BERT

- Al2 made ELMo in spring 2018, GPT (transformer-based ELMo) was released in summer 2018, BERT came out October 2018
- Four major changes compared to ELMo:
 - Transformers instead of LSTMs

 - Bidirectional model with "Masked LM" objective instead of standard LM Fine-tune instead of freeze at test time
 - Operates over word pieces (byte pair encoding)

BERT

ELMo reprs look at each direction in isolation; BERT looks at them jointly

A stunning ballet dancer, Copeland is one of the best performers to see live.

BERT

ELMo

- "ballet dancer"
- "ballet dancer/performer"

John

visited Madagascar yesterday

BERT

How to learn a "deeply bidirectional" model? What happens if we just

visited Madagascar yesterday John

You could do this with a "onesided" transformer, but this "twosided" model can cheat

Masked Language Modeling

- BERT formula: take a chunk of text, mask out 15% of the tokens, and try to predict them

How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling

Devlin et al. (2019)

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM + next sentence prediction

Next "Sentence" Prediction

BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads. Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that gets pre-trained on a large corpus

Input

Token

Segment

Position

Devlin et al. (2019)

- Artificial [CLS] token is used as the vector to do classification from
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

What can BERT do?

Devlin et al. (2019)

- How does BERT model this sentence pair stuff?
- Transformers can capture interactions between the two sentences, even though the NSP objective doesn't really cause this to happen

What can BERT do?

What can BERT NOT do?

BERT cannot generate text (at least not in an obvious way)

- Can fill in MASK tokens, but can't generate left-to-right (well, you could put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lang. inference MNLI SICK-E		Semantic textual sim SICK-R MRPC		milarity STS-B
Skip-thoughts		_	81.8	62.9	_	86.6	75.8	71.8
ELMo		91.7	91.8	79.6	86.3	86.1	76.0	75.9
	٨	91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = -$	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
BERT-base		92.2	93.0	84.6	84.8	86.4	78.1	82.9
	٨	92.4	93.5	84.6	85.8	88.7	84.8	87.1
	$\Delta = -$	0.2	0.5	0.0	1.0	2.3	6.7	4.2

Fine-tuning BERT

BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)

Corpus	Train	Test	Task	Metrics	Domain				
Single-Sentence Tasks									
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
Similarity and Paraphrase Tasks									
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions				
Inference Tasks									
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books				

Evaluation: GLUE

Wang et al. (2019)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Ave
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81

- Huge improvements over prior work (even compared to ELMo)
- imply sentence B), paraphrase detection

Results

Effective at "sentence pair" tasks: textual entailment (does sentence A

Devlin et al. (2018)

"Robustly optimized BERT" Mo Ro 160GB of data instead of 16 GB BE Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

New training + more data = better performance

RoBERTa

odel	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	
BERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	
ERT _{LARGE}			_			
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	

Liu et al. (2019)

93.7

Using BERT

architectures implemented, weights available

Lots of standard models...

Model architectures

Transformers currently provides the following NLU/NLG architectures:

- 1. **BERT** (from Google) released with the paper **BERT**: **Pre-training of Deer** Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist
- 2. GPT (from OpenAI) released with the paper Improving Language Under Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- 3. GPT-2 (from OpenAI) released with the paper Language Models are Un Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskev
- 4. Transformer-XL (from Google/CMU) released with the paper Transform Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime
- 5. XLNet (from Google/CMU) released with the paper XLNet: Generalized Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbon
- 6. XLM (from Facebook) released together with the paper Cross-lingual Li and Alexis Conneau.
- 7. RoBERTa (from Facebook), released together with the paper a Robustly

Huggingface Transformers: big open-source library with most pre-trained

and "community models"

What does BERT learn?

Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)

What does BERT learn?

Head 8-10

Still way worse than what supervised systems can do, but interesting that this is learned organically

Head 8-11

Head 5-4

Clark et al. (2019)

