Systems I

Floating Point

Topics

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

IEEE Floating Point

IEEE Standard 754

■ Established in 1985 as uniform standard for floating point arithmetic

- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

■ Nice standards for rounding, overflow, underflow

- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Frac. Binary Number Examples

Value
5-3/4
2-7/8
63/64

Representation
101.11_{2}
10.111_{2}
0.111111_{2}

Observations
■ Divide by 2 by shifting right
■ Multiply by 2 by shifting left
■ Numbers of form $0.111111 \ldots 2$ just below 1.0
$-1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$

- Use notation $1.0-\varepsilon$

Representable Numbers

Limitation
■ Can only exactly represent numbers of the form $x / 2^{k}$
$■$ Other numbers have repeating bit representations

Value
1/3
1/5
1/10

Representation
0.0101010101 [01] ...2
$0.001100110011[0011] \ldots 2$
0.0001100110011 [0011] ...2

Floating Point Representation

Numerical Form

$-1^{s} M 2^{E}$

- Sign bit s determines whether number is negative or positive - Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

s	\exp	frac

\square MSB is sign bit

- exp field encodes E
- frac field encodes M

Floating Point Precisions

Encoding

s	\exp	frac

■ MSB is sign bit

- exp field encodes E
- frac field encodes M

Sizes

■ Single precision: 8 exp bits, 23 frac bits

- 32 bits total

■ Double precision: 11 exp bits, 52 frac bits
-64 bits total
■ Extended precision: 15 exp bits, 63 frac bits

- Only found in Intel-compatible machines
- Stored in 80 bits
" 1 bit wasted

"Normalized" Numeric Values

Condition

- $\exp \neq 000 . .0$ and $\exp \neq 111 . . .1$

Exponent coded as biased value
$E=E x p-B i a s$

- Exp : unsigned value denoted by exp
- Bias: Bias value
»Single precision: 127 (Exp: 1...254, E: -126...127)
» Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
" in general: Bias $=\mathbf{2}^{\mathrm{e}-1} \mathbf{- 1}$, where e is number of exponent bits
Significand coded with implied leading 1

```
\(M=1 . x x x . . x_{2}\)
    - xxx...x: bits of frac
    - Minimum when 000...0 ( \(M=1.0\) )
    - Maximum when 111...1 ( \(\boldsymbol{M}=2.0\) - \(\boldsymbol{\varepsilon}\) )
    - Get extra leading bit for "free"
```


Normalized Encoding Example

Value

```
Float F = 15213.0;
■ 15213 
```

Significand

$M=$	$1 . \underline{1101101101101}_{2}$
frac $=$	$\underline{11011011011010000000000}{ }_{2}$

Exponent

E	$=$	13
Bias	$=$	127
Exp	$=$	$140=10001100_{2}$

```
Floating Point Representation (Class 02):
Hex: 4 6 6 6 % D D B 
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
140: 100 0110 0
15213:
    1 1 1 0 1 1 0 1 ~ 1 0 1 1 ~ 0 1 ~
```


Denormalized Values

Condition

- $\exp =000 . .0$

Value

- Exponent value $E=-$ Bias +1

■ Significand value $M=0 . \times x x . . x_{2}$

- xxx...x: bits of frac

Cases

- exp = 000...0, frac $=000 . .0$
- Represents value 0
- Note that have distinct values +0 and -0
- exp $=000 . .0$, frac $\neq 000 . . .0$
- Numbers very close to 0.0
- Lose precision as get smaller
- "Gradual underflow"

Special Values

Condition

- $\exp =111 . .1$

Cases

- $\exp =111 . . .1$, frac $=000 . .0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 $=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- $\exp =111 . . .1$, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty$

Summary of Floating Point Real Number Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac
- Same General Form as IEEE Format

■ normalized, denormalized
■ representation of $0, \mathrm{NaN}$, infinity

76	32	
s	exp	frac

Values Related to the Exponent

Exp	exp	E	$2^{\text {E }}$	
0	0000	-6	$1 / 64$	(denorms)
1	0001	-6	$1 / 64$	
2	0010	-5	$1 / 32$	
3	0011	-4	$1 / 16$	
4	0100	-3	$1 / 8$	
5	0101	-2	$1 / 4$	
6	0110	-1	$1 / 2$	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	(inf, NaN)
15	1111	n / a		

Dynamic Range

Distribution of Values

6-bit IEEE-like format
■ e=3 exponent bits
■ $\mathrm{f}=\mathbf{2}$ fraction bits

- Bias is 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format
■ $\mathbf{e}=3$ exponent bits
■ $\mathrm{f}=\mathbf{2}$ fraction bits

