Texture Mapping

CS384G - Fall 2012

Christian Miller

. 20 Mol el

P S AT
Ry ”
o -
-2 i
0] 7
LS <,
o 4 Ve \

| RS

g
A

b
&l

D

Surface detall

Surface detall

Most things have a lot of detail, and simple polygons or
triangle meshes are poor approximations

Modeling all that detail with simple primitives would take
eons, and enormous amounts of storage

Rendering all of it would take forever too

We can't just give up, so we need some way to make
surfaces look more detailed than they actually are...

Wallpaper

before

Texture mapping

Take an image with the surface detail on it
O The pixels that make up the texture are often called texels

Stretch it over the surface

When rendering a pixel, look up the diffuse color from the
texture and use the rest of the light model as usual

Mapping to a surface

1
Accomplished through texture coordinates (u, V) EJ
0 1

The texture image has coordinates (0, 0) in the lower left
corner and (1, 1) in the upper right

For a mesh, have user specify the (u, v) coordinates aft
each vertex

To render a pixel, interpolate (u, v) at the intersection
point, use those texcoords to look up the right color from
the texture

Specitying texcoords

3-D Model UV Map

77 1IN
77

i
i =

Texture

p = (xyz)

[Muse Games]

[Muse Games]

Alternate ways of generating UVs

0
2
u=x/w u=0¢/2n
v =y/h v=60/m
¢
>
Y
$ u=4q¢/2n
v =y/h v
N
¢ u
N T
N

You don't necessarily need to specify texcoords on a per-
vertex basis

Sometimes a simpler function can do it automatically for you

Texture edge modes

3!!.:5!?2.

R
R:
R:

O What do you do when you get a texcoord outside [0, 1]2

O Adopt some convention:
O Loop around and start at the other side (wrapping)
O Reflect the image backwards (mirroring)
O Repeat the edge pixels (clamping)
O Default to some other color (bordering)

Texture lookup

A brick wall

e

(X,y.2)
object space
(-2.3,7.1,88.2)

(u,v) texture
parameter space ——» image space —» texel color
(0.32,0.29) (81,74) (0.9,0.8,0.7)

Texture filtering

Simply returning the pixel you hit in the texture (nearest
neighbor) looks terrible

Far away, the texture is undersampled and unrecognizable

Up close, the texels look huge and blocky

Magnification

The image looks really blocky, since each texel covers
several pixels

Since we have more pixels covering the area than there
are texels, we need to fake data that isn't there

Blurring the image is a good ideaq, since even that looks
better than giant sharp-edged texels

The usual fix is bilinear interpolation (bilerp)

Bilinear interpolation

Viex tex |
o Tli,5+1] - Tli+1,5+1]
.
b) AR AN A A §
bbb L %...Q(a’ b)
bt %Ay
) . “ A .T[i’.j]T[l —|_ 1’ }]
£ Viex =V Weex
Manni
AppIN (0 Close-up

texture pixel coords

Sample neighboring texels, blend them linearly

T(a, b) = (1-Ax)(1-Ay) T(i,) + Ax (T-Ay) T(i+1,j) +
(T-AX)AY T(i, j+1) + AX Ay T(i+1, j+1)

%
D
09
C
2
O
o0

Minification

pixel space texture space

pixel corner's
translation

One pixel on the screen can cover any number of texels
Coverage area in texture space is an arbitrary shape

This is an undersampling issue, which means it can be addressed
with anti-aliasing methods

Supersampling

Since we have several texels being covered by a single
pixel, the analytic method is to take an average of all
texels weighted by their intersection area with the pixel

O This is expensive and complicated

Can be approximated by sending several jittered rays
through the area of the pixel and averaging them

O Still expensive, but not complicated

O Most high-quality renders do this anyway, since it smooths
out jaggies on edges as well as textures

O Used very commonly in raytracers

Mipmapping

In a realtime system, you may not be able to afford
taking tons of samples per pixel

Instead, take the original textures and make several pre-
blurred versions of them

O Each ftexture is half the size of the larger one, giving @
pyramid of textures from each fullimage

O Requires 1/3@ more memory than just the original texture

Then at runtime, use distance from camera and surface
angle to pick a version of the texture to sample

Mipmap pyramid

0
D
09
&
Q
O
-
Q
>

Standard ftexture mapping

Standard ftexture mapping

6"

351171°

Other maps

So far, we've just been using texture maps to alter the
diffuse component of the lighting model

In the most general case, a texture just represents some
function attached to a surface

What happens if we use it to store other components of
the lighting model?

Specular mapping

Use a texture to store the intensity of the specular tferm

Normal mapping

Store surface normal (relative to geometry) compressed
iIn a texture map

At runtime, look up normal in texture and add it to the
usual normal that'’s interpolated from the vertices

Makes a huge visual difference without adding geometry

®)
k=
Q
Q
O
-
O
S
®
Z

SIS -
R NS
W Ry
Sy Y
&EAV AT Tgﬂ,
ERNIACEN e
@MW%%&@&MM@W

ST

impli simplified mesh
sg‘gl{;,e:n;::h and normal mapping
500 triangles

original mesh
4M triangles

N
ormal mapping

P yr— A — ———
L=
.

\ |

LL\

Normal mapping details

O Normals are stored in texture by making the (r, g, b)
components the (x, vy, z) values of the normal

O Zis clearly in the normal direction from the surface, but the X
and Y directions are unspecified

O Need to add tangent and binormal vectors to form a full
coordinate system at every point

Displacement mapping

Normal maps don't add any detail fo the silhouette of an
object, since the actual geometry is still simple

You can finely subdivide the geometry and use a
displacement map to offset the individual vertices

Environment mapping

Yiewer

0,0,0)

Reflective polygon

There's no reason a texture needs to be glued to a
surface, we can compute texcoords on the fly

For example, if we're running in realtime and want
reflections but can’t afford to cast rays...

O Store the surrounding environment in a texture map

O Compute reflection vectors at each vertex, use those to set

texture coordinates, then the environment gets mapped
onto the surface as if it was reflected

Spherical environment mapping

Store the environment as a picture of a perfectly
reflective sphere, easy math to compute texcoords

Only covers a hemisphere, reflections remain fixed
relative to the camera

Cube mapping

Spherical environment mapping can’t get all sides of an
object, so you can use texture maps on the sides of a
cube instead

Math is more complicated, but results are better

Easier to render environment map at runtime too

®)
k=
Q
Q
O
-
Q
O
D)
O

3D textures
\

It’'s a big iceberg

There are enormous numbers of ways that texture
mapping has been used

Basically every cool graphics effect you see in realtime is
a texturing frick

A good chunk of prerendered stuff is too

