Using Unlabeled Out-Of-Domain Data to Improve Question Answering

Abstract

Our goal is to use unsupervised learning to
improve the baseline of question-answering
on the BioASQ dataset. We train our model
on labeled training data from BioASQ, as
well as unlabeled data from SQuAD (a sig-
nificantly larger dataset), and we use a form
of data augmentation by applying Gaussian
noise to the word embedding input vectors to
have the model obtain a more generalizable,
domain-invariant underlying feature represen-
tation that is smooth over changes in the in-
put space. Using this unsupervised loss term
and optimizing only hyperparameters relevant
to this loss term, we were able to get an ap-
proximate 6 point boost for EM and a 5.5
point boost for the F1 score on average on the
BioASQ development set, although the mod-
els tend not to generalize very well to the
unlabeled SQuAD examples used in unsuper-
vised training, and can actually degrade per-
formance on SQuAD if too much noise is used.

1 Introduction

When training a model on a small set of data,
the model may have a tendency to overfit without
developing features that encode a general under-
standing of the underlying data. Models trained on
a domain from a single source tend not to general-
ize conclusions that are applicable to other sources
(Desai et al., 2019).

Data augmentation artificially increases the
amount of training data available without having
to hand label more data, which is often expensive.
This is especially hard to do in Natural Language
settings because it is hard to perturb discrete words
in a way that still preserves meaning (Zhang and
Yang, 2018).

By leveraging additional sources of unlabeled
data, and introducing a loss term that encourages
the model to learn features invariant to noise in

the unlabeled data, we hope to train a model that
learns robust, domain-invariant features that ends
up performing better on the dataset it was trained
for than training without the proposed unsuper-
vised loss term. By training on the unlabeled
dataset, we will get features that are smooth over
changes in the input of the unlabeled dataset do-
main, meaning that the features should overfit less.
Ideally, leveraging this larger source of additional
data (despite not using the labels) will give the
model the training signal of a much larger dataset,
which will lead to significantly improved results.

We use a loss term as described in (Xie et al.,
2020), which augments an example of unlabeled
data, runs both the data and perturbed data through
the model, and minimizes a divergence metric (as
L1 or MSE Loss) between the model’s predictions
for the data and perturbed data. This loss term
therefore encourages the model to learn features
that is not sensitive to applying noise to the data,
which will hopefully be more robust.

While adjusting discrete words and preserving
meaning is difficult, especially in the question-
answering setting where we need to maintain a
direct relationship between the question and span
texts, we can instead perturb unlabeled data by ap-
plying noise to the continuous word embeddings
generated by the data. We used this idea to create
our loss term and train our model.

2 Approach

2.1 Data Sources

Because we only had one labeled dataset for
BioASQ, we decided to split this dataset into a
training set as well as a test set, with 60% of the
overall data as training, and 40% as the test set.
For the unsupervised learning, we used the train-
ing data of the SQuAD dataset, but without the
labels. Our overall training data thus consists of



both labeled data from BioASQ, as well as unla-
beled data from SQuAD.

2.2 Unsupervised Loss Term

After obtaining the embeddings of both the ques-
tion and passage, we add on some Gaussian noise,
scaled by a hyperparameter constant. To obtain the
unsupervised loss term, we run our model on both
the normal embeddings as well as the perturbed
embeddings, and run some divergence metric on
the difference between the two. Specifically, rep-
resenting the model as f, the original input as =z,
the perturbed input as 2/, and the divergence met-
ric as d, we add on d(f(x), f(2')) as the unsuper-
vised loss term. The overall loss is the sum of the
supervised loss and the unsupervised loss, where
the unsupervised loss is scaled by a hyperparame-
ter.

2.3 Hyperparameters

We varied the weight of this loss term (how much
the unsupervised loss contributes to the overall
loss), the scaling constant of the Gaussian noise
we applied to the embedding vectors (how large
our perturbation to embedding vectors are), and
the specific divergence metric (L1 vs MSE Loss)
used to calculate the unsupervised loss term.

