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Reading 

 Recommended: 
Stollnitz, DeRose, and Salesin.  Wavelets for 
Computer Graphics:  Theory and Applications, 
1996, section 6.1-6.3, A.5. 

 Note: there is an error in Stollnitz, et al., 
section A.5.  Equation A.3 should read: 

 MV = VΛ
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Subdivision curves 
 Idea: 

repeatedly refine the control polygon 

curve is the limit of an infinite process 
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Chaikin’s algorithm 
  Chaikin introduced the following “corner-cutting” scheme 
in 1974: 

Start with a piecewise linear curve 
Insert new vertices at the midpoints (the splitting step) 
Average each vertex with the “next” (clockwise) neighbor (the 
averaging step) 
Go to the splitting step 
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Averaging masks 
 The limit curve is a quadratic B-spline! 
 Instead of averaging with the nearest 
neighbor, we can generalize by applying an 
averaging mask during the averaging step: 

 In the case of Chaikin’s algorithm: 
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Can we generate other B-splines? 
  Answer: Yes   Lane-Riesenfeld algorithm (1980) 
  Use averaging masks from Pascal’s triangle: 

  Gives B-splines of degree n+1. 
  n=0:   1 

  n=1:   1 
                            1     1 

  n=2:   1 
           1    1 

                         1    2     1 
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Subdivide ad nauseum? 

 After each split-average step, we are closer 
to the limit curve.   
 How many steps until we reach the final 
(limit) position? 
 Can we push a vertex to its limit position 
without infinite subdivision?  Yes! 
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One subdivision step 

 Consider the cubic B-spline subdivision 
mask: 

 Now consider what happens during splitting 
and averaging: 

A C 

B 

A C 

B 

split
a c 

average

A C 

B 

a c b a c b 

repeat

€ 

1
4
1 2 1( )



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 9 

Math for one subdivision step 
 Subdivision mask: 

 One subdivision step: 

Split: 1 ( )
2

= +a A B

1 ( )
2

= +c B C
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a c 
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B 
split average
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a c b 

Average: 
   a and c do not change 
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Consolidated math for one step 
  Subdivision mask: 

  One subdivision step: 

  Consolidated math for one subdivision step: 
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Local subdivision matrix, cont’d 
 Tracking the point’s value through subdivision: 

 The limit position of the point is then: 

  or as we’d say in calculus… 
 
 
 OK, so how do we apply a matrix an infinite 
number of times?? 

1 2 3 0j j j j
jP SP S SP S S SP S P− − −= = ⋅ = ⋅ ⋅ = =!

0P S P∞
∞=

0lim j
j

P S P∞
→∞

=
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Eigenvectors and eigenvalues 
  To solve this problem, we need to look at the eigenvectors 
and eigenvalues of S.  First, a review… 

Let v be a vector such that Sv = λv 
We say that v is an eigenvector with eigenvalue λ. 
An n x n matrix can have n eigenvalues and eigenvectors: 

If the eigenvectors are linearly independent (which means that S is 
non-defective), then they form a basis, and we can re-write P in 
terms of the eigenvectors: 
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To infinity, but not beyond… 
  So, applying S to P: 

  Applying it j times: 

  Let’s assume the eigenvalues are non-negative and sorted 
so that: 

  Now let j go to infinity: 

  If λ1 > 1, then: 
  If λ1 < 1, then: 
  If λ1 = 1, then: 
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Evaluation masks 
  What are the eigenvalues and eigenvectors of our cubic 

B-spline subdivision matrix? 

  We’re OK! 
  But what is the final position? 

  Almost done… from earlier we know that we 
can find ‘ai’, we but didn’t give specifics. 
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Evaluation masks 
  To finish up, we need to compute a1. 
  Remember: 

  Rewrite as: 

  We need to solve for the vector ‘A’. 
(This is really just a change of basis 

 for representing the vector P). 
 The solution is: 

  Now we can compute the limit position: 
  We call u1 the evaluation mask. 
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Evaluation masks 

  Note that we need not start with the 0th level control points 
and push them to the limit.   
  If we subdivide and average the control polygon j times, 
we can push the vertices of the refined polygon to the limit 
as well: 

  So far we’ve been looking at math for a subdivision 
function f(x). 
  For a 2D parametric subdivision curve, (x(u), y(u)), 
just apply these formulas separately for the x(u) and y(u) 
functions. 

1j j
TP S P u P∞

∞= =
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Recipe for subdivision curves 

 The evaluation mask for the cubic B-spline is: 

 Now we can cook up a simple procedure for 
creating subdivision curves: 

Subdivide (split+average) the control polygon a few 
times.  Use the averaging mask. 
Push the resulting points to the limit positions.  Use the 
evaluation mask. 
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Derivative of subdiv. function 
  What is the tangent to the cubic B-spline function? 
  Consider the formula for P again: 

 
 
 
 
Where: 
 
 
 
 
Derivative is just: 
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Tangent analysis for 2D curve 
 What is the tangent to a parametric cubic B-spline 
2D curve?   
 Using a similar derivation to what we just did for a 
1D function (but omitting details): 

 Thus, we can compute the tangent using the 
second left eigenvector!  This analysis holds for 
general subdivision curves and gives us the 
tangent mask. 
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Control Point Approximation vs. Interpolation 
  Previous subdivision scheme approximated control points.  Can we 

interpolate them? 
Yes: DLG interpolating scheme (1987) 

  Slight modification to subdivision algorithm: 
splitting step introduces midpoints 
averaging step only changes midpoints 

  For DLG (Dyn-Levin-Gregory), use: 

  Since we are only changing the midpoints, the points after the 
averaging step do not move.   

1 ( 2,5,10,5, 2)
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