
Bits and Bytes

TopicsTopics
 Why bits?
 Representing information as bits

 Binary/Hexadecimal
 Byte representations

» numbers
» characters and strings
» Instructions

 Bit-level manipulations
 Boolean algebra
 Expressing in C

Systems I

2

Why Donʼt Computers Use Base 10?
Base 10 Number RepresentationBase 10 Number Representation

 Thatʼs why fingers are known as “digits”
 Natural representation for financial transactions

 Floating point number cannot exactly represent $1.20
 Even carries through in scientific notation

 1.5213 X 104

Implementing ElectronicallyImplementing Electronically
 Hard to store

 ENIAC (First electronic computer) used 10 vacuum tubes / digit
 Hard to transmit

 Need high precision to encode 10 signal levels on single wire
 Messy to implement digital logic functions

 Addition, multiplication, etc.

3

Binary Representations
Base 2 Number RepresentationBase 2 Number Representation

 Represent 1521310 as 111011011011012
 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic ImplementationElectronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

 Straightforward implementation of arithmetic functions
0.0V
0.5V

2.8V
3.3V

0 1 0

4

Encoding Byte Values
Byte = 8 bitsByte = 8 bits

 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ʻ0ʼ to ʻ9ʼ and ʻAʼ to ʻFʼ
 Write FA1D37B16 in C as 0xFA1D37B

» Or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decimal

Binary

5

Machine Words
Machine Has Machine Has ““Word SizeWord Size””

 Nominal size of integer-valued data
 Including addresses

 Most current machines are 32 bits (4 bytes)
 Limits addresses to 4GB
 Becoming too small for memory-intensive applications

 High-end systems are 64 bits (8 bytes)
 Potentially address ≈ 1.8 X 1019 bytes

 Machines support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes

6

Word-Oriented Memory
Organization

Addresses Specify ByteAddresses Specify Byte
LocationsLocations
 Address of first byte in

word
 Addresses of successive

words differ by 4 (32-bit) or
8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

7

Data Representations
Sizes of C Objects (in Bytes)Sizes of C Objects (in Bytes)

 C Data Type Typical 32-bit Intel IA32
 int 4 4
 long int 4 4
 char 1 1
 short 2 2
 float 4 4
 double 8 8
 long double 8 10/12
 char * 4 4

» Or any other pointer

8

Byte Ordering
How should bytes within multi-byte word be ordered inHow should bytes within multi-byte word be ordered in

memory?memory?
ConventionsConventions

 Sunʼs, Macʼs are “Big Endian” machines
 Least significant byte has highest address

 Alphas, PCʼs are “Little Endian” machines
 Least significant byte has lowest address

9

Byte Ordering Example
Big Big EndianEndian

 Least significant byte has highest address

Little Little EndianEndian
 Least significant byte has lowest address

ExampleExample
 Variable x has 4-byte representation 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

10

Representing Integers
intint A = 15213; A = 15213;
intint B = -15213; B = -15213;
long long intint C = 15213; C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

6D
3B
00
00

Linux/Alpha A

3B
6D

00
00

Sun A

93
C4
FF
FF

Linux/Alpha B

C4
93

FF
FF

Sun B

Twoʼs complement representation
(Covered next lecture)

00
00
00
00

6D
3B
00
00

Alpha C

3B
6D

00
00

Sun C

6D
3B
00
00

Linux C

11

Representing Pointers (addresses)
int int B = -15213;B = -15213;
int int *P = &B;*P = &B;

Alpha Address
Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000 01
00
00
00

A0
FC
FF
FF

Alpha P

Sun Address
Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

Linux P

Linux Address
Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

12

Representing Floats
Float F = 15213.0;Float F = 15213.0;

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00
B4
6D
46

Linux/Alpha F

B4
00

46
6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

13

char S[6] = "15213";char S[6] = "15213";

Representing Strings
Strings in CStrings in C

 Represented by array of characters
 Each character encoded in ASCII format

 Standard 7-bit encoding of character set
 Other encodings exist, but uncommon
 Character “0” has code 0x30

» Digit i has code 0x30+i
 String should be null-terminated

 Final character = 0

CompatibilityCompatibility
 Byte ordering not an issue

 Data are single byte quantities
 Text files generally platform independent

 Except for different conventions of line termination character(s)!