2.4 Experiments

We initially trained the baseline model with the
default settings of the given starter code to obtain
a baseline to compare with our results. The de-
fault parameters included a hidden dimension of
size 128 with a bidirectional LSTM. This baseline
model was trained on the BioASQ training set.
After implementing the unsupervised loss, we
did a grid search over a variety of different hyper-
parameter values to try to determine optimal set-
tings for the model relating to the unsupervised
loss term, and attempted to measure the improve-
ment between the models trained using the loss
term and the baseline model with no unsupervised
loss term. Specifically, we trained models weight-
ing the unsupervised loss term at 0.05,0.5,5.0,
scaling the Gaussian noise by 0.1,1.0,10.0, and
trying L1 Loss versus MSE Loss as the diver-
gence metric for the unsupervised loss term. We
trained 3 models for each of the 18 possible set-
tings of each of the hyperparameters and evaluated
the results on our generated BioASQ Develop-
ment dataset and the SQuAD Development dataset
(to see if the model could learn to generalize to

the SQuAD dataset without explicitly seeing any
SQuAD labels). In our results setting, we present
the average EM and F1 of the models trained, with
the specific results for each model run in the ap-
pendix.

We ended up running a few auxiliary experi-
ments to further explain the results we saw (specif-
ically running training but reusing the training set
examples without labels for the unsupervised loss
term instead of a disjoint domain dataset), which
are further explained in the following section.

3 Results

First, to establish a baseline, we ran the default
training for the baseline model with a hidden size
of 128 and had an average EM of 54.82 and an
average F1 of 63.17.

Here, the results using MSE loss are shown in
Tables 1 and 2. The results using L1 loss are
shown in Tables 3 and 4.

Noise ‘ Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 54.99 5526 56.75
1.0 57.59 59.36 60.85
10.0 57.14 59.13 56.81

Table 1: Average EM on BioASQ using MSE Loss

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 63.50 63.54 64.98
1.0 65.35 67.54 68.68
10.0 64.96 67.26 64.23

Table 2: Average F1 on BioASQ using MSE Loss

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 51.55 52.88 54.04
1.0 57.81 60.19 59.35
10.0 56.98 56.20 54.98

Table 3: Average EM on BioASQ using L1 Loss

In general, having a noise magnitude of 0.1
seems to have a lower EM and F1 than noise mag-
nitudes 1.0 and 10.0. The values for noise magni-
tude of 0.1 are also close to the original base line
of EM 54.82 and F1 of 63.17, which suggests that



Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 59.90 60.85 63.42
1.0 64.74 67.71 68.02
10.0 65.54 6344 6294

Table 4: Average F1 on BioASQ using L1 Loss

a very tiny change in our embeddings for the unsu-
pervised loss term does not change the results very
much.

In most cases, having a noise magnitude of
1.0 seems to out-perform the noise magnitude of
10.0 in both EM and F1 as well, though not as
much of a change compared to noise magnitude
0.1. We initially predicted that having a high
noise magnitude of 10.0 would lead to signif-
icantly worse performance because applying so
much noise would likely significantly alter the em-
beddings and would cause them to map to an ex-
ample with a completely different meaning. How-
ever, it seems that the performance on the BioASQ
Development dataset did not degrade nearly as
much as expected, and the smoothness over the
noisy SQuAD examples helped the model to learn
a better representation for BioASQ question an-
swering, on average.

For MSE Loss and noise magnitude 0.1 or 1.0,
having loss weight as 5.0 seemed to have the best
performance. On the other hand, for noise mag-
nitude 10.0, having loss weight as 1.0 seemed to
have the best performance. As for L1 Loss, the
best performance alternates between loss weight
0.5 and 5.0. On average, the models trained with
the unsupervised loss term calculated with MSE
Loss did slightly better than the models trained
with the unsupervised loss term calculated with L1
Loss, although the models trained with the best
combination of hyperparameters but different di-
vergence metrics were still comparable (both were
able to reach EM =~ 59 — 60 with F1 =~ 68).

