
Datapath Design I

TopicsTopics
 Sequential instruction execution cycle
 Instruction mapping to hardware
 Instruction decoding

Systems I

2

Overview
How do we build aHow do we build a digital computer?digital computer?

 Hardware building blocks: digital logic primitives
 Instruction set architecture: what HW must implement

Principled approachPrincipled approach
 Hardware designed to implement one instruction at a time

 Plus connect to next instruction
 Decompose each instruction into a series of steps

 Expect that most steps will be common to many instructions

Extend design from thereExtend design from there
 Overlap execution of multiple instructions (pipelining)

 Later in this course
 Parallel execution of many instructions

 In more advanced computer architecture course

3

Y86 Instruction Set
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 0 0

halt 1 0

addl 6 0

subl 6 1

andl 6 2

xorl 6 3

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

4

Building Blocks
Combinational LogicCombinational Logic

 Compute Boolean functions of
inputs

 Continuously respond to input
changes

 Operate on data and implement
control

Storage ElementsStorage Elements
 Store bits
 Addressable memories
 Non-addressable registers
 Loaded only as clock rises

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Clock

A
L
U

fun

A

B

MUX
0

1

=

Clock

5

Hardware Control Language
 Very simple hardware description language
 Can only express limited aspects of hardware operation

 Parts we want to explore and modify

Data TypesData Types
 bool: Boolean

 a, b, c, …
 int: words

 A, B, C, …
 Does not specify word size---bytes, 32-bit words, …

StatementsStatements
 bool a = bool-expr ;
 int A = int-expr ;

6

HCL Operations
 Classify by type of value returned

Boolean ExpressionsBoolean Expressions
 Logic Operations

 a && b, a || b, !a
 Word Comparisons

 A == B, A != B, A < B, A <= B, A >= B, A > B
 Set Membership

 A in { B, C, D }
» Same as A == B || A == C || A == D

Word ExpressionsWord Expressions
 Case expressions

 [a : A; b : B; c : C]
 Evaluate test expressions a, b, c, … in sequence
 Return word expression A, B, C, … for first successful test

7

SEQ Hardware
Structure
StateState

 Program counter register (PC)
 Condition code register (CC)
 Register File
 Memories

 Access same memory space
 Data: for reading/writing program

data
 Instruction: for reading

instructions

Instruction FlowInstruction Flow
 Read instruction at address

specified by PC
 Process through stages
 Update program counter

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode ifun
rA , rB

valC

Register
file

Register
file

A B M

E

Register
file

Register
file

A B M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC

8

SEQ Stages
FetchFetch

 Read instruction from instruction
memory

DecodeDecode
 Read program registers

ExecuteExecute
 Compute value or address

MemoryMemory
 Read or write data

Write BackWrite Back
 Write program registers

PCPC
 Update program counter

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode ifun
rA , rB

valC

Register
file

Register
file

A B M

E

Register
file

Register
file

A B M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC

9

Instruction Decoding

Instruction FormatInstruction Format
 Instruction byte icode:ifun
 Optional register byte rA:rB
 Optional constant word valC

5 0 rA rB D

icode
ifun

rA
rB

valC

Optional Optional

10

Executing Arith./Logical Operation

FetchFetch
 Read 2 bytes

DecodeDecode
 Read operand registers

ExecuteExecute
 Perform operation
 Set condition codes

MemoryMemory
 Do nothing

Write backWrite back
 Update register

PC UpdatePC Update
 Increment PC by 2
 Why?

OPl rA, rB 6 fn rA rB

11

Stage Computation: Arith/Log. Ops

 Formulate instruction execution as sequence of simple
steps

 Use same general form for all instructions

OPl rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ← R[rA]
valB ← R[rB]Decode

Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute
Perform ALU operation
Set condition code register

Memory
R[rB] ← valEWrite

back
Write back result

PC ← valPPC update Update PC

12

Executing rmmovl

FetchFetch
 Read 6 bytes

DecodeDecode
 Read operand registers

ExecuteExecute
 Compute effective address

MemoryMemory
 Write to memory

Write backWrite back
 Do nothing

PC UpdatePC Update
 Increment PC by 6

rmmovl rA, D(rB) 4 0 rA rB D

13

Stage Computation: rmmovl

 Use ALU for address computation

rmmovl rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M4[PC+2]
valP ← PC+6

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]Decode

Read operand A
Read operand B

valE ← valB + valC
Execute

Compute effective address

 M4[valE] ← valAMemory Write value to memory
Write
back

PC ← valPPC update Update PC

14

Executing popl

FetchFetch
 Read 2 bytes

DecodeDecode
 Read stack pointer

ExecuteExecute
 Increment stack pointer by 4

MemoryMemory
 Read from old stack pointer

Write backWrite back
 Update stack pointer
 Write result to register

PC UpdatePC Update
 Increment PC by 2

popl rA b 0 rA 8

15

Stage Computation: popl

 Use ALU to increment stack pointer
 Must update two registers

 Popped value
 New stack pointer

popl rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ← R[%esp]
valB ← R [%esp]

Decode
Read stack pointer
Read stack pointer

valE ← valB + 4
Execute

Increment stack pointer

valM ← M4[valA]Memory Read from stack
R[%esp] ← valE
R[rA] ← valM

Write
back

Update stack pointer
Write back result

PC ← valPPC update Update PC

16

Summary
TodayToday

 Sequential instruction execution cycle
 Instruction mapping to hardware
 Instruction decoding

Next timeNext time
 Control flow instructions
 Hardware for sequential machine (SEQ)

