
CS378 Assignment 4: Character Language Modeling with RNNs

Due date: Thursday, November 5 at 11:59pm CST

Academic Honesty: Please see the course syllabus1 for information about collaboration in this course.
While you may discuss the assignment with other students, all code you write and your writeup must be
your own!

Goals The primary goal with this assignment is to give you hands-on experience implementing a neural
network language model using recurrent neural networks. Understanding how these neural models work
and building one from scratch will help you understand not just language modeling, but also systems for
many other applications such as machine translation.

Dataset and Code

Please use Python 3.5+ and PyTorch 1.0+ for this project. See Assignment 2 for installation instructions
for PyTorch.

Data The dataset for this paper is the text82 collection. This is a dataset taken from the first 100M
characters of Wikipedia. Only 27 character types are present (lowercase characters and spaces); special
characters are replaced by a single space and numbers are spelled out as individual digits (20 becomes two
zero). A larger version of this benchmark (90M training characters, 5M dev, 5M test) was used in Mikolov
et al. (2012).

Framework code The framework code you are given consists of several files. We will describe these in
the following sections. utils.py should be familiar to you by now.
lm classifier.py contains the driver for Part 1. It calls train rnn classifier, which learns

an RNN classifier model on the classification data. lm.py contains the driver for Part 2, and calls train lm
on the raw text data. models.py contains skeletons in which you will implement these models and their
training procedures.

Part 1: RNNs for Classification (40 points)

In this first part, you will do a simplified version of the language modeling task: binary classification of
fixed-length sequences to predict whether the given sequence is followed by a consonant or a vowel. You
will implement the entire training and evaluation loop for this model.

Data train-vowel-examples.txt and train-consonant-examples.txt each contain 5000
strings of length 20, and dev-vowel-examples.txt and dev-consonant-examples.txt each
contain 500. The task is to predict whether the first letter following each string is a vowel or a consonant.
The consonant file (for both train and test) contains examples where the next letter (in the original text, not
shown) was a consonant, and analogously for the vowel file.

1http://www.cs.utexas.edu/˜gdurrett/courses/fa2020/syllabus.shtml
2Original site: http://mattmahoney.net/dc

1



Getting started Run:

python lm_classifier.py

This loads the data for this part, learns a FrequencyBasedClassifier on the data, and evaluates it.
This classifier gets 71.4% accuracy, where random guessing gets you 50%. lm classifier.py contains
the driver code, and the top of models.py contains the skeletal implementation for this classifier.

Q1 (40 points) Implement an RNN classifier to classify segments as being followed by consonants or
vowels. This will require defining a PyTorch module to do this classification, implementing training of
that module in train rnn classifier, and finally completing the definition of RNNClassifier
appropriately to use this module for classification.

Your final model should get at least 75% accuracy and train in less than 10 minutes on CS lab
machine-equivalent hardware.3 In your report, you should: (1) Describe your model and implemen-
tation. (2) Report accuracy results and timing information. Even if you are not able to get this part fully
working, write up and document as much as you can so we can give appropriate partial credit.

Network structure The inputs to your network will be sequences of character indices. You should first
embed these using a nn.Embedding layer and then feed the resulting tensor into an RNN. Two effective
types of RNNs to use are nn.GRU and nn.LSTM. Make sure you initialize their weights before the start of
training! You can follow the example from lecture, though you may want to use the Glorot initializer instead
(nn.init.xavier uniform ).

You should take the output of the RNN (the last hidden state) and use it for binary classification with
a softmax layer. You can add one or more feedforward layers before the softmax layer if you want. This
classification part is very similar to what you did in Assignment 2. You can make your own nn.Module
that wraps the embedding layer, RNN, and classification layer.

Code structure Once you have your own module implemented, the training and eval loop that wraps them
will look roughly the same as in ffnn example.py and in Assignment 2. First, you need a function to go
from the raw string to a PyTorch tensor of indices. Then loop through those examples, zero your gradients,
pick up an example, compute the loss, run backpropagation, and update parameters with your optimizer.
You should implement this training in train rnn classifier.

Using RNNs LSTMs and GRUs can be a bit trickier to use than feedforward architectures. First, these
expect input tensors of dimension [sequence length, batch size, input size]. You can use the batch first
argument to switch whether the sequence length dimension or batch dimension occurs first. If you’re not
using batching, you’ll want to pad your sentence with a trivial 1 dimension for the batch. unsqueeze
allows you to add trivial dimensions of size 1, and squeeze lets you remove these.

Second, an LSTM takes as input a pair of tensors representing the state, h and c. Each is of size [num
layers * num directions, batch size, hidden size]. To start with, you probably want a 1-layer RNN just
running in the forward direction, so once again you should use unsqueeze to make a 3-tensor with first
dimension length of 1. GRUs are similar but only have one hidden state.

