BITWISE
POTPOURRI

CS429H - SPRING 2011
CHRISTIAN MILLER

TRICKY BITS

 'This assignment 1s all about knowing the intricacies
of bitwise operations and the representations of
numbers

* There are lots of tricks that manipulate them

BANG-BANG

o lIx will set all nonzeros to 1
e So: !II(1) =1, 1(-378) = 1
* And: !'(0) =0

MASKING

» Using bitwise logical ops gives you control over
individual bats

» Setting: 0xCO | 0x55 = 0xD5b

« 1100 0000 | 0101 0101 = 1101 0101
» Clearing: ~0xC0 & 0x55 = 0x15

*« 0011 1111 & 0101 0101 =0001 0101

MASK MAKING

» Use bit shifting with |, complement with ~

. 0x55AA0000 = (0x55 << 24) | (0xAA << 16)
« OxFFBFFDFF = ~((1 << 9) | (1 << 22))

MASK MAKING

* Left shift will always shift in zeros

» Right shift 1s arithmetic, copying the top bit as 1t
o0€s

* Say you have 1 or 0, and want to build
OxFFFFFFEFFEF or 0x00000000

 mask = val << 31 >> 31;

FAKING CONDITIONALS

* Say you want to do conditional equality:
e x=cond?a:b;

» Kvaluate both results, mask them together:
* mask = cond << 31 >> 31;

* x = (a & mask) | (b & ~mask);

BUTTERFLY SWITCH

* Say you want to toggle between two values (a and
b) without using a conditional

RiErc=a b
e thena=b”*candb=a”c

It you set x = a or x = b to start, then x = c will
toggle x between a and b

CHECKING EQUALITY

» How do you tell if a == b without ==?
* XOR tells you whether bits are equal or not

* (a” b) will be zero 1t the two values are equal

CHECKING THE SIGN

* It the top bit of an integer 1s set, 1t’s negative

* You can use shifts and the XOR trick to tell if the

signs of two numbers are the same

OVERFLOW / UNDERFLOW

* If you count over T'Max, you’ll loop around to

I'Min (overflow)

* Same the other direction; count below 1’ Min,
you'll loop around to T Max (underflow)

» Great way to get wrong answers

* [t’s impossible to over/underflow more than once
during a single addition

NEGATING AN INTEGER

S =—~x + 1;
» Always works, thanks to overflow
* One special case: ~I'Min + 1 = T Min

* This 1s because -TMin can’t be represented
without an extra bit

POWERS OF 2

» Shift left = multiply by 2
e Shift right = divide by 2

DIVIDE AND CONQUER

* How do you simulate looping over bits?

* You don’t, but you can sometimes exploit non-
interterence to fake it

PARALLEL ADD

* Say we want to add four numbers together, but we
only get two adds to do 1t with

* As long as the numbers are small enough to fit in
part of an int, we can do several adds at once

* Works only for positive numbers (negatives act like
unsigneds instead)

PARALLEL ADD

int x = (a<<?24) | (b<<16) | (c << 8) | d;
X = ((x & OxFFOOFFO0) >> 8) + (x & OxOOFFOOFF);
X = ((x & OxFFFFO000) >> 16) + (x & OxO0QOFFFF);

PARALLEL ADD

* We made 1t 14 ops instead of 3...
» and we can only do 8-bit positive ints
» BU'L, it was logarithmic 1n adds
» we added 4 8-bit numbers with 2 adds
* we can also do 8 4-bit numbers with 3 adds

* If you're adding a bunch of small stulf together,
this 1s more efficient than unrolling the loop

FLOATING POINT

* Not really any tricks here
» Have a floating point reterence handy

 Be sure to properly handle signs, denormal
numbers, 1nf, and NalN

QUESTIONS

* These shides will go up on the class webpage

