Systems |

Machine-Level Programming lll:
Control Flow

Topics
m Condition Codes
e Setting
e Testing
m Control Flow

e [f-then-else
e Varieties of Loops

Controlling program execution

We can now generate programs that execute linear
sequences of instructions

m Access registers and storage
m Perform computations

But - what about loops, if-then-else, etc.?

Need ISA support for:
m Comparing and testing data values

m Directing program control
e Jump to some instruction that isn’t just the next sequential one
® Do so based on some condition that has been tested

Condition Codes

Single Bit Registers
CF Carry Flag SF Sign Flag
ZzF Zero Flag OF Overflow Flag

Implicitly Set By Arithmetic Operations
addl Src,Dest
Canalog: t = a + b

m CF set if carry out from most significant bit
e Used to detect unsigned overflow

mZF setift ==
mSFsetift < 0

m OF set if two’s complement overflow
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

Not Set by leal instruction

Setting Condition Codes (cont.)

Explicit Setting by Compare Instruction
cmpl Src2,Srci1
m cmpl b,a like computing a-b without setting destination

m CF set if carry out from most significant bit
® Used for unsigned comparisons

m ZF setifa ==

m SFsetif (a-b) < 0

m OF set if two’s complement overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Setting Condition Codes (cont.)

Explicit Setting by Test instruction
testl Src2,Srci

m Sets condition codes based on value of Src1 & Src2
e Useful to have one of the operands be a mask

m testl b,a like computing as&b without setting destination
m ZF set when asb ==
m SF set when asb < 0

Reading Condition Codes

SetX Instructions
m Set single byte based on combinations of condition codes

SetX Condition Description

sete ZF Equal / Zero

setne ~ZF Not Equal / Not Zero
sets SF Negative

setns ~SF Nonnegative

setg ~ (SF~OF) &~ZF Greater (Signed)
setge ~ (SF~OF) Greater or Equal (Signed)
setl (SFAOF) Less (Signed)

setle (SF"OF) | Z2F Less or Equal (Signed)
seta ~CF&~ZF Above (unsigned)
setb CF Below (unsigned)

Reading Condition Codes (Cont.)

SetX Instructions

m Set single byte based on
combinations of condition codes

m One of 8 addressable byte registers
e Embedded within first 4 integer
registers
® Does not alter remaining 3 bytes
® Typically use movzbl to finish job

int gt (int x, int y)
{

return x > y;

}

Body

movl 12 (%ebp) , $eax
cmpl %eax, 8 (%ebp)
setg %al

movzbl %al, $eax

eax =y
Compare x : vy <€
al = x >y

Zero rest of %eax

3H* = H H*

eax %ah | %al
Sedx %dh | $d1
secx %ch | 3cl
$ebx %bh | $bl
%esi
sedi
sesp
%ebp
—— Note
inverted

ordering!

Jumping
jX Instructions
= Jump to different part of code depending on condition codes

jX Condition Description

Jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero
Js SF Negative

jns ~SF Nonnegative

Jg ~ (SF"OF) &~ZF Greater (Signed)

Jge ~ (SF"OF) Greater or Equal (Signed)
Jl (SF”OF) Less (Signed)

jle (SFAOF) | ZF Less or Equal (Signed)
Ja ~CF&~ZF Above (unsigned)

Jb CF Below (unsigned)

Conditional Branch Example

int max(int x, int y)

{

if (x > y)
return x;
else

return y;

max:

L9:

pushl 3%ebp } Set
movl %esp, $ebp Up
movl 8(%ebp),%edx)

movl 12 (%ebp) , $eax

cmpl %eax, $edx > Body

jle L9
mov]l %edx, %eax

movl %ebp, %Sesp
popl %ebp Finish

ret

Conditional Branch Example (Cont.)

int goto max(int x, int y)
{
int rval
int ok
if (ok)
goto done;
rval X,
done:
return rval;

(x <= y);

movl 8 (%ebp) ,%edx # edx
movl 12 (%ebp) ,%eax # eax
cmpl %eax, %$edx # x :
jle L9 # if <=
movl %edx, %eax # eax
L9: # Done:

m C allows “goto” as means
of transferring control
® Closer to machine-level
programming style
m Generally considered bad
coding style

= X
=Y
Y
goto L9
=X } Skipped when x <y

10

“Do-While” Loop Example

C Code

int fact do
(int x)
{
int result = 1;
do {
result *= x;
X = x-1;
} while (x > 1) ;
return result;

Goto Version

int fact goto(int x)
{

int result = 1;
loop:

result *= x;

X = x-1;

if (x > 1)

goto loop;
return result;

}

m Use backward branch to continue looping
m Only take branch when “while” condition holds

11

“Do-While” Loop Compilation

Goto Version

{

int fact goto

(int x)

int result = 1;
loop:

result *= x;

X = x-1;

if (x > 1)
goto loop;

return result;

Registers
$edx x

%$eax result

Assembly

_fact_goto:

pushl $%$ebp # Setup

movl %esp, $ebp # Setup

movl $1,%eax # eax =1

movl 8 (%ebp) ,%edx # edx = x
L11:

imull %edx, %$eax # result *=

decl %edx # x--

cmpl $1,%edx # Compare x

jg L11 # if > goto

movl %ebp, $Sesp # Finish

popl %ebp # Finish

ret # Finish

X

loop

12

General “Do-While” Translation

C Code Goto Version

do
Body

loop:
Body

while (Test) ; if (Test)

goto loop

m Body can be any C statement
e Typically compound statement:

{
Statement,;

Statement,;

Statement ;

}

m Testis expression returning integer
= 0 interpreted as false =0 interpreted as true

13

“While” Loop Example #1

C Code First Goto Version

int fact while int fact while goto

(int x)
{
int result = 1;
while (x > 1) {
result *= x;
X = x-1;
};

return result;

(int x)

{

int result = 1;

loop:
if ('(x > 1))
goto done;
result *= x;

X = x-1;
goto loop;
done:

return result;

}

m Is this code equivalent to the do-while version?
m Must jump out of loop if test fails

14

Actual “While” Loop Translation

C Code

int fact while(int x)
{
int result = 1;
while (x > 1) {
result *= x;
X = x-1;
};
return result;

}

Second Goto Version

m Uses same inner loop
as do-while version

m Guards loop entry with
extra test

int fact while goto2
(int x)
{
int result = 1;
if ('(x > 1))
goto done;
loop:
result *= x;
x = x-1;
if (x > 1)
goto loop;
done:
return result;

}

15

General “While” Translation

C Code

while (Test)
Body

Do-While Version —— Goto Version

if (!'Test)
goto done;
loop:
Body
if (Test)
goto loop;
done:

if (!Test)
goto done;
do

Body
while (Test) ;
done:

16

Summarizing

C Control Standard Techniques
m if-then-else m All loops converted to do-while
= do-while form
m while m Large switch statements use
= switch jump tables

Conditions in CISC

m CISC machines generally have
condition code registers

Conditions in RISC

Compiler m Use general registers to store

m Must generate assembly condition information
code to implement more

complex control

Assembler Control
m jump
m Conditional jump

m Special comparison instructions
m E.g., on Alpha:
cmple $16,1,51

e Sets register $1 to 1 when
Register $16 <=1

17

Summary

Instruction support for control flow
m Test/Compare instructions modify condition codes

= Branch/Jump instructions can conditionally execute based
on condition code

mand set program counter (%eip) point to some instruction
elsewhere in the program

Next time
m More loop examples
m Switch statements and jump tables

18

