Self-Attention

> Self-attention: builds on the idea of attention. Every word in a sequence
is both a key and a query simultaneously

Q: seq len x d matrix (d = embedding dimension = 2 for these slides)

K: seq len x d matrix

Wa = 8 1 no matter what the value is, we’re going to look for Bs
10 O
K — {4 ’)
W 0 10 booster” as before

Note: there are many ways to set up these weights that will be equivalent
to this

Self-Attention

10 0 1 10 0
Q = K =
-_ | 10 V=01 Y= 0 10
01

10

Self-Attention (Vaswani et al.)

QK"
on

Q=EWQ K=EWK, V=EWY

Attention(Q, K,V) = softmax(

)V

> Normalizing by /d;. helps control the scale of the softmax, makes it less
peaked

> This is just one head of self-attention — produce multiple heads via
randomly initialize parameter matrices (more in a bit)

> What does self-attention produce?
>~ Square attention matrix * input = same dimension as the input.

> Computes a contextualized encoding for each word, preserving the

length of the sequence
Vaswani et al. (2017)

Self-Attention (Alammar)

Alammar, The Illlustrated Transformer

Input Thinking Machines

Embedding X X2

Queries q1 g2 we
Keys

Values V V> WV

Self-Attention (Alammar)

Alammar, The lllustrated Transformer

sent len x sent len (attn for

X
|l

each word to each other)

Q) T

softmax()

sent len x hidden dim

X : Z is a weighted combination of V rows

Attention Maps

>~ Example visualization of heir average albedo
attention matrix A (from
assignment)

- - D =

> Each row: distribution over
what that token attends to.
E.g., the first “v” attends very

heavily to itself (bright yellow
box)

M O U = =

> This only depicts a single head
of self-attention. Recall there
are many heads and many
layers, and much of the
computation happens in FFNNs

Properties of Self-Attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n

Convolutional O(k-n-d?*) O(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

> n =sentence length, d = hidden dim, k = kernel size, r = restricted
neighborhood size

> Quadratic complexity, but O(1) sequential operations (not linear like
in RNNs) and O(1) “path” for words to inform each other

Vaswani et al. (2017)

