
Machine-Level Programming V:
Procedures

TopicsTopics
 Stack abstraction and implementation
 IA32 stack discipline

Systems I

2

Procedural Memory Usage

Where is the memory that holds t0 and t1 (or localWhere is the memory that holds t0 and t1 (or local
variables in general)?variables in general)?

What happens if we run out of registers (x86 only hasWhat happens if we run out of registers (x86 only has
8!)?8!)?

Where are parameters passed from callers to Where are parameters passed from callers to calleecallee??
 Registers? Memory? What memory?

void swap(int *xp, int *yp)
{
 int t0 = *xp;
 int t1 = *yp;
 *xp = t1;
 *yp = t0;
}

3

Stack Data Structure
 LIFO data structure

 Last In, First Out
 Allocated somewhere in

memory
 Where doesnʼt really matter

as long as we store the
stack pointer

 By convention, stack grows
toward smaller addresses
 Could do it either way

 Values within the stack are
referenced relative to the
stack pointer

Stack
Pointer

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Addr x00000000

Addr xFFFFFFFF

4

IA32 Stack
 Region of memory managed

with stack discipline
 Grows toward lower

addresses
 Register %esp indicates

lowest stack address
 address of top element

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

5

IA32 Stack Pushing
PushingPushing

 pushl Src
 Fetch operand at Src
 Decrement %esp by 4
 Write operand at address

given by %esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

Stack
Pointer
%esp -4

6

IA32 Stack Popping
PoppingPopping

 popl Dest
 Read operand at address

given by %esp
 Increment %esp by 4
 Write to Dest

Stack
Pointer
%esp

Stack Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

+4

7

%esp

%eax

%edx

%esp

%eax

%edx

%esp

%eax

%edx

0x104

555

0x108

0x108

0x10c

0x110

0x104

555

213

213

123

Stack Operation Examples

0x108

0x10c

0x110

555

213

123

0x108 0x104

pushl %eax

0x108

0x10c

0x110

213

123

0x104

213

popl %edx

0x108

213

8

What Elements for Procedures?
Method of computing address of first instruction ofMethod of computing address of first instruction of

called procedure.called procedure.
Place to store passed parameters.Place to store passed parameters.

 Call by value or by reference

Method of computer return addressMethod of computer return address
 Need to come back to first instruction after point of

procedure call

Method of passing return value(s) backMethod of passing return value(s) back

9

Procedure Control Flow
 Use stack to support procedure call and return

Procedure call:Procedure call:
call label Push return address on stack; Jump to label

Return address valueReturn address value
 Address of instruction beyond call
 Example from disassembly
 804854e: e8 3d 06 00 00 call 8048b90 <main>

 8048553: 50 pushl %eax
Return address = 0x8048553

Procedure return:Procedure return:
 ret Pop address from stack; Jump to address

10

%esp

%eip

%esp

%eip 0x804854e

0x108

0x108

0x10c

0x110

0x104

0x804854e

0x8048553

123

Procedure Call Example

0x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

0x8048b90

0x104

%eip is program counter

11

%esp

%eip

0x104

%esp

%eip 0x80485910x8048591

0x1040x104

0x108

0x10c

0x110

0x8048553

123

Procedure Return Example

0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

%eip is program counter

0x8048553

0x8048553

12

Stack-Based Languages
Languages that Support RecursionLanguages that Support Recursion

 e.g., C, Pascal, Java
 Code must be “Reentrant”

 Multiple simultaneous instantiations of single procedure
 Need some place to store state of each instantiation

 Arguments
 Local variables
 Return pointer

Stack DisciplineStack Discipline
 State for given procedure needed for limited time

 From when called to when return
 Callee returns before caller does

Stack Allocated in Stack Allocated in FramesFrames
 state for single procedure instantiation

13

Call Chain Example
Code StructureCode Structure
yoo(…)
{

•
•
who();
•
•

}

who(…)
{

• • •
amI();
• • •
amI();
• • •

}

amI(…)
{

•
•
amI();
•
•

}

yoo

who

amI

amI

amI

Call Chain

 Procedure amI
recursive

amI

14

Stack
Pointer
%esp

yoo

who

proc

Frame
Pointer
%ebp

Stack
“Top”

Stack Frames
ContentsContents

 Local variables
 Return information
 Temporary space

ManagementManagement
 Space allocated when enter

procedure
 “Set-up” code

 Deallocated when return
 “Finish” code

PointersPointers
 Stack pointer %esp indicates

stack top
 Frame pointer %ebp indicates

start of current frame

amI

15

Stack
Pointer
%esp

yoo

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

Call Chain
yoo(…)
{

•
•
who();
•
•

}

16

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

}

17

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

18

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

19

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

amI

amI

20

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI
amI

amI

21

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

amI

Call Chain
amI(…)
{

•
•
amI();
•
•

}

amI

amI

22

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

23

Stack
Pointer
%esp

yoo

who

amI

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

Call Chain
amI(…)
{

•
•
•
•

}
amI

amI

amI

amI

24

Stack
Pointer
%esp

yoo

who

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

Call Chain
who(…)
{

• • •
amI();
• • •
amI();
• • •

} amI

amI

amI

amI

25

yoo(…)
{

•
•
who();
•
•

}

Stack
Pointer
%esp

yoo

•
•
•

Frame
Pointer
%ebp

Stack Operation

yoo

who

Call Chain

amI

amI

amI

amI

26

Summary
TodayToday

 Basic stack organization and access
 Activation records (stack frames)
 Call chains

Next timeNext time
 Detailed example of calls and stack state
 Register saving conventions
 Recursion