Noise Loss Weight
Magnitude | 0.05 05 5.0
0.1 265 246 1.26
1.0 0.97 0.60 0.71
10.0 0.63 0.51 0.58

Table 5: Average EM on SQuAD using MSE Loss

In addition, we wanted to see how our model,
trained with labels from BioASQ, would perform

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 8.02 7.63 4.5
1.0 543 4.02 4.84
10.0 534 396 4.25

Table 6: Average F1 on SQuAD using MSE Loss

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 2.69 254 146
1.0 1.68 0.76 0.69
10.0 1.09 0.57 0.62

Table 7: Average EM on SQuUAD using L1 Loss

Noise Loss Weight
Magnitude | 0.05 05 5.0
0.1 7.81 8.04 6.13
1.0 7.19 497 4.95
10.0 6.28 4.20 4.01

Table 8: Average F1 on SQuAD using L1 Loss

on the SQuUAD development set, even though our
model was not trained on any labeled SQuAD
data. Our results are in Tables 5,6,7, and 8. We
performed three trials over the same hyperparam-
eters as before (noise magnitude, loss weight, and
type of loss). Overall, the average EM and F1
values are low. This is understandable, since our
model has never seen any labels for SQuAD, but it
was unfortunate that the model’s performance was
still so poor. Initially, we thought that it either did
not learn features that are fully generalizable to the
SQuAD dataset or did not have its weights tuned to
the specific domain. We believed that the poor per-
formance is a result of being unable to deal with
unseen words not evident in the BioASQ dataset,
because the unsupervised loss term doesn’t pro-
vide enough of a signal to figure out what to do
with these unknown words without access to the
unsupervised dataset labels.

However, upon further analysis, we came to
some new conclusions. Interestingly, the trained
model performance paradoxically degraded on the
SQuAD set the higher that we set the loss weight
term, which is strange because placing more em-
phasis on these training examples should lead to
more focus and better performance for the unsu-
pervised data. We believed that this was likely be-
cause the noise that we applied to the SQuAD data



was large enough in magnitude that the perturbed
embeddings actually represented an example with
significantly different meaning than the example
without the perturbation. Because the model isn’t
incentivized to get the SQuAD answers correct (as
it does not see the labels), it does not generalize
well to the SQuAD dataset. In fact, it does worse
because it learns to treat SQuAD examples with
different meaning identically by seeking to mini-
mize the divergence between the original and per-
turbed examples.

To test this hypothesis, we used unsupervised
training data from BioASQ (as opposed to un-
supervised training data from SQuAD), reusing
our training data to calculate the unsupervised
loss term. Ideally, if our hypothesis was cor-
rect, we would see a much poorer performance
in the BioASQ development set as the loss term
and noise magnitude increased. As expected by
the hypothesis, the results suggest that the model
performs well when noise magnitude is about
0.1, while it performs significantly worse than the
baseline when the noise magnitudes are 1.0 and
10.0 (with average EM dropping to mid 40’s). See
Tables 9, 10, 11, and 12.

It seems that applying only a small perturbation
(small noise magnitude) helps the model be invari-
ant to small changes, while using large changes
within the same dataset forces the model to see
very different examples as being the same, result-
ing in poor performance. Although we don’t see a
domain adaptation benefit to using a different do-
main for the unsupervised loss term, it does help
the model to improve without being so sensitive to
tuning this loss term because higher magnitudes of
the loss term and noise magnitude will mainly de-
grade performance on the unsupervised set, rather
than the specific set that the model is training on,
as evidenced by our data.

