Systems |

Machine-Level Programming V:
Procedures

Topics
m Stack abstraction and implementation
m |A32 stack discipline

Procedural Memory Usage

void swap(int *xp, int *yp)
{
int tO0
int t1

*xp;
*yp;

Where is the memory that holds t0 and t1 (or local
variables in general)?

What happens if we run out of registers (x86 only has
81)?

Where are parameters passed from callers to callee?
m Registers? Memory? What memory?

Stack Data Structure

m LIFO data structure
e Last In, First Out

m Allocated somewhere in
memory
® Where doesn’t really matter
as long as we store the
stack pointer

m By convention, stack grows
toward smaller addresses
e Could do it either way

m Values within the stack are
referenced relative to the

stack pointer
Stack

Pointer

Addr xFFFFFFFF

Stack “Bottom”

T

Increasing
Addresses

Stack Grows
Down

L !

Stack “Top”

Addr x00000000

IA32 Stack

= Region of memory managed
with stack discipline

m Grows toward lower

Stack “Bottom”

/

addresses

m Register $esp indicates
lowest stack address
® address of top element

Stack
Pointer

resp —»

N

T

Increasing
Addresses

Stack Grows
Down

!

Stack “Top”

|IA32 Stack Pushing

Pushing
m pushl Src

m Fetch operand at Src
m Decrement %esp by 4

m Write operand at address
given by %esp

Stack “Bottom”

/o

Increasing
Addresses

Stack Grows

Down
Stack
Pointer l
sesp

™~

Stack “Top”

|IA32 Stack Popping

Popping Stack “Bottom”
m popl Dest
m Read operand at address / T
given by %esp Increasing
= Increment $esp by 4 Addresses

m Write to Dest |

Stack
Pointer Stac[:)k Grows
resp —» own

f+4 X l
N\

Stack “Top”

Stack Operation Examples

pushl %eax popl %edx
0x110 0x110 0x110
0x10c 0x10c 0x10c
0x108 123 0x108 123 0x108 123
0x104 213 0x104 213
$eax 213 $eax 213 $eax 213
$edx 555 $edx 555 $edx 213

zesp 0x108 zesp 0x104 zesp 0x108

What Elements for Procedures?

Method of computing address of first instruction of
called procedure.

Place to store passed parameters.
m Call by value or by reference

Method of computer return address

m Need to come back to first instruction after point of
procedure call

Method of passing return value(s) back

Procedure Control Flow

m Use stack to support procedure call and return

Procedure call:
call label Push return address on stack; Jump to label

Return address value
m Address of instruction beyond call
m Example from disassembly
804854e: e8 3d 06 00 0O call 8048b90 <main>

8048553: 50 pushl $%eax
® Return address = 0x8048553

Procedure return:
mret Pop address from stack; Jump to address

Procedure Call Example

804854e: e8 3d 06 00 0O call 8048b90 <main>
8048553: 50 pushl %eax

call 8048b90

0x110
0x10c
0x108

sesp

seip

123

0x108

0x804854e

0x110
0x10c
0x108
0x104

sesp

seip

123

0x8048553

0x104

0x8048b90

%eip is program counter

10

Procedure Return Example

8048591: c3 ret
ret

0x110 0x110

0x10c 0x10c

0x108 123 0x108 123
0x104 |0x8048553 0x8048553
sesp 0x104 sesp 0x108
%eip [0x8048591 %eip | 0x8048553

%eip is program counter

11

Stack-Based Languages

Languages that Support Recursion
m e.g., C, Pascal, Java

m Code must be “Reentrant”
e Multiple simultaneous instantiations of single procedure

m Need some place to store state of each instantiation
e Arguments
® Local variables
® Return pointer

Stack Discipline

m State for given procedure needed for limited time
® From when called to when return

m Callee returns before caller does

Stack Allocated in Frames
m state for single procedure instantiation

12

Call Chain Example

Code Structure

yoo (...)

who (...)

amI () ;

amI () ;

Call Chain

m Procedure amI

recursive

amI (...)
{

amI () ;
}

13

Stack Frames

Contents

amI

m Local variables yoo
= Return information who
m Temporary space
Management
m Space allocated when enter
rocedur
P OSS ¢ e” d Frame
® "Set-up- code Pointer
m Deallocated when return %ebp
® “Finish” code proc
Stack
Pointers Pointer
m Stack pointer $esp indicates "esP
stack top

m Frame pointer $ebp indicates
start of current frame

14

Stack Operation

yoo (...)
{

—q.

who () ;

Call Chain

yoo

Frame

Pointer
%ebp »

Stack —

yoo

Pointer
sesp

15

Stack Operation

Call Chain

yoo

!

who

Frame yoo
Pointer
$ebp ™ >
who
Stack |
Pointer

zesp

16

Stack Operation

Call Chain

yoo

!

who

!

amI

yoo
Frame who
Pointer
%ebp »
amI
Stack >
Pointer

sesp

17

Stack Operation

Call Chain

yoo

!

who

yoo
who
Frame il
Pointer
%ebp >
amI
Stack
Pointer

zesp

18

Stack Operation

Call Chain

yoo

!

who

yoo
who
amI
Frame Lt
Pointer
%ebp >
amI
Stack
Pointer

sesp

19

Stack Operation

Call Chain

yoo

!

who

yoo
who
Frame il
Pointer
%ebp >
amI
Stack
Pointer

zesp

20

Stack Operation

Call Chain

yoo

!

who

!

amI

yoo
Frame who
Pointer
%ebp »
amI
Stack >
Pointer

sesp

21

Stack Operation

who (...)
{

amI () ;

———— O ® @

amI () ;

Call Chain

yoo

!

who

Frame yoo
Pointer
%ebp »
who
Stack »
Pointer

sesp

22

Stack Operation

amI (...)

Call Chain

yoo

!

who

N\

amI

yoo
Frame who
Pointer
%ebp »
amI
Stack >
Pointer

sesp

23

Stack Operation

who (...)
{

amI () ;

amI () ;

——— @ (] []

}

Call Chain

yoo

!

who

Frame
Pointer

yoo

%ebp »

Stack —

who

Pointer
sesp

24

Stack Operation

yoo (...)

Call Chain

yoo

Frame

Pointer
%ebp »

Stack —

yoo

Pointer
sesp

25

Summary

Today
m Basic stack organization and access
m Activation records (stack frames)
m Call chains

Next time
m Detailed example of calls and stack state
m Register saving conventions
m Recursion

26