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00

14

Machine-Level Code Representation
Encode Program as Sequence of InstructionsEncode Program as Sequence of Instructions

 Each simple operation
 Arithmetic operation
 Read or write memory
 Conditional branch

 Instructions encoded as bytes
 Alphaʼs, Sunʼs, Macʼs use 4 byte instructions

» Reduced Instruction Set Computer (RISC)
 PCʼs use variable length instructions

» Complex Instruction Set Computer (CISC)
 Different instruction types and encodings for different

machines
 Most code not binary compatible

Programs are Byte Sequences Too!Programs are Byte Sequences Too!

15

Representing Instructions
intint sum(sum(intint x, x, intint y) y)
{{
 return x+y; return x+y;
}}

Different machines use totally different instructions and encodings

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

 For this example, Alpha &
Sun use two 4-byte
instructions
 Use differing numbers of

instructions in other cases
 PC uses 7 instructions with

lengths 1, 2, and 3 bytes
 Same for NT and for Linux
 NT / Linux not fully binary

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

16

Boolean Algebra
Developed by George Developed by George BooleBoole in 19th Century in 19th Century

 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

AndAnd
 A&B = 1 when both A=1 and

B=1
& 0 1

0 0 0

1 0 1

~

0 1

1 0

NotNot
 ~A = 1 when A=0

OrOr
 A|B = 1 when either A=1 or

B=1
| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Exclusive-Or (Exclusive-Or (XorXor))
 A^B = 1 when either A=1 or

B=1, but not both

17

A

~A

~B

B

Connection when

 A&~B | ~A&B

Application of Boolean Algebra
Applied to Digital Systems by Claude ShannonApplied to Digital Systems by Claude Shannon

 1937 MIT Masterʼs Thesis
 Reason about networks of relay switches

 Encode closed switch as 1, open switch as 0
A&~B

~A&B = A^B

18

Integer Algebra
Integer ArithmeticInteger Arithmetic

 〈Z, +, *, –, 0, 1〉 forms a “ring”
 Addition is “sum” operation
 Multiplication is “product” operation
 – is additive inverse
 0 is identity for sum
 1 is identity for product

19

Boolean Algebra
Boolean AlgebraBoolean Algebra

 〈{0,1}, |, &, ~, 0, 1〉 forms a “Boolean algebra”
 Or is “sum” operation
 And is “product” operation
 ~ is “complement” operation (not additive inverse)
 0 is identity for sum
 1 is identity for product

20

 Commutativity
A | B = B | A A + B = B + A
A & B = B & A A * B = B * A

 Associativity
(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

 Product distributes over sum
A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

 Sum and product identities
A | 0 = A A + 0 = A
A & 1 = A A * 1 = A

 Zero is product annihilator
A & 0 = 0 A * 0 = 0

 Cancellation of negation
~ (~ A) = A – (– A) = A

Boolean Algebra Boolean Algebra ≈≈ Integer RingInteger Ring

21

 Boolean: Sum distributes over product
A | (B & C) = (A | B) & (A | C) A + (B * C) ≠ (A + B) * (B + C)

 Boolean: Idempotency
A | A = A A + A ≠ A

“A is true” or “A is true” = “A is true”
A & A = A A * A ≠ A

 Boolean: Absorption
A | (A & B) = A A + (A * B) ≠ A

“A is true” or “A is true and B is true” = “A is true”
A & (A | B) = A A * (A + B) ≠ A

