Image processing
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m Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995. Sections 4.2-4 .4,
4.5(intro), 4.5.5, 4.5.6, 5.1-5 4.

University of Texas at Austin  CS384G - Computer Graphics Fall 2008 Don Fussell

2



Image processing

B An image processing operation typically defines a new
1mage g in terms of an existing image f.

® The simplest operations are those that transform each pixel
in 1solation. These pixel-to-pixel operations can be

written:
g(x,y) = t(f(-xay))

B Examples: threshold, RGB - grayscale

® Note: a typical choice for mapping to grayscale 1s to apply
the YIQ television matrix and keep the Y.

Y] [0.299 0587 0.114][R]
11=10596 -0275 -0321{|G
0] 0212 -0523 0311]|B
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Pixel movement

B Some operations preserve intensities, but move
pixels around 1n the 1mage

g(x,¥) = f(x(x, ), ¥(x,))

B Examples: many amusing warps of 1images

[Show 1mage sequence. ]
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® Image processing is also useful for noise reduction and edge
enhancement. We will focus on these applications for the remainder of
the lecture...

m Common types of noise:

m Salt and pepper noise:
contains random
occurrences of black and
white pixels

*ﬂ o J

L

Salf and epper nois

® Impulse noise: contains
random occurrences of
white pixels

® Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution

-

Impulse noise Gaussian noise
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Ideal noise reduction
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Ideal noise red
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Practical noise reduction

® How can we “smooth” away noise in a single image?

m [s there a more abstract way to represent this sort of
operation? Of course there is!
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Discrete convolution

®m For a digital signal, we define discrete convolution as:

glil = fli1* hli)
= Y fliTli =i
= > STl = i)

where hli] = h[-i]
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Discrete convolution 1n 2D

® Similarly, discrete convolution 1n 2D becomes:

—EEf[l,J]h[z—l,J J
Ezf[laj]h[l—ld |

where  hli,j1=hl-i,—j]
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Convolution representation

® Since f and / are defined over finite regions, we can write
them out in two-dimensional arrays:

m Note: This is not matrix multiplication!
® Q: What happens at the edges?
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Mean filters

®m How can we represent our noise-reducing
averaging filter as a convolution diagram
(know as a mean filter)?
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Eftect of mean filters

Gaussian Salt and pepper
noise noise

3x3

5x5

Tx7
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(Gaussian filters

® Gaussian filters weigh pixels based on their distance from
the center of the convolution filter. In particular:

—(i?+j%)/(20%)

C

h[laj] .

® This does a decent job of blurring noise while preserving
features of the image.

® What parameter controls the width of the Gaussian?

® What happens to the image as the Gaussian filter kernel
gets wider?

B What is the constant C? What should we set it to?

University of Texas at Austin  CS384G - Computer Graphics Fall 2008 Don Fussell

14



Ettect of Gaussian filters

Gaussian Salt and pepper
noise noise

5x5

7x7
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Median filters

® A median filter operates over an mxm
region by selecting the median intensity in
the region.

®m What advantage does a median filter have
over a mean filter?

m [s a median filter a kind of convolution?
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Effect of median filters

Gaussian Salt and pepper
noise noise

5x5
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Comparison: Gaussian noise

Mean Gaussian Median

Tx7

-
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Comparison:

salt and pepper noise

5x5 i

Gaussian Median
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Edge detection

® One of the most important uses of 1image
processing 1s edge detection:

mReally easy for humans
mReally difficult for computers

mFundamental in computer vision

EImportant in many graphics applications

University of Texas at Austin  CS384G - Computer Graphics Fall 2008 Don Fussell

20



What 1s an edge?

Step

Ramp

Line

Roof

B Q: How might you detect an edge in 1D?
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Gradients

®m The gradient is the 2D equivalent of the derivative:

(9f o)

Vf(xay)= l\ axa ay)

® Properties of the gradient
m [t’s a vector
® Points in the direction of maximum increase of f
® Magnitude is rate of increase

® How can we approximate the gradient in a discrete image?
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Less than 1deal edges

Pixels plotted —» :’
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Steps 1n edge detection

m Edge detection algorithms typically proceed
in three or four steps:
mFiltering: cut down on noise

EEnhancement: amplify the difference between
edges and non-edges

mDetection: use a threshold operation

mLocalization (optional): estimate geometry of
edges beyond pixels
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Edge enhancement

B A popular gradient magnitude computation is the Sobel

operator:
—1 0 1]
s.=(-2 0 2
-1 0 1
B
s,={0 0 0
-1 -2 -1

® We can then compute the magnitude of the vector (s, s,).
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Results of Sobel edge detection
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Second derivative operators

A

J(x)

/ :
S (x) A\ threshold

Y

fll(x)

mThe Sobel operator can produce thick edges. Ideally, we’re looking for
infinitely thin boundaries.

®mAn alternative approach is to look for local extrema in the first
derivative: places where the change in the gradient is highest.

m(Q: A peak in the first derivative corresponds to what in the second
derivative?

®Q: How might we write this as a convolution filter?
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Localization with the Laplacian

B An equivalent measure of the second derivative in 2D 1s
the Laplacian: p p
V()= L ayf

B Using the same arguments we used to compute the
gradient filters, we can derive a Laplacian filter to be:

0 1 O]
AP=|1 -4 1
0O 1 O

m Zero crossings of this filter correspond to positions of
maximum gradient. These zero crossings can be used to
localize edges.
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Marching squares

® We can convert these signed values into
edge contours using a “marching squares”
technique:
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Sharpening with the Laplacian

Original

Original + Laplacian Original - Laplian
Why does the sign make a difference?
How can you write each filter that makes each bottom image?
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Spectral impact of sharpening

We can look at the impact of sharpening on the Fourier spectrum:

Spatial domain Frequency domain

(0 -1 0]
S-A=[-1 5 -1
0O -1 0
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Summary

® What you should take away from this lecture:
® The meanings of all the boldfaced terms.
® How noise reduction is done
® How discrete convolution filtering works
B The effect of mean, Gaussian, and median filters
® What an image gradient is and how it can be computed
® How edge detection 1s done

® What the Laplacian image is and how it 1s used in either edge
detection or image sharpening
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Next time: Aftine Transtormations

®m Topic:
F How do we represent the rotations, translations, etc.
needed to build a complex scene from simpler objects?

m Read:
* Watt, Section 1.1.

Optional:

 Foley, et al, Chapter 5.1-5.5.

e David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer  Graphics, 2nd
Ed., McGraw-Hill, New York, 1990, Chapter 2.
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