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 55.65 5847 56.64
1.0 55.81 59.63 45.18
10.0 56.98 57.64 43.69

Table 9: Average EM on BioASQ using MSE Loss,
unsupervised loss term on BioASQ

Throughout our data, our best performing
model on the BioASQ development dataset was
trained with a loss weight of 0.5 and a noise mag-

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 63.62 65.55 65.62
1.0 63.47 66.22 54.88
10.0 64.20 63.84 53.38

Table 10: Average F1 on BioASQ using MSE Loss,
unsupervised loss term on BioASQ

Noise ‘ Loss Weight
Magnitude | 005 05 5.0
0.1 56.31 61.79 62.79

1.0 50.5 51.83 43.02
10.0 53.65 55.81 42.19

Table 11: Average EM on BioASQ using L1 Loss, un-
supervised loss term on BioASQ

Noise Loss Weight
Magnitude | 0.05 0.5 5.0
0.1 63.93 69.85 69.53
1.0 59.62 61.35 53.72
10.0 634 62.62 51.73

Table 12: Average F1 on BioASQ using L1 Loss, un-
supervised loss term on BioASQ

nitude of 1.0, with an EM of 66.61 and a F1 Score
of 73.02. Unfortunately, this model was overwrit-
ten by further tests, but we were able to train a
similar performing model (using a loss weight of
5.0 and a noise magnitude of 1.0) with an EM of
64.62 and an F1 Score of 71.88, which we have in-
cluded in our submission as best_model.pt, which
gives an improvement of about 10 points of EM
and 8.5 points of F1 compared to the average base-
line. Given that we’re cherry picking the best re-
sult based on our development set optimizations,
it’s likely that this model overfits to our choice of
development set, but we thought it’d be good to
include the best model that we trained to give an
idea of the explored techniques’ full potential.

4 Conclusions

Overall, the explored technique seems to provide
concrete advantages for the Question Answering
task. We were able to see an average EM increase
of about 6 points and an average F1 increase of
about 5.515 points given our best setting of hyper-
parameters involving the unsupervised loss term
and keeping everything else constant. We think
that this term helps the model because it helps the



model to learn smoother features that are more in-
variant to noise overall.

However, while seeing the SQuAD dataset
seems to help the model learn a good feature set
that is invariant to noise in the SQuAD domain,
it does not seem to improve performance on the
dataset where labels are not provided, and can ac-
tually degrade performance if the noise magnitude
is set to a high constant. We believe that it is likely
because while the model has a feature set that is
invariant to noise in the SQuAD domain, because
it does not see the SQuAD data labels and does not
explicitly train to labels (just the canonical repre-
sentation), it does not learn how to best use the
features to make predictions in the SQuAD dataset
because the weights are only explicitly tuned for
BioASQ. For higher noise magnitudes, the model
learns to treat perturbed examples of the SQuAD
dataset identically to the original example, when
in reality this assumption degrades performance
and leads to the trends evidenced in our data. An
interesting future extension might be using trans-
fer learning with different datasets to see if the
smooth features encouraged by the unsupervised
loss term translate to success in different domains.

Acknowledgments

We’d like to thank Dr. Durrett and the TAs for
running such a great and helpful NLP class!

References

Shrey Desai, Barea Sinno, Alex Rosenfeld, and
Junyi Jessy Li. 2019. Adaptive ensembling: Unsu-
pervised domain adaptation for political document
analysis. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Process-
ing, pages 4718—4730.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang
Luong, and Quoc V. Le. 2020. Unsupervised
data augmentation for consistency training. ArXiv,
arXiv:1904.12848v6.

Dongxu Zhang and Zhichao Yang. 2018. Word embed-
ding perturbation for sentence classification. ArXiv,
abs/1804.08166.


https://www.aclweb.org/anthology/D19-1478.pdf
https://www.aclweb.org/anthology/D19-1478.pdf
https://www.aclweb.org/anthology/D19-1478.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1804.08166.pdf
https://arxiv.org/pdf/1804.08166.pdf

