
Pipelining IV

TopicsTopics
 Implementing pipeline control
 Pipelining and performance analysis

Systems I
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Implementing Pipeline Control

 Combinational logic generates pipeline control signals
 Action occurs at start of following cycle
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Initial Version of Pipeline Control
bool F_stall =

# Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB } ||
# Stalling at fetch while ret passes through pipeline
IRET in { D_icode, E_icode, M_icode };

bool D_stall =
# Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB };

bool D_bubble =
# Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
# Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode };

bool E_bubble =
# Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
# Load/use hazard
E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB};
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Control Combinations

 Special cases that can arise on same clock cycle

Combination ACombination A
 Not-taken branch
  ret instruction at branch target

Combination BCombination B
 Instruction that reads from memory to %esp
 Followed by ret instruction
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Control Combination A

 Should handle as mispredicted branch
 Stalls F pipeline register
 But PC selection logic will be using M_valM anyhow

JXXE
D

M

Mispredict

JXXE
D

M

Mispredict

E
retD

M

ret 1

E
retD

M

ret 1

E
retD

M

ret 1

Combination A

normalnormalnormalnormalbubblebubblebubblebubblestallstallCombinationCombination

normalnormal

stallstall

FF

bubblebubble

bubblebubble

DD

bubblebubble

normalnormal

EE

normalnormal

normalnormal

MM

normalnormal

normalnormal

WW

Mispredicted Mispredicted BranchBranch

Processing retProcessing ret

ConditionCondition

E

M

W

F

D

Instruction

memory

Instruction

memory
PC

increment

PC

increment

Register

file

Register

file

ALUALU

Data

memory

Data

memory

Select

PC

rB

dstE dstMSelect

A

ALU

A

ALU

B

Mem.

control

Addr

srcA srcB

read

write

ALU

fun.

Fetch

Decode

Execute

Memory

Write back

icode

data out

data in

A B
M

E

M_valA

W_valM

W_valE

M_valA

W_valM

d_rvalA

f_PC

Predict

PC

valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

CCCC

d_srcBd_srcA

e_Bch

M_Bch

CCCC

d_srcBd_srcA

e_Bch

M_Bch



6

Control Combination B

 Would attempt to bubble and stall pipeline register D
 Signaled by processor as pipeline error
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Handling Control Combination B

 Load/use hazard should get priority
  ret instruction should be held in decode stage for additional

cycle
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Corrected Pipeline Control Logic

 Load/use hazard should get priority
  ret instruction should be held in decode stage for additional

cycle
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bool D_bubble =
# Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
# Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode }
  # but not condition for a load/use hazard
  && !(E_icode in { IMRMOVL, IPOPL }

            && E_dstM in { d_srcA, d_srcB });
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Pipeline Summary
Data HazardsData Hazards

 Most handled by forwarding
 No performance penalty

 Load/use hazard requires one cycle stall

Control HazardsControl Hazards
 Cancel instructions when detect mispredicted branch

 Two clock cycles wasted
 Stall fetch stage while ret passes through pipeline

 Three clock cycles wasted

Control CombinationsControl Combinations
 Must analyze carefully
 First version had subtle bug

 Only arises with unusual instruction combination
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Performance Analysis with Pipelining

Ideal pipelined machine: CPI = 1Ideal pipelined machine: CPI = 1
 One instruction completed per cycle
 But much faster cycle time than unpipelined machine

However - hazards are working against the idealHowever - hazards are working against the ideal
 Hazards resolved using forwarding are fine
 Stalling degrades performance and instruction comletion

rate is interrupted

CPI is measure of CPI is measure of ““architectural efficiencyarchitectural efficiency”” of design of design
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Computing CPI
CPICPI

 Function of useful instruction and bubbles

 Cb/Ci represents the pipeline penalty due to stalls

Can reformulate to account forCan reformulate to account for
 load penalties (lp)
 branch misprediction penalties (mp)
 return penalties (rp)
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Computing CPI - II
So how do we determine the penalties?So how do we determine the penalties?

 Depends on how often each situation occurs on average
 How often does a load occur and how often does that load

cause a stall?
 How often does a branch occur and how often is it

mispredicted
 How often does a return occur?

We can measure theseWe can measure these
 simulator
 hardware performance counters

We can estimate throughWe can estimate through  historical averageshistorical averages
 Then use to make early design tradeoffs for architecture
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Computing CPI - III

CPICPI  = 1 + 0.31 = 1.31 == 31% worse than ideal= 1 + 0.31 = 1.31 == 31% worse than ideal
This gets worse when:This gets worse when:

 Account for non-ideal memory access latency
 Deeper pipelines (where stalls per hazard increase)
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Summary
TodayToday

 Pipeline control logic
 Effect on CPI and performance

Next TimeNext Time
 Further mitigation of branch mispredictions
 State machine design