 Boolean: Laws of Complements
A | ~A = 1 A + –A ≠ 1

“A is true” or “A is false”
 Ring: Every element has additive inverse

A | ~A ≠ 0 A + –A = 0

Boolean Algebra Boolean Algebra ≠≠ Integer RingInteger Ring

22

Properties of & and ^Boolean RingBoolean Ring
 〈{0,1}, ^, &, Ι, 0, 1〉
 Identical to integers mod 2
 Ι is identity operation: Ι (A) = A

A ^ A = 0

PropertyProperty Boolean RingBoolean Ring
 Commutative sum A ^ B = B ^ A
 Commutative product A & B = B & A
 Associative sum (A ^ B) ^ C = A ^ (B ^ C)
 Associative product (A & B) & C = A & (B & C)
 Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)
 0 is sum identity A ^ 0 = A
 1 is prod. identity A & 1 = A
 0 is product annihilator A & 0 = 0
 Additive inverse A ^ A = 0

23

Relations Between Operations
DeMorganDeMorganʼ̓ss Laws Laws

 Express & in terms of |, and vice-versa
 A & B = ~(~A | ~B)

» A and B are true if and only if neither A nor B is false
 A | B = ~(~A & ~B)

» A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive OrExclusive-Or using Inclusive Or
 A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true
 A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, but not both

24

General Boolean Algebras
Operate on Bit VectorsOperate on Bit Vectors

 Operations applied bitwise

All of the Properties of Boolean Algebra ApplyAll of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

25

Representing & Manipulating Sets
RepresentationRepresentation

 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

01101001 { 0, 3, 5, 6 }
76543210

01010101 { 0, 2, 4, 6 }
76543210

OperationsOperations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

26

Bit-Level Operations in C
Operations &, |, ~, ^ Available in COperations &, |, ~, ^ Available in C

 Apply to any “integral” data type
 long, int, short, char

 View arguments as bit vectors
 Arguments applied bit-wise

Examples (Char data type)Examples (Char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102
 ~0x00 --> 0xFF

~000000002 --> 111111112
 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012
 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

27

Contrast: Logic Operations in C
Contrast to Logical OperatorsContrast to Logical Operators

 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

Examples (char data type)Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p (avoids null pointer access)

28

Shift Operations
Left Shift: Left Shift: x << yx << y

 Shift bit-vector x left y positions
 Throw away extra bits on left
 Fill with 0ʼs on right

Right Shift: Right Shift: x >> yx >> y
 Shift bit-vector x right y

positions
 Throw away extra bits on right

 Logical shift
 Fill with 0ʼs on left

 Arithmetic shift
 Replicate most significant bit on

right
 Useful with twoʼs complement

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

29

Cool Stuff with Xor

void funny(void funny(intint *x, *x, intint *y) *y)
{{
 *x = *x ^ *y; /* #1 */ *x = *x ^ *y; /* #1 */
 *y = *x ^ *y; /* #2 */ *y = *x ^ *y; /* #2 */
 *x = *x ^ *y; /* #3 */ *x = *x ^ *y; /* #3 */
}}

 Bitwise Xor is form
of addition

 With extra property
that every value is
its own additive
inverse

 A ^ A = 0

BABegin
BA^B1

(A^B)^B = AA^B2
A(A^B)^A = B3
ABEnd

*y*x

30

Main Points
ItItʼ̓s All About Bits & Bytess All About Bits & Bytes

 Numbers
 Programs
 Text

Different Machines Follow Different ConventionsDifferent Machines Follow Different Conventions
 Word size
 Byte ordering
 Representations

Boolean Algebra is Mathematical BasisBoolean Algebra is Mathematical Basis
 Basic form encodes “false” as 0, “true” as 1
 General form like bit-level operations in C

 Good for representing & manipulating sets

31

Reading Byte-Reversed Listings
DisassemblyDisassembly

 Text representation of binary machine code
 Generated by program that reads the machine code

Example FragmentExample Fragment
 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Deciphering NumbersDeciphering Numbers
 Value: 0x12ab

 Pad to 4 bytes: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

32

Examining Data Representations
Code to Print Byte Representation of DataCode to Print Byte Representation of Data

 Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",
 start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

33

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux):
int a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00

