

	Results: WMT English-French		
	12M sentence pairs		
	Classic PBMT system: ~33 BLEU, uses additional target-language data		
	PBMT + rerank w/LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)		
Neural MT	Sutskever+ (2014) seq2seq single: 30.6 BLEU (input reversed)		
	Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU		
	Luong+ (2015) seq2seq ensemble with attention and rare word handling: 37.5 BLEU		
	But English-French is a really easy language pair and there's tons of data for it! Does this approach work for anything harder?		

Results: WMT English-German	MT Examples
 4.5M sentence pairs Classic phrase-based system: 20.7 BLEU 	src In einem Interview sagte Bloom jedoch , dass er und Kerr sich noch immer lieben . ref However , in an interview , Bloom has said that he and Kerr still love each other . best In an interview , however , Bloom said that he and Kerr still love . base However , in an interview , Bloom said that he and Tina were still <uk> .</uk>
Luong+ (2014) seq2seq: 14 BLEU Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU Not nearly as good in absolute BLEU, but BLEU scores aren't really	 best = with attention, base = no attention NMT systems can hallucinate words, especially when not using attention
 comparable across languages French, Spanish = easiest German, Czech = harder 	— phrase-based doesn't do this
Japanese, Russian = hard (grammatically different, lots of morphology)	Luong et al. (2015)

MT Examp	es	Handling Rare Words	
src Wegen der von Berlin und der Europäischen Zentra Verbindung mit der Zwangsjacke, in die die jeweilig ten an der gemeinsamen Währung genötigt wird, sind Europa sei zu weit gegangen	lbank verhängten strengen Sparpolitik in e nationale Wirtschaft durch das Festhal- viele Menschen der Ansicht, das Projekt	 Words are a difficult unit to work with: copying can be word vocabularies get very large 	cumbersome,
ref The <i>austerity imposed by Berlin and the European Co</i>	entral Bank, coupled with the straitjacket	Character-level models don't work well	
to think Project Europe has gone too far .	is common currency, has led many people	Compromise solution: use thousands of "word pieces"	' (which may be
best Because of the strict <i>austerity measures imposed by</i> connection with the straitjacket in which the respective	Berlin and the European Central Bank in e national economy is forced to adhere to	full words but may also be parts of words)	(union may be
the common currency, many people believe that the E base Because of the pressure imposed by the European Cer	ropean project has gone too far .	Input: the eco tax port i co in Po nt - de - Bu is	
with the strict austerity imposed on the national eco	nomy in the face of the single currency,		
many people believe that the European project has gon	e too far .	Output: _le _port ique _éco taxe _de _Pont - de - Bui s	
best = with attention, base = no attention		Can achieve transliteration with this, subword structu	re makes some
	Luong et al. (2015)	translations easier to achieve	Sennrich et al. (202

		BL	EU
ID	system	100k	3.2M
1	phrase-based SMT	15.87 ± 0.19	26.60 ± 0.00
2	NMT baseline	0.00 ± 0.00	25.70 ± 0.33
3	2 + "mainstream improvements" (dropout, tied embeddings, layer normalization, bideep RNN, label smoothing)	7.20 ± 0.62	31.93 ± 0.05
4	3 + reduce BPE vocabulary (14k \rightarrow 2k symbols)	12.10 ± 0.16	-
5	4 + reduce batch size (4k \rightarrow 1k tokens)	12.40 ± 0.08	31.97 ± 0.26
6	5 + lexical model	13.03 ± 0.49	31.80 ± 0.22
7	5 + aggressive (word) dropout	15.87 ± 0.09	$\textbf{33.60} \pm 0.14$
8	7 + other hyperparameter tuning (learning rate, model depth, label smoothing rate)	$\textbf{16.57} \pm 0.26$	32.80 ± 0.08
9	8 + lexical model	16.10 ± 0.29	33.30 ± 0.08

Frontiers in	n MT: Low-Resource	
 Particular interest in deployin parallel data 	ng MT systems for languages with little or no Burmese. Indonesian. Turkish	
 BPE allows us to transfer models even without training on a specific language 	BLEUTransfer $My \rightarrow En Id \rightarrow En Tr \rightarrow En$ baseline (no transfer)4.020.619.0transfer, train17.827.420.3transfer, train, reset emb, train13.325.020.0transfer, train, reset inner, train3.618.019.1	Transformers for MT
 Pre-trained models can help further 	Table 3: Investigating the model's capability to restore its quality if we reset the parameters. We use $En \rightarrow De$ as the parent.	
	Aji et al. (2020)	

Properties of Self-Attention				
Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length	
Self-Attention	$O(n^2 \cdot d)$	O(1)	<i>O</i> (1)	
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)	
Convolutional	$O(\vec{k}\cdot n\cdot \vec{d}^2)$	O(1)	$O(log_k(n))$	
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)	

- n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- ▶ Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other

Vaswani et al. (2017)

Transformers				Visualization
	BLEU			_
Model	EN-DE	EN-FR		₿ 2
ByteNet [18]	23.75			a da
Deep-Att + PosUnk [39]		39.2		the second secon
GNMT + RL [38]	24.6	39.92		a i i i i i i i i i i i i i i i i i i i
ConvS2S [9]	25.16	40.46		
MoE [32]	26.03	40.56		
Deep-Att + PosUnk Ensemble [39	<u>ן</u>	40.4		
GNMT + RL Ensemble [38]	26.30	41.16		
ConvS2S Ensemble [9]	26.36	41.29		
Transformer (base model)	27.3	38.1		
Transformer (big)	28.4	41.8		this is a spirituation of the second
 Big = 6 layers, 1000 dim for each token, 16 heads, 			governmenter augusti menter augusti m	
base = 6 layers + other params halved		Vaswani et al. (2017)	Vaswani et al. (2017)	

Takeaways

- Transformers are powerful seq2seq models, can also replace RNN encoders
- When you have massive datasets like for machine translation, transformers work very well
- Next: pre-training with transformer language models

۲