CS 371 N Lecture 10 LM 2: Self-attention, Transformers Amouncements -42 due -Bias in embeddings response due
-A3 out, due in 2 weeks Recap Language models $P(\sqrt{w}) = \prod_{i>1} P(w_{i} | w_{1} \cdots w_{i-1})$ $n -$ gran LMs : $\prod_{i=1}^{l} P(w_i | w_{i-h+i} - w_{i-l})$ $Bigran: P(\text{w}_{i}|\text{w}_{i-1})$ => Explicitly model w/categorical

 v^{the} Estimate this by Counting & normalizing ↳ $\overline{p(cethe)}$

Neural Cms :

DANS §P→ . . . [→] predict \sum $\begin{picture}(180,10) \put(10,10){\line(1,0){155}} \put(10,10$

FFNNs that are "position sensitive"

Only Consider $n-1$ words ~- ← <u>|</u>| م - ☐ [→] predict $\text{Cancat} (\square \square \square)$

RNNs Encode a sequence by repeatedly
applying a "cell" to each input and passing a hidlen state to
the next cell Predict $w_5|w_6w_7$

What can this model do? Fix ample: add each with this Etample: only add with This it it has a certain value

Why are RNNS good ? -Sale to long sequences - " Complex enough " to fit hard tasks why are RNNS bad ? .
— They "friget" over long strings Imagine we're generating a story Sally looked around and saw a field. she went here . Someone said vu
V H \mathcal{C} M_{H}

Ex of RNN : $\overline{h}_{i\cdot l}$ $\frac{1}{n}$ $\frac{1}{\sqrt{2}}$

"API" for our neural nets RNN: $\frac{\overline{h}_1}{\sqrt{\frac{h_1}{h_1} + \frac{h_2}{h_2} + \frac{h_3}{h_3}}}$ w_1 w_2 w_3 $\overline{h_3}$ = encode (w_1, w_2, w_3) $\overline{h_3} = \frac{u}{Can+Ext}$ -sensitive encoling" $\left(w_3|w_1\right)$ w_2 Layers are stackable. $\begin{array}{c}\n\overline{x}_{1} & \overline{x}_{2} \\
\overline{1} & \overline{1} \\
\end{array}$ RNN $\sqrt{\frac{P_{NN}}{1\%}}$ w_{1} w_{2} w_{3} Transformer: obeys the same API.

Running example : suppose we have sequences of As and Bs of length ⁴ it all $As \rightarrow next$ is A if any $\beta \rightarrow$ next is β

AAAAA predict next char B A BB B by scanning the sequence BAAAB for ^B (a little like Sally)

Attention is a method at $\begin{array}{ccccc} \mathcal{B} & \mathcal{A} & \mathcal{A} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{C} & \math$ model 's context to find info

Embeddings . . ey of the sequence Keys K_1 ... K_{ν} (equals e_{ι} ... e_{ν} for now) Query ^q representing what we want to find

Assume for A we have $e = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ B we have $e = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ A A B ^A $q=\begin{bmatrix} 0\ 1 \end{bmatrix}$ because we want to find $\frac{1}{5}$ Attention computes a distribution over the keys given the query S_{0} al: $\begin{array}{c|c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\q$

Steps (1) Compute score for each key given query $S_{\overline{1}}=$ $k_{i}T_{q} = \begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $(A \cap A \cap B \cap A = \emptyset = \emptyset)$ ② Softmax scores to get probs $a = 5$ oftmax $(5) =$ $\binom{1}{6}$ $\binom{1}{6}$ $\binom{1}{2}$ $\binom{1}{6}$ A ssume $e = 3$ 0 [→] e.IO#e:eo--- to 9- [→] ¥ ③ Compute output: Output - 2 \overline{e} ; weighted sum of ei $=$ $\frac{1}{6}$ ' $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ 0 \end{pmatrix} +$ ' $\chi_{\mathcal{L}}\left[\begin{array}{c} C \\ C \end{array}\right] + \frac{1}{6}\left[\begin{array}{c} C \\ C \end{array}\right]$ $=$ $\left[\begin{array}{cc} V2 & V2 \end{array} \right]$

Compare to DAN avg $\left(\begin{array}{cc} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{array} \right) =$ - $\begin{bmatrix} 3/4 \\ 1/4 \end{bmatrix}$ so attention is " biased " towards B

What If we set $9=6-10$ What new scores/ x do we get? $Scores$ $(0 0 0 0$] α \approx [σ 0 σ 0 σ 0 σ o utput \approx $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Decouple our keys-quey from enleddings $Embedding$ metrix $E = \begin{vmatrix} 10 \\ 0 \\ 0 \end{vmatrix}$ Matrices W^K and Wa
"target" is B. To compute scores: $(EW^k)(W^{\&}e)$ Suppose WK = identity [00] S_{oppose} $w^a = 10$ I $[v^a]$ This is equivalent to what we $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ 472 2×1

Self-attention every word becomes a query executed Sequence et - le n e_i is a grery => new value Map $e_i - e_n \rightarrow e_i - e_n$ attention E= seg les x d matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $K:$ seg lan x d = EW^{K} Q : seq len xd = EW^Q

A A B A

Scores S = QK
Scalen Seqlenxd dx seqlen
x seqlen Seqlenxd dx seqlen

 $S_{ij} = C_{i} (ihrow of Q)$
 $-K_{j} (jthrow of K)$

 $S = \begin{bmatrix} 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 1 \end{bmatrix}$ all pairs of k_s and
 g_s
 S uppose $E = K = Q$

Version 2: let's use $w^a = [1]$

 $W^{K} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$ Compute K, Q Compute S

 $Q = E$ $S = \begin{bmatrix} 10 & 10 & 0 & 10 \\ 10 & 10 & 0 & 16 \\ 0 & 0 & 10 & 0 \\ 10 & 10 & 0 & 10 \end{bmatrix}$ $K=10E$ IO EET In reality: $w^{\alpha} \neq \mathbb{I}$ WQ is some other weights
helping us find related stuff This is quadratic