
Bitwise
Potpourri

CS429H - Spring 2011
Christian Miller

Tricky bits

• This assignment is all about knowing the intricacies
of bitwise operations and the representations of
numbers

• There are lots of tricks that manipulate them

Bang-Bang

• !!x will set all nonzeros to 1

• So: !!(1) = 1, !!(-378) = 1

• And: !!(0) = 0

Masking

• Using bitwise logical ops gives you control over
individual bits

• Setting: 0xC0 | 0x55 = 0xD5

• 1100 0000 | 0101 0101 = 1101 0101

• Clearing: ~0xC0 & 0x55 = 0x15

• 0011 1111 & 0101 0101 = 0001 0101

Mask making

• Use bit shifting with |, complement with ~

• 0x55AA0000 = (0x55 << 24) | (0xAA << 16)

• 0xFFBFFDFF = ~((1 << 9) | (1 << 22))

Mask making

• Left shift will always shift in zeros

• Right shift is arithmetic, copying the top bit as it
goes

• Say you have 1 or 0, and want to build
0xFFFFFFFF or 0x00000000

• mask = val << 31 >> 31;

Faking conditionals

• Say you want to do conditional equality:

• x = cond ? a : b;

• Evaluate both results, mask them together:

• mask = cond << 31 >> 31;

• x = (a & mask) | (b & ~mask);

Butterfly switch

• Say you want to toggle between two values (a and
b) without using a conditional

• let c = a ^ b

• then a = b ^ c and b = a ^ c

• If you set x = a or x = b to start, then x ^= c will
toggle x between a and b

Checking equality

• How do you tell if a == b without ==?

• XOR tells you whether bits are equal or not

• (a ^ b) will be zero if the two values are equal

Checking the sign

• If the top bit of an integer is set, it’s negative

• You can use shifts and the XOR trick to tell if the
signs of two numbers are the same

Overflow / underflow

• If you count over TMax, you’ll loop around to
TMin (overflow)

• Same the other direction; count below TMin,
you’ll loop around to TMax (underflow)

• Great way to get wrong answers

• It’s impossible to over/underflow more than once
during a single addition

Negating an integer

• -x = ~x + 1;

• Always works, thanks to overflow

• One special case: ~TMin + 1 = TMin

• This is because -TMin can’t be represented
without an extra bit

Powers of 2

• Shift left = multiply by 2

• Shift right = divide by 2

Divide and conquer

• How do you simulate looping over bits?

• You don’t, but you can sometimes exploit non-
interference to fake it

Parallel add

• Say we want to add four numbers together, but we
only get two adds to do it with

• As long as the numbers are small enough to fit in
part of an int, we can do several adds at once

• Works only for positive numbers (negatives act like
unsigneds instead)

Parallel add

int x = (a << 24) | (b << 16) | (c << 8) | d;
x = ((x & 0xFF00FF00) >> 8) + (x & 0x00FF00FF);
x = ((x & 0xFFFF0000) >> 16) + (x & 0x0000FFFF);

Parallel add

• We made it 14 ops instead of 3...

• and we can only do 8-bit positive ints

• BUT, it was logarithmic in adds

• we added 4 8-bit numbers with 2 adds

• we can also do 8 4-bit numbers with 3 adds

• If you’re adding a bunch of small stuff together,
this is more efficient than unrolling the loop

Floating point

• Not really any tricks here

• Have a floating point reference handy

• Be sure to properly handle signs, denormal
numbers, inf, and NaN

Questions

• These slides will go up on the class webpage

