SEQLAB AND HCL

CS429H - SPRING 2011
CHRISTIAN MILLER

SEQLAB

» We give you a bigger, better Y86 simulator
* You modity it to include two new 1nstructions
* 1addl and leave

* You do this by modifying the HCL description

HCL

* A toy hardware description language
» Fake, actually compiles into a G program

* L.ooks a lot like C

* Does not execute sequentially, but simultaneously
» Think logic gates, not assembly

* Do not create loops!

DATA

» Only two types: bool (a single bit) and int (32 bits)
* boolsig and 1ntsig tie into the simulator

* T'hat means don’t edit them
» Equals doesn’t assign, 1t renames

 Basically attaches names to wires

EXPRESSION SYNTAX

Syntax

Meaning

0
1
name

Logic value 0
Logic value 1
Named Boolean signal

int-expr in {int-expr,, int-expry, ...

, int-expry }

Set membership test

int-expr, == int-expry
int-expr,; 1= int-expr,
int-expr, < int-exprs
int-expr,; <= int-expr,
int-expr, > int-erpr,
int-expr, >= int-expry

Equality test

Not equal test

Less than test

Less than or equal test
Greater than test

Greater than or equal test

! bool-expr

NOT

bool-expr, && bool-expr,

AND

bool-expr, | | bool-expr,

OR

EXPRESSION SEMANTICS

» (Gan be nested using parentheses

* Set membership returns true it something 1s in a
orven set

» Expressions basically compile into logic tables

* No partial evaluation, everything 1s evaluated

CASE SYNTAX

[
bool-ezpr,
bool-ezpr,

bool-expr;.

CASE SEMANTICS

» Think switch statement
» Effectively compiles into a mux (output selector)
* Internally wrangled to evaluate in order

* You can throw 1n 1 :” as a default at the end

GO FORTH

* You have an embarrasingly long time to do this.

* It can be done 1n 15 lines... easily.

