeat

m Consolidated math for one subdivision step:

(2] 4 4 O0][A]
1

bl=-[{1 6 1||B
Pj.ﬂ/_c_ 8_0 4 4||c \pj
1

| ocal subdivision matrix ‘S’
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[Local subdivision matrix, cont'd

m Tracking the point’ s value through subdivision:

P =SP,=S-SP,=5-S-SP_ =--=5/P,

® The limit position of the point 1s then:

P.=S"P,

m or as we d say in calculus...
P. = lim S’/P,

j—>oo

m OK, so how do we apply a matrix an infinite
number of times??
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Eigenvectors and eigenvalues

m To solve this problem, we need to look at the eigenvectors
and eigenvalues of S. First, a review...

® ] et v be a vector such that Sv = Av

m We say that v is an eigenvector with eigenvalue A.
® An n X n matrix can have n eigenvalues and eigenvectors:

Sv, = AV,

Sv =Av,

m [f the eigenvectors are linearly independent (which means that S is
non-defective), then they form a basis, and we can re-write P in
terms of the eigenvectors:

n
P = Eaivi
i=1
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To infinity, but not beyond...

m So, applying S to P:

=SP, = SEav —EaSv —Eal)»lvl

m Applying it tlmes 7
pplying it/ P = S]P S]Eav—EaS]v—Eal)Ll]l

m Let’ s assume the eigenvalues are non-negative and sorted
Sejinat A>AzA,z-=2A =0

n

= Now let; go to infinity: £, = lim S/P, = lim » a, A,

m [f A, > 1, then:
m If A, <1, then:
m If A, =1, then:
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Evaluation masks

m  What are the eigenvalues and eigenvectors of our cubic
B-spline subdivision matrix?

1 1 -1 2
2 4
1 1 2
We’ re OK!

But what is the final position?
P = lim (al)\{vl + a, A v, + a, A v, )

jeoo

P =

00

®m  Almost done... from earlier we know that we
can find ‘g, , we but didn’ t give specifics.
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Evaluation masks

To finish up, we need to compute a;.

Remember: P=av+ay,+-+ayv N
a,

. . S 2l
Rewrite as: P=lv v, - v || ?|=v4
We need to solve for the vector ‘4’ . - L
(This 1s really just a change of basis »
for representing the vector P). A=V i
The solution is: fa]. - g 9

T
a - :
SEllR 8 7
a | |- wuf
Now we can compute the limit position: P, =a, =u P

We call u, the evaluation mask.
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Evaluation masks

= Note that we need not start with the 0 level control points
and push them to the limit.

m [f we subdivide and average the control polygon j times,
we can push the vertices of the refined polygon to the limit

as well: % T
Bo=5"b=u P,

m So far we’ ve been looking at math for a subdivision
function f(x).

m For a 2D parametric subdivision curve, (x(u), y(u)),

just apply these formulas separately for the x(u«) and y(u)
functions.
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Recipe for subdivision curves

® The evaluation mask for the cubic B-spline is:

(14 1)

®m Now we can cook up a sitmple procedure for
creating subdivision curves:

m Subdivide (split+average) the control polygon a few
times. Use the averaging mask.

m Push the resulting points to the limit positions. Use the
evaluation mask.
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Derivative of subdiv. function

®m What is the tangent to the cubic B-spline function?
® Consider the formula for P again:

- J J J
P = a v, + a, A v, + a Al v,

1 . -1 . 2
P=a, ()| 1[+a,(5) |0 |+a, ()| -1
1 1 2
Where
left ] - b
. ft P’ — Tim center — left =hmcenter left
. = | center Ax—0 Ax j— i
right )
YV e h B 1\ 0+1
Derivative 1s just: P =}£I30 5| 7 - a,=u, P,
2
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Tangent analysis for 2D curve

m What 1s the tangent to a parametric cubic B-spline
2D curve?

m Using a similar derivation to what we just did for a
1D function (but omitting details):

- P T
: Center,j Left,j u, P
t=lim / =
—>00
/ HPCenter,j D I)Left,j ‘ HM2 })O H

® Thus, we can compute the tangent using the
second left eigenvector! This analysis holds for
general subdivision curves and gives us the
tangent mask.
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Control Point Approximation vs. Interpolation

m Previous subdivision scheme approximated control points. Can we
interpolate them?

Yes: DLG interpolating scheme (1987)
m Slight modification to subdivision algorithm:
m splitting step introduces midpoints
m averaging step only changes midpoints

m For DLG (Dyn-Levin-Gregory), use:

1~ I

0.8 0.8
1 |
F=—(=2,5,10,5,~2) 06 ost |
16 0.4 0.4+ '
0.2+ 02|
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m Since we are only changing the midpoints, the points after the

averaging step do not move.
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