CS 378 Lecture 7: Word Embeddings
[add pronouns to Zoom]
Announcements

- Al out
- Readings updated (bolding)
- Mid-semester survey
- Download A2 code for this lecture

Today

- Intro to word embeddings
- Explore embeddings
- Skip-gram: mode +training
- Revisit DINs

Word Embeddings
Movie was good $\rightarrow\left[\begin{array}{ccc}1 & 1 & 1 . . .\end{array}\right]$

$$
\begin{aligned}
=\left[\begin{array}{c}
1 \\
\text { movie }
\end{array}\right] & +\left[-\operatorname{good}^{\text {movie }} 1\right] \\
& +[-]
\end{aligned}
$$

Each word is a $|V|$-保 vector $w / a \quad$ single 1
film is great
movie was good \Rightarrow dot prod $=0$
Word embs: low-dimensional representation (50-300)
that capture similarity

Distributional Hypothesis
JR Firth 1957: "You shall know a word by the company it Keeps"

I watched the movie
I watched the film
The film inspired me
The movie inspired me
movie and firm can show up in similar contexts

Are movie +film always substitutable? polysemy: one ward has multiple senses
Mikolov 2013: word 2vec
Learn word + context vectors for each word Attempt to predict context given ward

Embedding properties $\operatorname{sim}($ good, bad $) \approx 0.8$

Skip-gram
Input: corpus of sentences Output: \bar{v}_{w}, \bar{C}_{w} for each word w in the vocab
(what people use: $\bar{v}_{w} O R \bar{c}_{w}$ or $\bar{v}_{w}+\bar{c}_{w}$)
Hyperparameters: dimension d window size K

Let $k=1$
The film inspired
look k wards in each (film, The) direction

$$
V=\text { vocab }
$$

Skip-gram model

$$
\begin{aligned}
& \text { Skip-gram model } \\
& \begin{array}{l}
P(\text { context }=y(\text { word }=x) \\
\in V
\end{array} \sum_{y^{\prime} \in V} e^{\bar{v}_{x} \cdot \bar{c}_{y}}
\end{aligned}
$$

prams: vectors $\frac{\bar{V}}{\bar{C}} \quad|V| \times d$

$$
\bar{c} \quad|V| \times d
$$

Training Take our corpus Get (x, y) pairs
Maximize $\sum_{(x, y)} \log P($ context $=y /$ word $=x)$
Randomly initialize \bar{v}, \bar{c}, use $S G D$

$k=3$: go 3 out, eta.

$$
k=2
$$

10 pairs as training data

Ex $\quad \begin{aligned} \text { Corpus } & =I \text { saw } \\ \text { vocab } & =\{I \text {, saw }\}\end{aligned} \quad k=1$
Assume $\bar{V}_{I}=[1,0] \quad \bar{V}_{\text {sam }}=[0,1]$
$\xrightarrow[\bar{v}_{\text {san }} \uparrow \overline{\bar{c}}_{I}]{\bar{\tau}_{\text {san }}}$
(1) $\bar{C}_{I}=[0,1]$
$\bar{C}_{\text {saw }}=[1,0]$

$$
P\left(\text { context } \left\lvert\, \begin{array}{c}
\text { word d } \\
\text { saw }
\end{array}\right.\right)=
$$

$$
3 / 1+3=3 / 4
$$

$$
\begin{aligned}
& \text { (2) }\left(\underset{\text { san }}{\text { wand }}=\frac{I}{I} \text { context }=\frac{\text { ser }}{I}\right) \notin \\
& \bar{c}_{\text {ser }}=[100,0] \quad \bar{c}_{I}=[0,100] \\
& \frac{e^{100}}{1+e^{100}}=0.99999 \ldots
\end{aligned}
$$

Maximizing likelihood is "impossible"! (saw, I) cant assign prob 1 to (saw, you) each
skip-gram is slow for each example: O(IVI-d) multiplies

