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Anti-aliased and accelerated
ray tracing
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Reading
Required:

Watt, sections 12.5.3 – 12.5.4, 14.7
Further reading:

A. Glassner.  An Introduction to Ray Tracing.  Academic
Press, 1989. [In the lab.]
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Aliasing in rendering
One of the most common rendering artifacts is the
“jaggies”.  Consider rendering a white polygon
against a black background:

We would instead like to get a smoother transition:
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Anti-aliasing
Q: How do we avoid aliasing artifacts?

1. Sampling:
2. Pre-filtering:
3. Combination:

Example - polygon:
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Polygon anti-aliasing
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Antialiasing in a ray tracer
We would like to compute the average intensity in the neighborhood of
each pixel.

When casting one ray per pixel, we are likely to have aliasing artifacts.
To improve matters, we can cast more than one ray per pixel and
average the result.
A.k.a., super-sampling and averaging down.
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Speeding it up
Vanilla ray tracing is really slow!
Consider: m x m pixels, k x k supersampling, and n
primitives, average ray path length of d, with 2 rays cast
recursively per intersection.
Complexity =
For m=1,000,000, k = 5, n = 100,000, d=8…very
expensive!!
In practice, some acceleration technique is almost always
used.
We’ve already looked at reducing d with adaptive ray
termination.
Now we look at reducing the effect of the k and n terms.
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Antialiasing by adaptive sampling
Casting many rays per pixel can be unnecessarily costly.
For example, if there are no rapid changes in intensity at
the pixel, maybe only a few samples are needed.
Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular
area?
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Let’s say you were intersecting a ray with a polyhedron:

Straightforward method
intersect the ray with each triangle
return the intersection with the smallest t-value.

Q: How might you speed this up?

Faster ray-polyhedron intersection
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Ray Tracing Acceleration Techniques

1N

Faster 
Intersection

Fewer 
Rays

Generalized 
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies
  k-d, oct-tree, bsp
  hierarchical grids
Hierarchical 
  bounding
  volumes (HBV)

Early ray 
  termination
Adaptive 
  sampling

Beam tracing
Cone tracing
Pencil tracing
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Uniform spatial subdivision
Another approach is uniform spatial subdivision.

Idea:
Partition space into cells (voxels)
Associate each primitive with the cells it overlaps
Trace ray through voxel array using fast incremental arithmetic to
step from cell to cell
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Uniform Grids

Preprocess scene
Find bounding box
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Uniform Grids

Preprocess scene
Find bounding box

Determine resolution
v x y z o
n n n n n= !

3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell

3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell
Check that object
intersects cell

3max( , , )x y z on n n d n=
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Uniform Grids

Preprocess scene
Traverse grid
3D line – 3D-DDA
6-connected line
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Caveat: Overlap

Optimize for objects that overlap multiple cells

Traverse until tmin(cell) > tmax(ray)
Problem: Redundant intersection tests:
Solution: Mailboxes

Assign each ray an increasing number
Primitive intersection cache (mailbox)

Store last ray number tested in mailbox
Only intersect if ray number is greater
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Non-uniform spatial subdivision
Still another approach is non-uniform spatial subdivision.

Other variants include k-d trees and BSP trees.

Various combinations of these ray intersections techniques are also
possible.  See Glassner and pointers at bottom of project web page for
more.
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Non-uniform spatial subdivision
Best approach - k-d trees or perhaps BSP trees

More adaptive to actual scene structure
BSP vs. k-d tradeoff between speed from simplicity and better adaptability
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Spatial Hierarchies

A

A

Letters correspond to planes (A)
Point Location by recursive search
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Spatial Hierarchies

 B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search
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Spatial Hierarchies

 CB
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D

A
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Letters correspond to planes (A, B, C, D)
Point Location by recursive search
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Variations

oct-treekd-tree bsp-tree
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Ray Traversal Algorithms

Recursive inorder traversal
[Kaplan, Arvo, Jansen]
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Build Hierarchy Top-Down

Choose splitting plane
• Midpoint
• Median cut
• Surface area heuristic

?
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Surface Area and Rays
Number of rays in a given direction that hit an
object is proportional to its projected area

The total number of rays hitting an object is
Crofton’s Theorem:

For a convex body

For example: sphere 4
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Surface Area and Rays

The probability of a ray hitting a convex shape
that is completely inside a convex cell equals
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Surface Area Heuristic
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Surface Area Heuristic
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Hierarchical bounding volumes
We can generalize the idea of bounding volume acceleration with
hierarchical bounding volumes.

Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.


