
Machine-Level Programming III:
Control Flow

TopicsTopics
 Condition Codes

 Setting
 Testing

 Control Flow
 If-then-else
 Varieties of Loops

Systems I

2

Controlling program execution
We can nowWe can now generate programs that execute lineargenerate programs that execute linear

sequences of instructionssequences of instructions
 Access registers and storage
 Perform computations

But - what about loops, if-then-else, etc.?But - what about loops, if-then-else, etc.?
Need ISA support for:Need ISA support for:

 Comparing and testing data values
 Directing program control

 Jump to some instruction that isnʼt just the next sequential one
 Do so based on some condition that has been tested

3

Condition Codes
Single Bit RegistersSingle Bit Registers

CF Carry Flag SF Sign Flag
ZF Zero Flag OF Overflow Flag

Implicitly Set By Arithmetic OperationsImplicitly Set By Arithmetic Operations
addl Src,Dest
C analog: t = a + b
 CF set if carry out from most significant bit

Used to detect unsigned overflow
 ZF set if t == 0
 SF set if t < 0
 OF set if twoʼs complement overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

NotNot Set by Set by lealleal instructioninstruction

4

Setting Condition Codes (cont.)

Explicit Setting by Compare InstructionExplicit Setting by Compare Instruction
cmpl Src2,Src1
 cmpl b,a like computing a-b without setting destination
 CF set if carry out from most significant bit

 Used for unsigned comparisons
 ZF set if a == b
 SF set if (a-b) < 0
 OF set if twoʼs complement overflow

(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

5

Setting Condition Codes (cont.)

Explicit Setting by Test instructionExplicit Setting by Test instruction
testl Src2,Src1
 Sets condition codes based on value of Src1 & Src2

 Useful to have one of the operands be a mask
 testl b,a like computing a&b without setting destination
 ZF set when a&b == 0
 SF set when a&b < 0

6

Reading Condition Codes

SetX Condition Description
sete ZF Equal / Zero

setne ~ZF Not Equal / Not Zero

sets SF Negative

setns ~SF Nonnegative

setg ~(SF^OF)&~ZF Greater (Signed)

setge ~(SF^OF) Greater or Equal (Signed)

setl (SF^OF) Less (Signed)

setle (SF^OF)|ZF Less or Equal (Signed)

seta ~CF&~ZF Above (unsigned)

setb CF Below (unsigned)

SetXSetX Instructions Instructions
 Set single byte based on combinations of condition codes

7

Reading Condition Codes (Cont.)
SetXSetX Instructions Instructions

 Set single byte based on
combinations of condition codes

 One of 8 addressable byte registers
 Embedded within first 4 integer

registers
 Does not alter remaining 3 bytes
 Typically use movzbl to finish job

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

%al%ah

%dl%dh

%cl%ch

%bl%bh

int gt (int x, int y)
{
 return x > y;
}

movl 12(%ebp),%eax # eax = y
cmpl %eax,8(%ebp) # Compare x : y
setg %al # al = x > y
movzbl %al,%eax # Zero rest of %eax

Note
inverted
ordering!

Body

8

Jumping

jX Condition Description
jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

jXjX Instructions Instructions
 Jump to different part of code depending on condition codes

9

Conditional Branch Example

int max(int x, int y)
{
 if (x > y)
 return x;
 else
 return y;
}

_max:
pushl %ebp
movl %esp,%ebp

movl 8(%ebp),%edx
movl 12(%ebp),%eax
cmpl %eax,%edx
jle L9
movl %edx,%eax

L9:

movl %ebp,%esp
popl %ebp
ret

Body

Set
Up

Finish

10

Conditional Branch Example (Cont.)

movl 8(%ebp),%edx # edx = x
movl 12(%ebp),%eax # eax = y
cmpl %eax,%edx # x : y
jle L9 # if <= goto L9
movl %edx,%eax # eax = x

L9: # Done:

int goto_max(int x, int y)
{
 int rval = y;
 int ok = (x <= y);
 if (ok)
 goto done;
 rval = x;
done:
 return rval;
}

Skipped when x ≤ y

 C allows “goto” as means
of transferring control
 Closer to machine-level

programming style
 Generally considered bad

coding style

11

C Code
int fact_do
 (int x)
{
 int result = 1;
 do {
 result *= x;
 x = x-1;
 } while (x > 1);
 return result;
}

Goto Version
int fact_goto(int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” Loop Example

 Use backward branch to continue looping
 Only take branch when “while” condition holds

12

Goto Version
int fact_goto
 (int x)
{
 int result = 1;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
 return result;
}

“Do-While” Loop Compilation

RegistersRegisters
%edx x

%eax result

_fact_goto:
pushl %ebp # Setup
movl %esp,%ebp # Setup
movl $1,%eax # eax = 1
movl 8(%ebp),%edx # edx = x

L11:
imull %edx,%eax # result *= x
decl %edx # x--
cmpl $1,%edx # Compare x : 1
jg L11 # if > goto loop

movl %ebp,%esp # Finish
popl %ebp # Finish
ret # Finish

Assembly

13

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” Translation

 Body can be any C statement
Typically compound statement:

 Test is expression returning integer
= 0 interpreted as false ≠0 interpreted as true

{
 Statement1;
 Statement2;
 …
 Statementn;
}

14

C Code
int fact_while
 (int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

First Goto Version
int fact_while_goto
 (int x)
{
 int result = 1;
loop:
 if (!(x > 1))
 goto done;
 result *= x;
 x = x-1;
 goto loop;
done:
 return result;
}

“While” Loop Example #1

 Is this code equivalent to the do-while version?
 Must jump out of loop if test fails

15

C Code
int fact_while(int x)
{
 int result = 1;
 while (x > 1) {
 result *= x;
 x = x-1;
 };
 return result;
}

Second Goto Version
int fact_while_goto2
 (int x)
{
 int result = 1;
 if (!(x > 1))
 goto done;
loop:
 result *= x;
 x = x-1;
 if (x > 1)
 goto loop;
done:
 return result;
}

Actual “While” Loop Translation

 Uses same inner loop
as do-while version

 Guards loop entry with
extra test

16

C Code
while (Test)
 Body

Do-While Version
 if (!Test)
 goto done;
 do
 Body
 while(Test);
done:

General “While” Translation

Goto Version
 if (!Test)
 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

17

Summarizing
C ControlC Control

 if-then-else
 do-while
 while
 switch

Assembler ControlAssembler Control
 jump
 Conditional jump

CompilerCompiler
 Must generate assembly

code to implement more
complex control

Standard TechniquesStandard Techniques
 All loops converted to do-while

form
 Large switch statements use

jump tables

Conditions in CISCConditions in CISC
 CISC machines generally have

condition code registers

Conditions in RISCConditions in RISC
 Use general registers to store

condition information
 Special comparison instructions
 E.g., on Alpha:
cmple $16,1,$1
 Sets register $1 to 1 when

Register $16 <= 1

18

Summary
Instruction support for control flowInstruction support for control flow

 Test/Compare instructions modify condition codes
 Branch/Jump instructions can conditionally execute based

on condition code
 ….and set program counter (%eip) point to some instruction

elsewhere in the program

Next timeNext time
 More loop examples
 Switch statements and jump tables