3Our reference implementation can get 76.3% accuracy in 2 minutes and 78.2% in 6 minutes of training with an unoptimized,
unbatched implementation.

2



Tensor manipulation np.asarray can convert lists into numpy arrays easily. torch.from numpy
can convert numpy arrays into PyTorch tensors. torch.FloatTensor(list) can convert from lists
directly to PyTorch tensors. .float() and .int() can be used to cast tensors to different types.

General tips As always, make sure you can overfit a very small training set as an initial test. If not, you
probably have a bug. Then scale up to train on more data and check the development performance of your
model.

Consider using small values for hyperparameters so things train quickly. In particular, with only 27
characters, you can get away with small embedding sizes for these, and small hidden sizes for the RNN may
work better than you think!

Part 2: Implementing a Language Model (60 points)

In this second part, you will implement an RNN language model. This should build heavily off of what you
did for Part 1, though new ingredients will be necessary, particularly during training.

Data For this part, we use the first 100,000 characters of text8 as the training set. The development set
is 500 characters taken from elsewhere in the collection.

Getting started
python lm.py

This loads the data, instantiates a UniformLanguageModel which assigns each character an equal 1
27

probability, and evaluates it on the development set. This model achieves a total log probability of -1644, an
average log probability (per token) of -3.296, and a perplexity of 27. Note that exponentiating the average
log probability gives you 1

27 in this case, which is the inverse of perplexity.
The RNNLanguageModel class you are given has two methods: get next char log probs and

get log prob sequence. The first takes a context and returns the log probability distribution over the
next characters given that context as a numpy vector of length equal to the vocabulary size. The second takes
a whole sequence of characters and a context and returns the log probability of that whole sequence under
the model. You can implement the second just using the first, but that’s computationally wasteful; you can
instead just run a single pass through the RNN and return the aggregated log probability of the sequence.

Q2 (60 points) Implement an RNN language model. This will require: defining a PyTorch module to han-
dle language model prediction, implementing training of that module in train lm, and finally completing
the definition of RNNLanguageModel appropriately to use this module for prediction. Your network
should take indexed characters as input, embed them, put them through an RNN, and make predictions from
the final layer outputs.

Your final model must pass the sanity and normalization checks, get a perplexity value less than
or equal to 7, and train in less than 10 minutes on CS lab machine-equivalent hardware.4 In your
report, you should: (1) Describe your model and implementation. (2) Report accuracy results and
any relevant time information. As with Part 1, even if you are not able to get this part fully working, write
up and document as much as you can so we can give appropriate partial credit.

4Our reference implementation gets a perplexity of 5.44 in about 5 minutes of training. However, this is an unoptimized,
unbatched implementation and you can likely do better.

3



Chunking the data Unlike classification, language modeling can be viewed as a task where the same
network is predicting words at many positions. Your network should process a chunk of characters at a time,
simultaneously predicting the next character at each index in the chunk. You’ll have to decide how you want
to chunk the data. Given a chunk, you can either initialize the RNN state with a zero vector, “burn in” the
RNN by running on a few characters before you begin predicting, or carry over the end state of the RNN to
the next state. These may only make minor differences, though.

Start of sequence In general, the beginning of any sequence is represented to the language model by a
special start-of-sequence token. This means that the inputs and outputs of a language model are slightly
different, since an LM will never output the start-of-sequence character but may need to read it as input. For
simplicity, we are going to overload space and use that as the start-of-sequence character.

Evaluation Unlike past assignments where you are evaluated on correctness of predictions, in this case
your model is evaluated on perplexity and likelihood, which rely on particular values that you report. Your
model should be a correct implementation of a language model. That is, it should be a probability
distribution P (wi|w1, . . . , wi−1). You should be sure to check that your model’s output is indeed a legal
probability distribution over the next word.

Batching Batching across multiple sequences can further increase the speed of training. While you do not
need to do this to complete the assignment, you may find the speedups helpful. As in Assignment 2, you
should be able to do this by increasing the dimension of your tensors by 1, a batch dimension which should
be the first dimension of each tensor. The rest of your code should be largely unchanged. Note that you only
need to apply batching during training, as the two inference methods you’ll implement aren’t set up to pass
you batched data anyway.

Deliverables and Submission

Your submission for this assignment is evaluated primarily on the basis of code and execution. Your
writeup should simply document what you did and report the results you saw.

Submission You should submit the following files to Canvas as a flat file upload (no zip or tgz):

1. A PDF or text file of your answers to the questions

2. models.py. Do not modify or upload any other source files.

Make sure that the following commands work before you submit and you pass the sanity and normaliza-
tion checks for lm.py:

python lm classifier.py --model RNN

python lm.py --model RNN

These commands should run without error and train in the allotted time limits.

4



References

Tomas Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan Cernocký. 2012. Subword
Language Modeling with Neural Networks. In Online preprint.

5


