Particle Systems

o EEEEESSRRE

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

= Required:
®m Witkin, Particle System Dynamics, SIGGRAPH ’97
course notes on Physically Based Modeling.
®m Witkin and Baraff, Differential Equation Basics,
SIGGRAPH °01 course notes on Physically Based
Modeling.

® Optional

®m Hocknew and Eastwood. Computer simulation using
particles. Adam Hilger, New York, 1988.

® Gavin Miller. “The motion dynamics of snakes and
worms.” Computer Graphics 22:169-178, 1988.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

2

What are particle systems?

® A particle system 1s a collection of point
masses that obeys some physical laws (e.g,
gravity, heat convection, spring behaviors,
).
® Particle systems can be used to simulate all
sorts of physical phenomena:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

3

Particle 1n a flow field

® We begin with a single particle with:

x} y
Y

dx |dx/dt \/
o

mVelocity, v=x=—-=
4 dt |dy/dt

mPosition, X-=

TN

X

® Suppose the velocity 1s actually dictated by

some driving function g: -
X = g(X,?)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

4

Vector fields

= At any moment in time, the function g defines a
vector field over x:

/\

~/

® How does our particle move through the vector
field?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

5

Diff egs and integral curves

® The equation X = g(%.1)
1s actually a first order differential equation.

B We can solve for x through time by starting at an 1nitial
point and stepping along the vector field:

Start Here

® This 1s called an initial value problem and the solution is
called an integral curve.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

6

Euler’s method

One simple approach is to choose a time step, Az, and take linear steps
long the flow: - - . _ R
VOB LOW 3t + AD) = X(1) + At~ X(¢) = X(£) + At - g(X,1)

Writing as a time 1iteration: XM o ¥ L AV

This approach is called Euler’s method and looks like:

N

Properties:

® Simplest numerical method

B Bigger steps, bigger errors. Error ~ O(A#).
Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

7

Particle 1n a force field

® Now consider a particle in a force field f.
® [n this case, the particle has:

®m Mass, m ol L,

, . .odv dX

® Acceleration, a=X= =—
dt dt

—

m The particle obeys Newton’s law: f =ma = mxX

®m The force field f can in general depend on the position and
velocity of the particle as well as time.

® Thus, with some rearrangement, we end up with:
f(X,%,1)
m

X =

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

8

Second order equations

This equation:

o f(x,x,1)

m

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:)S V
. f(x,v,1)
V —]
_ m i

where we have added a new variable v to get a pair of coupled first order
equations.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

[i] = Concatenate x and v to make a 6-

v vector: position in phase space.
X ® Taking the time derivative: another
v 6-vector.

X v m A vanilla 1st-order differential

vl [f/m equation.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Differential equation solver

Starting with: X

It

\4

Applying Euler's method:
X(t+ At) =x(1) + At- X(1)
X(t+ At)=Xx(1)+ At-X(1)
And making substitutions:
X(t+At)=x(t)+ At V(1)

X(r+Af) =%(1) + Ar- £(X.%,0)/m

Writing this as an iteration, we have: _ .., _; y
X =x +At-v
ey - £
vH =V 4 AL —

m

Again, performs poorly for large At.
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

11

f| “<——force accumulator
M| <— mass

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Single particle solver interface

! getDim — [6]
\
etState
f <+ 2 —> b
- - setState v
derivEval —> vV
f/m

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Particle systems

In general, we have a particle system consisting of n particles to
be managed over time:

particles n time
Xl X2 Xn
1 V2 Vn
L L |1,
ml _mz_ _mn d

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Particle system solver interface

For n particles, the solver interface now looks like:

particles n time
get/setState getDim
derivEval

6n

Xl Vl X2 V2 Xn Vn
f f f

Vl o V2 o Vn .
m, m, m,

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

We can solve the evolution of a particle system again using the
Euler method:

X, X, Vi
=i+l =i ol

v v t /ml

c =] |+ A

=i+l =)
Xl’l Xn Vn
=i+l =i el

_Vn _Vn i fn /mn

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

16

B Each particle can experience a force which sends
it on 1ts merry way.
B Where do these forces come from? Some
examples:
® Constant (gravity)
® Position/time dependent (force fields)
® Velocity-dependent (drag)
® Combinations (Damped springs)

® How do we compute the net force on a particle?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

17

Particle systems with forces

Force objects are black boxes that point to the particles they influence
and add 1n their contributions.

