BITWISE

POTPOURRI

CS429H - SPRING 2011 CHRISTIAN MILLER

TRICKY BITS

- This assignment is all about knowing the intricacies of bitwise operations and the representations of numbers
- There are lots of tricks that manipulate them

BANG-BANG

- !!x will set all nonzeros to 1
- So: !!(1) $=1,!!(-378)=1$
- And: !! (0) $=0$

MASKING

- Using bitwise logical ops gives you control over individual bits
- Setting: 0xC0 | 0x55 = 0xD5
- 11000000 | $01010101=11010101$
- Clearing: ~0xC0 \& 0x55 = 0x15
- $00111111 \& 01010101=00010101$

MASK MAKING

- Use bit shifting with |, complement with ~
- 0x55AA0000 $=(0 x 55 \ll 24) \mid(0 x A A \ll 16)$
- $0 \mathrm{xFFBFFDFF}=\sim((1 \ll 9) \mid(1 \ll 22))$

MASK MAKING

- Left shift will always shift in zeros
- Right shift is arithmetic, copying the top bit as it goes
- Say you have 1 or 0 , and want to build 0xFFFFFFFF or 0×00000000
- mask $=$ val $\ll 31 \gg 31$;

FAKING CONDITIONALS

- Say you want to do conditional equality:
- $\mathrm{x}=$ cond ? $\mathrm{a}: \mathrm{b}$;
- Evaluate both results, mask them together:
- mask $=$ cond $\ll 31 \gg 31$;
- $\mathrm{x}=(\mathrm{a} \&$ mask $) \mid(\mathrm{b} \& \sim$ mask $) ;$

BUTTERFLY SWITCH

- Say you want to toggle between two values (a and b) without using a conditional
- let $\mathrm{c}=\mathrm{a}^{\wedge} \mathrm{b}$
- then $\mathrm{a}=\mathrm{b}^{\wedge} \mathrm{c}$ and $\mathrm{b}=\mathrm{a}^{\wedge} \mathrm{c}$
- If you set $\mathrm{x}=\mathrm{a}$ or $\mathrm{x}=\mathrm{b}$ to start, then $\mathrm{x}^{\wedge}=\mathrm{c}$ will toggle x between a and b

CHECKING EQUALITY

- How do you tell if $\mathrm{a}==\mathrm{b}$ without $==$?
- XOR tells you whether bits are equal or not
- $\left(\mathrm{a}^{\wedge} \mathrm{b}\right)$ will be zero if the two values are equal

CHECKING THE SIGN

- If the top bit of an integer is set, it's negative
- You can use shifts and the XOR trick to tell if the signs of two numbers are the same

OVERFLOW / UNDERFLOW

- If you count over TMax, you'll loop around to TMin (overflow)
- Same the other direction; count below TMin, you'll loop around to TMax (underflow)
- Great way to get wrong answers
- It's impossible to over/underflow more than once during a single addition

NEGATING AN INTEGER

- $-\mathrm{x}=\sim \mathrm{x}+1$;
- Always works, thanks to overflow
- One special case: \sim TMin $+1=$ TMin
- This is because -TMin can't be represented without an extra bit

POWERS OF 2

- Shift left = multiply by 2
- Shift right = divide by 2

DIVIDE AND CONQUER

- How do you simulate looping over bits?
- You don't, but you can sometimes exploit noninterference to fake it

PARALLEL ADD

- Say we want to add four numbers together, but we only get two adds to do it with
- As long as the numbers are small enough to fit in part of an int, we can do several adds at once
- Works only for positive numbers (negatives act like unsigneds instead)

PARALLEL ADD

$$
\begin{aligned}
& \text { int } x=(a \ll 24)|(b \ll 16)|(c \ll 8) \mid d ; \\
& x=((x \& 0 x F F 00 F F 00) \gg 8)+(x \& 0 x 00 F F 00 F F) \\
& x=((x \& 0 x F F F F 0000) \gg 16)+(x \& 0 x 0000 F F F F)
\end{aligned}
$$

PARALLEL ADD

- We made it 14 ops instead of $3 . .$.
- and we can only do 8-bit positive ints
- BUT, it was logarithmic in adds
- we added 4 8-bit numbers with 2 adds
- we can also do 8 4-bit numbers with 3 adds
- If you're adding a bunch of small stuff together, this is more efficient than unrolling the loop

FLOATING POINT

- Not really any tricks here
- Have a floating point reference handy
- Be sure to properly handle signs, denormal numbers, inf, and NaN

QUESTIONS

- These slides will go up on the class webpage

