
University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Anti-aliased and accelerated
ray tracing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 2

Reading
Required:

Watt, sections 12.5.3 – 12.5.4, 14.7
Further reading:

A. Glassner. An Introduction to Ray Tracing. Academic
Press, 1989. [In the lab.]

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 3

Aliasing in rendering
One of the most common rendering artifacts is the
“jaggies”. Consider rendering a white polygon
against a black background:

We would instead like to get a smoother transition:

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 4

Anti-aliasing
Q: How do we avoid aliasing artifacts?

1. Sampling:
2. Pre-filtering:
3. Combination:

Example - polygon:

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 5

Polygon anti-aliasing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 6

Antialiasing in a ray tracer
We would like to compute the average intensity in the neighborhood of
each pixel.

When casting one ray per pixel, we are likely to have aliasing artifacts.
To improve matters, we can cast more than one ray per pixel and
average the result.
A.k.a., super-sampling and averaging down.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 7

Speeding it up
Vanilla ray tracing is really slow!
Consider: m x m pixels, k x k supersampling, and n
primitives, average ray path length of d, with 2 rays cast
recursively per intersection.
Complexity =
For m=1,000,000, k = 5, n = 100,000, d=8…very
expensive!!
In practice, some acceleration technique is almost always
used.
We’ve already looked at reducing d with adaptive ray
termination.
Now we look at reducing the effect of the k and n terms.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 8

Antialiasing by adaptive sampling
Casting many rays per pixel can be unnecessarily costly.
For example, if there are no rapid changes in intensity at
the pixel, maybe only a few samples are needed.
Solution: adaptive sampling.

Q: When do we decide to cast more rays in a particular
area?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 9

Let’s say you were intersecting a ray with a polyhedron:

Straightforward method
intersect the ray with each triangle
return the intersection with the smallest t-value.

Q: How might you speed this up?

Faster ray-polyhedron intersection

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 10

Ray Tracing Acceleration Techniques

1N

Faster
Intersection

Fewer
Rays

Generalized
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies
 k-d, oct-tree, bsp
 hierarchical grids
Hierarchical
 bounding
 volumes (HBV)

Early ray
 termination
Adaptive
 sampling

Beam tracing
Cone tracing
Pencil tracing

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 11

Uniform spatial subdivision
Another approach is uniform spatial subdivision.

Idea:
Partition space into cells (voxels)
Associate each primitive with the cells it overlaps
Trace ray through voxel array using fast incremental arithmetic to
step from cell to cell

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 12

Uniform Grids

Preprocess scene
Find bounding box

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 13

Uniform Grids

Preprocess scene
Find bounding box

Determine resolution
v x y z o
n n n n n= !

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 14

Uniform Grids

Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 15

Uniform Grids

Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell
Check that object
intersects cell

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 16

Uniform Grids

Preprocess scene
Traverse grid
3D line – 3D-DDA
6-connected line

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 17

Caveat: Overlap

Optimize for objects that overlap multiple cells

Traverse until tmin(cell) > tmax(ray)
Problem: Redundant intersection tests:
Solution: Mailboxes

Assign each ray an increasing number
Primitive intersection cache (mailbox)

Store last ray number tested in mailbox
Only intersect if ray number is greater

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 18

Non-uniform spatial subdivision
Still another approach is non-uniform spatial subdivision.

Other variants include k-d trees and BSP trees.

Various combinations of these ray intersections techniques are also
possible. See Glassner and pointers at bottom of project web page for
more.

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 19

Non-uniform spatial subdivision
Best approach - k-d trees or perhaps BSP trees

More adaptive to actual scene structure
BSP vs. k-d tradeoff between speed from simplicity and better adaptability

 0

 1

 2

 4

 7 8

 5 6

 3

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 20

Spatial Hierarchies

A

A

Letters correspond to planes (A)
Point Location by recursive search

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 21

Spatial Hierarchies

 B

A

B

A

Letters correspond to planes (A, B)
Point Location by recursive search

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 22

Spatial Hierarchies

 CB

D

C

D

A

B

A

Letters correspond to planes (A, B, C, D)
Point Location by recursive search

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 23

Variations

oct-treekd-tree bsp-tree

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 24

Ray Traversal Algorithms

Recursive inorder traversal
[Kaplan, Arvo, Jansen]

min
t

max
t *t

max
*t t<

*t

min max
*t t t< <

*t

min
*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 25

Build Hierarchy Top-Down

Choose splitting plane
• Midpoint
• Median cut
• Surface area heuristic

?

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 26

Surface Area and Rays
Number of rays in a given direction that hit an
object is proportional to its projected area

The total number of rays hitting an object is
Crofton’s Theorem:

For a convex body

For example: sphere 4

S
A =

4 A!

2
4S r!=

A

2
A A r!= =

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 27

Surface Area and Rays

The probability of a ray hitting a convex shape
that is completely inside a convex cell equals

Pr[] o

o c

c

S
r S r S

S
! ! =

o
Sc

S

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 28

Surface Area Heuristic

t a a i b b iC t p N t p N t= + +

80
i t
t t=a b

i
t

t
t

Intersection time

Traversal time

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 29

Surface Area Heuristic

a
a

S
p

S
= b

b

S
p

S
=

2n splits

a b

University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell 30

Hierarchical bounding volumes
We can generalize the idea of bounding volume acceleration with
hierarchical bounding volumes.

Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.

