
Pipelining IV

TopicsTopics
 Implementing pipeline control
 Pipelining and performance analysis

Systems I

2

Implementing Pipeline Control

 Combinational logic generates pipeline control signals
 Action occurs at start of following cycle

E

M

W

F

D

CCCC

rB

srcA

srcB

icode valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Bch

D_icode

E_icode

M_icode

E_dstM

Pipe

control

logic

D_bubble

D_stall

E_bubble

F_stall

3

Initial Version of Pipeline Control
bool F_stall =

Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB } ||
Stalling at fetch while ret passes through pipeline
IRET in { D_icode, E_icode, M_icode };

bool D_stall =
Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB };

bool D_bubble =
Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode };

bool E_bubble =
Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
Load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB};

4

Control Combinations

 Special cases that can arise on same clock cycle

Combination ACombination A
 Not-taken branch
 ret instruction at branch target

Combination BCombination B
 Instruction that reads from memory to %esp
 Followed by ret instruction

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

5

Control Combination A

 Should handle as mispredicted branch
 Stalls F pipeline register
 But PC selection logic will be using M_valM anyhow

JXXE
D

M

Mispredict

JXXE
D

M

Mispredict

E
retD

M

ret 1

E
retD

M

ret 1

E
retD

M

ret 1

Combination A

normalnormalnormalnormalbubblebubblebubblebubblestallstallCombinationCombination

normalnormal

stallstall

FF

bubblebubble

bubblebubble

DD

bubblebubble

normalnormal

EE

normalnormal

normalnormal

MM

normalnormal

normalnormal

WW

Mispredicted Mispredicted BranchBranch

Processing retProcessing ret

ConditionCondition

E

M

W

F

D

Instruction

memory

Instruction

memory
PC

increment

PC

increment

Register

file

Register

file

ALUALU

Data

memory

Data

memory

Select

PC

rB

dstE dstMSelect

A

ALU

A

ALU

B

Mem.

control

Addr

srcA srcB

read

write

ALU

fun.

Fetch

Decode

Execute

Memory

Write back

icode

data out

data in

A B
M

E

M_valA

W_valM

W_valE

M_valA

W_valM

d_rvalA

f_PC

Predict

PC

valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

CCCC

d_srcBd_srcA

e_Bch

M_Bch

CCCC

d_srcBd_srcA

e_Bch

M_Bch

6

Control Combination B

 Would attempt to bubble and stall pipeline register D
 Signaled by processor as pipeline error

LoadE
UseD

M

Load/use

E
retD

M

ret 1

E
retD

M

ret 1

E
retD

M

ret 1

Combination B

stallstall

stallstall

stallstall

FF

bubble +bubble +
stallstall

stallstall

bubblebubble

DD

bubblebubble

bubblebubble

normalnormal

EE

normalnormal

normalnormal

normalnormal

MM

normalnormal

normalnormal

normalnormal

WW

CombinationCombination

Load/Use HazardLoad/Use Hazard

Processing retProcessing ret

ConditionCondition

7

Handling Control Combination B

 Load/use hazard should get priority
 ret instruction should be held in decode stage for additional

cycle

LoadE
UseD

M

Load/use

E
retD

M

ret 1

E
retD

M

ret 1

E
retD

M

ret 1

Combination B

stallstall

stallstall

stallstall

FF

stallstall

stallstall

bubblebubble

DD

bubblebubble

bubblebubble

normalnormal

EE

normalnormal

normalnormal

normalnormal

MM

normalnormal

normalnormal

normalnormal

WW

CombinationCombination

Load/Use HazardLoad/Use Hazard

Processing retProcessing ret

ConditionCondition

8

Corrected Pipeline Control Logic

 Load/use hazard should get priority
 ret instruction should be held in decode stage for additional

cycle

stallstall

stallstall

stallstall

FF

stallstall

stallstall

bubblebubble

DD

bubblebubble

bubblebubble

normalnormal

EE

normalnormal

normalnormal

normalnormal

MM

normalnormal

normalnormal

normalnormal

WW

CombinationCombination

Load/Use HazardLoad/Use Hazard

Processing retProcessing ret

ConditionCondition

bool D_bubble =
Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode }
 # but not condition for a load/use hazard
 && !(E_icode in { IMRMOVL, IPOPL }

 && E_dstM in { d_srcA, d_srcB });

9

Pipeline Summary
Data HazardsData Hazards

 Most handled by forwarding
 No performance penalty

 Load/use hazard requires one cycle stall

Control HazardsControl Hazards
 Cancel instructions when detect mispredicted branch

 Two clock cycles wasted
 Stall fetch stage while ret passes through pipeline

 Three clock cycles wasted

Control CombinationsControl Combinations
 Must analyze carefully
 First version had subtle bug

 Only arises with unusual instruction combination

10

Performance Analysis with Pipelining

Ideal pipelined machine: CPI = 1Ideal pipelined machine: CPI = 1
 One instruction completed per cycle
 But much faster cycle time than unpipelined machine

However - hazards are working against the idealHowever - hazards are working against the ideal
 Hazards resolved using forwarding are fine
 Stalling degrades performance and instruction comletion

rate is interrupted

CPI is measure of CPI is measure of ““architectural efficiencyarchitectural efficiency”” of design of design

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU !!==

11

Computing CPI
CPICPI

 Function of useful instruction and bubbles

 Cb/Ci represents the pipeline penalty due to stalls

Can reformulate to account forCan reformulate to account for
 load penalties (lp)
 branch misprediction penalties (mp)
 return penalties (rp)

!

CPI =
C
i
+C

b

C
i

=1.0 +
C
b

C
i

!

CPI =1.0 + lp +mp+ rp

12

Computing CPI - II
So how do we determine the penalties?So how do we determine the penalties?

 Depends on how often each situation occurs on average
 How often does a load occur and how often does that load

cause a stall?
 How often does a branch occur and how often is it

mispredicted
 How often does a return occur?

We can measure theseWe can measure these
 simulator
 hardware performance counters

We can estimate throughWe can estimate through historical averageshistorical averages
 Then use to make early design tradeoffs for architecture

13

Computing CPI - III

CPICPI = 1 + 0.31 = 1.31 == 31% worse than ideal= 1 + 0.31 = 1.31 == 31% worse than ideal
This gets worse when:This gets worse when:

 Account for non-ideal memory access latency
 Deeper pipelines (where stalls per hazard increase)

0.310.31Total penaltyTotal penalty
0.060.06331.01.00.020.02rprpReturnReturn

0.160.16220.40.40.200.20mpmpMispredictMispredict

0.090.09110.30.30.0.3030lplpLoad/UseLoad/Use

ProductProductStallsStallsConditionCondition
FrequencyFrequency

InstructionInstruction
FrequencyFrequency

NameNameCauseCause

14

Summary
TodayToday

 Pipeline control logic
 Effect on CPI and performance

Next TimeNext Time
 Further mitigation of branch mispredictions
 State machine design