- Bias is 3

Interesting Numbers

Description exp	frac	Numeric Value
Zero 00... 00	00... 00	0.0
```Smallest Pos. Denorm. 00...00 \square Single }\approx1.4\times10-4 - Double }\approx4.9\times1\mp@subsup{0}{}{-324```	$00 \ldots 01$	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
```Largest Denormalized 00...00 ■ Single }\approx1.18\times1\mp@subsup{0}{}{-38 - Double }\approx2.2\times1\mp@subsup{0}{}{-308```	$11 \ldots 11$	$(1.0-\varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. Normalized 00... 01 ■ Just larger than largest den	$00 \ldots 00$ ormalized	$1.0 \times 2^{-\{126,1022\}}$
One 01... 11	00... 00	1.0
```Largest Normalized 11...10 ■ Single }\approx3.4\times1\mp@subsup{0}{}{38 \square Double \approx 1.8 X 10308```	11... 11	$(2.0-\varepsilon) \times 2^{\{127,1023\}}$

## Special Properties of Encoding

FP Zero Same as Integer Zero

- All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity


## Floating Point Operations

Conceptual View
■ First compute exact result

- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Rounding Modes (illustrate with \$ rounding)

- Zero	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 1$
- Round down $(-\infty)$	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
- Round up $(+\infty)$	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
- Nearest Even (defaut)	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

## Note:

1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

## Closer Look at Round-To-Even

Default Rounding Mode
■ Hard to get any other kind without dropping into assembly

- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even

■ E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way-round up)
1.2450000	1.24	(Half way-round down)

## Rounding Binary Numbers

Binary Fractional Numbers
■ "Even" when least significant bit is 0

- Half way when bits to right of rounding position $=100 \boldsymbol{\omega}_{2}$

Examples

- Round to nearest $\mathbf{1 / 4}$ (2 bits right of binary point)

Value	Binary	Rounded	Action	Roun
$23 / 32$	$10.00011_{2}$	$10.00_{2}$	(<1/2-down)	2
$23 / 16$	$10.00110_{2}$	$10.01_{2}$	( $>1 / 2-$ up)	$21 / 4$
$27 / 8$	$10.11100_{2}$	$11.00_{2}$	(1/2-up)	3
$25 / 8$	$10.10100_{2}$	$10.10_{2}$	(1/2-down)	$21 / 2$

## FP Multiplication

## Operands

$(-1)^{s 1} M 12^{E 1} \quad$ * $(-1)^{s 2} M 22^{E 2}$

## Exact Result

$(-1)^{s} M 2{ }^{E}$

- Sign s: s1 ^ s2
- Significand $M$ : M1 * M2
- Exponent $E: \quad E 1+E 2$

Fixing
■ If $M \geq 2$, shift $M$ right, increment $E$

- If $E$ out of range, overflow
- Round $M$ to fit frac precision

Implementation
■ Biggest chore is multiplying significands

## FP Addition

## Operands

$(-1)^{s 1} M 12^{E 1}$
$(-1)^{s 2} M 22^{E 2}$

- Assume E1 > E2

Exact Result
$(-1)^{s} M 2^{E}$


- Sign $s$, significand $M$ :
- Result of signed align \& add

■ Exponent E: E1

## Fixing

■ If $M \geq 2$, shift $M$ right, increment $E$

- if $M<1$, shift $M$ left $k$ positions, decrement $E$ by $k$

■ Overflow if $E$ out of range

- Round $M$ to fit frac precision


## Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition?


## YES

- But may generate infinity or NaN

■ Commutative?
YES

- Associative?

NO
$\bullet$ Overflow and inexactness of rounding

- 0 is additive identity?

YES

- Every element has additive inverse

ALMOST

- Except for infinities \& NaNs

Monotonicity

- $a \geq b \Rightarrow a+c \geq b+c$ ? ALMOST
- Except for infinities \& NaNs


## Math. Properties of FP Mult

Compare to Commutative Ring
■ Closed under multiplication?
YES

- But may generate infinity or NaN

■ Multiplication Commutative?
■ Multiplication is Associative?
$\bullet$ Possibility of overflow, inexactness of rounding

- 1 is multiplicative identity? YES
■ Multiplication distributes over addition? NO
- Possibility of overflow, inexactness of rounding

Monotonicity
$\square a \geq b \& c \geq 0 \Rightarrow a * c \geq b * c ? \quad$ ALMOST

- Except for infinities \& NaNs


## Floating Point in C

C Guarantees Two Levels
float single precision
double double precision
Conversions
■ Casting between int, float, and double changes numeric values

- Double or float to int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range
" Generally saturates to TMin or TMax
- int to double
- Exact conversion, as long as int has $\leq 53$ bit word size
- int to float
- Will round according to rounding mode


## Floating Point Puzzles

- For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

$$
\begin{aligned}
& \text { int } \mathrm{x}=\ldots \text {; } \\
& \text { - } x==\text { (int) (double) } x \\
& \text { - } f==\text { (float) (double) } f \\
& \text { - } d==\text { (float) } d \\
& \text { - } f==-(-f) \text {; } \\
& \text { - } 2 / 3==2 / 3.0 \\
& \text { - } \mathrm{d}<0.0 \quad \Rightarrow \quad((\mathrm{~d} * 2)<0.0) \\
& \text { - } \mathrm{d}>\mathrm{f} \quad \Rightarrow \quad-\mathrm{f}>-\mathrm{d} \\
& \text { - d * d }>=0.0 \\
& \text { - }(d+f)-d==f
\end{aligned}
$$

## Answers to Floating Point Puzzles

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor $f$ is NAN

- $x==$ (int) (float) $x$
- $x==$ (int) (double) $x$
- $f==$ (float) (double) $f$
- d == (float) d
- $\mathbf{f}=\mathbf{=}$-(-f);
- $2 / 3==2 / 3.0$
- $\mathrm{d}<0.0 \Rightarrow((\mathrm{~d} * 2)<0.0)$
- $\mathbf{d}>\mathrm{f} \Rightarrow-\mathrm{f}>-\mathbf{d}$
- d * d >= 0.0
- $(d+f)-d==f$

No: 24 bit significand
Yes: 53 bit significand
Yes: increases precision
No: loses precision
Yes: Just change sign bit
No: $2 / 3=0$
Yes!
Yes!
Yes!
No: Not associative

## Ariane 5

■ Exploded 37 seconds after liftoff

■ Cargo worth $\$ 500$ million

## Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
■ Worked OK for Ariane 4
- Overflowed for Ariane 5
- Used same software



## Summary

## IEEE Floating Point Has Clear Mathematical Properties

■ Represents numbers of form $M \times 2{ }^{E}$

- Can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