= We can now visualize the particle system with force objects:

particles n time forces nf

nf

F1 F2°'°F

x]1[x,] [%
Vil [Va| |Va
L L

ml _m2_ _mn_

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

Gravity and viscous drag

The force due to gravity is simply:

—

f =mG

grav

p->f += p->m * F->G

Often, we want to slow things down with viscous drag:

s

f

drag

- kv

p->f -= F->k * p->v

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Damped spring

Recall the equation for the force due to a spring: f =—k_ . (|AX|-r)

We can augment this with damping: f = (‘AX‘ —r)+ kdamp‘i;‘]

[spring

The resulting force equations for a spring between two particles
become:

) AveAX || Ax

f = | Ko (AX] =) + K A%)|ia%

sprmg

—

-

=]
Il

r = rest length

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

derivEval

Clear forces

Loop over particles, 521 522 in
zero force = = —
accumulators Clear force 171 172 17”

Calculate forces accumulators fl fz fn

Sum all forces into

ml _m2_ _mn_
accumulators
Return derivatives

Loop over particles,

return v aIld f/m Apply fOrCeS F F F Y F
icl 1 2 3 nf
to particles O

. 2

X || X2 X,

vi |l Vs v, v.[|v,| |V

£ /m||£/m,| "|E,/m, . £ || |F
Return derivatives m | |m,| |m,

to solver

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

Bouncing off the walls

= Add-on for a particle
simulator

mFor now, just simple
point-plane collisions

A plane is fully specified by any point P on the plane and its normal N.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 22

Collision Detection

How do you decide when you've crossed a plane?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 23

To compute the collision response, we need to consider the
normal and tangential components of a particle’s velocity.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 24

Collision Response

before after

= _
vV = VT _ krestitutionVN

Without backtracking, the response may not be enough to bring a
particle to the other side of a wall.

In that case, detection should include a velocity check:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 25

Particle frame of reference

= [et’s say we had our robot arm example and we
wanted to launch particles from its tip.

® How would we go about starting the particles
from the right place?

® First, we have to look at the coordinate systems in
the OpenGL pipeline...

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 26

The OpenGL geometry pipeline

|
t ~<

Zw

Ye

Model space
(Object space)

Minodel

World space
(Object space)

Myjew

Eye space
(View space)

Mproject

Normalized projection space

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

27

Projection and modelview matrices

= Any piece of geometry will get transformed by a
sequence of matrices before drawing:

p=M__._ M. M

project ' “view - "model P

® The first matrix 1s OpenGL’s GL PROJECTION
matrix.

B The second two matrices, taken as a product, are
maintained on OpenGL’s GL MODELVIEW
stack:

M =M,:.... M

modelview vView model

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 28

Robot arm code, revisited

m Recall that the code for the robot arm looked something

like:
glRotatef (theta, 0.0, 1.0,
base (hl) ;
glTranslatef(0.0, hl, 0.0)
glRotatef (phi, 0.0, 0.0, 1.
upper arm(h2);
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.

lower arm(h3);

®m All of the GL calls here modify the modelview matrix.

B Note that even before these calls are made, the modelview
matrix has been modified by the viewing transformation,

M

vView"*

University of Texas at Austin CS384G - Computer Graphics

Fall 2010 Don Fussell

29

Computing particle launch point

To find the world coordinate position of the end of the robot
arm, you need to follow a series of steps:

1. Figure out what M. .__ before drawing your model.

VIEW
Mat4f matCam = pS>glGetMatriX(GL_MODELVIEW_MATRIX);

2. Draw your model and add one more transformation to the tip
of the robot arm.

glTranslatef(0.0, h3, 0.0);
-1
3 y Comp ute Mmodel D MvieWMmodelview
Mat4f particleXform = ps->getWorldXform(matCam) ;

4. Transform a point at the origin by the resulting matrix.

Vec4f particleOrigin = particleXform * Vec4f(0,0,0,1);
// 4% coordinate should be 1.0 -- ignore

Now you’re ready to launch a particle from that last computed point!

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

Next lecture

m Topic:
Parametric Curves:
C2 interpolating curves.

How can we make splines that interpolate
the control points, and have C2 continuity

everywhere?
B Reading:

* Bartels, Beatty, and Barsky. An Introduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.

[Course reader, pp. 239-247]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 31

