Systems |

Datapath Design Il

Topics
m Control flow instructions
m Hardware for sequential machine (SEQ)

Executing Jumps

jXX Dest |7 | fn Dest
fall thru: |XX|xxX|e Not taken
target: XX|XX Taken
Fetch Memory
m Read 5 bytes m Do nothing
m Increment PC by 5 Write back
Decode = Do nothing
m Do nothing PC Update
Execute m Set PC to Dest if branch

m Determine whether to take
branch based on jump
condition and condition
codes

taken or to incremented PC
if not branch

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
etc valC < M,[PC+1]
valP < PC+5
Decode
E
xecute | Bch < Cond(CC,ifun)
Memory
Write
back
PC update |PC < Bch ? valC : valP

m Compute both addresses

m Choose based on setting of condition codes and branch
condition

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

Executing call

call Dest 80 Dest

return: XX | XX

target:

Fetch Memory

m Read 5 bytes m Write incremented PC to

= Increment PC by 5 new value of stack pointer
Decode Write back

= Read stack pointer = Update stack pointer
Execute PC Update

= Decrement stack pointer by = Set PC to Dest

4

Stage Computation:

call Dest
icode:ifun < M,[PC]
Fetch
valC < M,;[PC+1]
valP < PC+5
Decode
valB < R[%esp]
valE < valB + -4
Execute
Memory M,[valE] < valP
Write R[%esp] < valE
back
PC update |PC < valC

call

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

Write return value on stack
Update stack pointer

Set PC to destination

m Use ALU to decrement stack pointer
m Store incremented PC

Executing ret

ret 90

Fetch Memory
m Read 1 byte m Read return address from
old stack pointer
Decode

= Read stack pointer Write back

Execute m Update stack pointer

m Increment stack pointer by 4 PC Update
m Set PC to return address

Stage Computation:

ret

icode:ifun < M,[PC]
Fetch

valA < R[%
Decode [tespl

valB < R[%esp]

valE < valB + 4
Execute
Memory valM < M,[valA]
Write R[%esp] < valE
back
PC update |PC < valM

ret

Read instruction byte

Read operand stack pointer
Read operand stack pointer
Increment stack pointer

Read return address
Update stack pointer

Set PC to return address

m Use ALU to increment stack pointer
m Read return address from memory

Computation Steps

OPIrA, rB

icode,ifun |icode:ifun < M,[PC] Read instruction byte
Fetch rA,rB rA:rB < M,[PC+1] Read register byte

valC [Read constant word]

valP valP < PC+2 Compute next PC

valA, srcA |valA < R[rA] Read operand A
Decode

valB, srcB |valB < R[rB] Read operand B
Execute valE valE < valB OP valA Perform ALU operation

Cond code |(Set CC Set condition code register
Memory valM [Memory read/write]
Write dstE R[rB] < valE Write back ALU result
back dstM [Write back memory result]
PC update (PC PC < valP Update PC

m All instructions follow same general pattern
m Differ in what gets computed on each step

Computation Steps

call Dest
icode,ifun |icode:ifun < M,[PC]
rA,rB
Fetch valC valC < M,[PC+1]
valP valP < PC+5
Decode valA, srcA
valB, srcB |valB < R[%esp]
valE valE < valB + -4
Execute
Cond code
Memory valM M,[valE] < valP
Write dstE R[%esp] < valE
back dstM
PC update (PC PC < valC

Read instruction byte
[Read register byte]
Read constant word
Compute next PC

[Read operand A]

Read operand B
Perform ALU operation
[Set condition code reg.]
[Memory read/write]
[Write back ALU result]
Write back memory result
Update PC

m All instructions follow same general pattern

m Differ in what gets computed on each step

Computed Values

Fetch
icode
ifun
rA
rB
valC
valP

Decode
SrcA
srcB
dstE
dstM
valA
valB

Instruction code
Instruction function
Instr. Register A
Instr. Register B
Instruction constant
Incremented PC

Register ID A

Register ID B
Destination Register E
Destination Register M
Register value A
Register value B

Execute
m valE ALU result
m Bch Branch flag

Memory

m valM Value from
memory

10

SEQ Hardware

Key

Blue boxes:
predesigned hardware
blocks

e E.g., memories, ALU

Gray boxes:
control logic
e Describe in HCL

White ovals:
labels for signals

Thick lines:
32-bit word values

Thin lines:
4-8 bit values

Dotted lines:
1-bit values

PC

Memory

Execute

Decode

Fetch

data out

2% Data
...... ’ memory
write

Bch @
ot/

B

DECTOD
N O
R%gistBerMI:
file
Write back

icode @@e valC @?

Instruction PC
memory increment
—t

11

Summary

Today

m Control flow instructions
m Hardware for sequential machine (SEQ)

Next time

m Control logic for instruction execution
m Timing and clocking

12

