Skip-Gram

» Predict each word of context from word in turn, theédogé pit the man
up to distance k e

‘ gold = dog
Multiply
I P(w'|lw) = softmax(We(w))
bit

» Another training example: bit -> the

» Parameters: d x |V| word vectors, |V| x d context vectors (stacked into
a matrix W)

» Why skip-gram? With window size >1, we predict a context word

skipping over intermediate words
Mikolov et al. (2013)

Continuous Bag-of-words

» Predict word from multiple words of context

d-dimensional)
dog I word embeddings

gold label = bit,

Multiply no manual labeling
O I required!

I sized size |V|xd
the
P(w|w_1,w,1) = softmax (W (c(w_1) + c¢(wy1)))

» Parameters: d x |V| (one d-length context vector per voc word),
V| x d word vectors (in matrix W)

Mikolov et al. (2013)

Hierarchical Softmax

CBOW: P(w|w_1,ws1) = softmax (W (c(w_1) + c(wy1)))
Skip-gram: P(w'|w) = softmax(We(w))

» Matmul + softmax over V] is very slow to compute for both techniques

‘ E » Huffman encode vocabulary,
use binary
E classifiers to decide which
branch to take
ghe » log(|V|) binary decisions
» Standard softmax: » Hierarchical softmax:
W‘ ZOt products of log(|V]) dot products of size d,
Size

V| x d parameters

Mnih and Hinton (2008)

Skip-gram with Negative Sampling

» Are there alternative ways to learn vectors while avoiding O(|V|) term?

» Take (word, context) pairs and classify them as “real” or not. Create
random negative examples by sampling from unigram distribution

(bit, the) => +1

. - e’UJ'C
(bit, cat) =>-1 P(y — l\w, C) = — \words in similar
(bit, a) => -1 emt T contexts select for
(bit, fish) => -1 similar ¢ vectors

» d x |V]| vectors, d x |V| context vectors (same # of params as before)
/sampled

1 (4
» Objective = log P(y = 1|w, ¢) - . Zlog P(y = O0|lw;, ¢
i=1

Mikolov et al. (2013)

Connections with Matrix Factorization

» Skip-gram model looks at word-word co-occurrences and produces two
types of vectors

V] d |V
d
word pair | —p |v| |Word
counts Vecs

» Looks almost like a matrix factorization...can we interpret it this way?

Levy et al. (2014)

Skip-gram as Matrix Factorization

V] num negative samples

............. > M;; = PMI(w;,c;) —logk

V] t(wi,c;)
P(w;, c;) — Db
PMI(wi,¢;) = 55~ = X
) = Pl Pley) T o) counite;

Skip-gram objective exactly corresponds to factoring this matrix:

» If we sample negative examples from the unigram distribution over words

» ...and it’s a weighted factorization problem (weighted by word freq)

Levy et al. (2014)

GloVe (Global Vectors)

» Also operates on counts matrix, weighted
regression on the log co-occurrence matrix word pair

counts

» Objective = Z f (count(w;, c;)) (w;cj + a; + b; — log count(w;, Cj)>)2
2,

» Constant in the dataset size (just need counts), quadratic in voc size

» By far the most common word vectors used today (5000+ citations)

Pennington et al. (2014)

fastText: Sub-word Embeddings

» Same as SGNS, but break words down into n-grams withn=3 to 6

where:

3-grams: <wh, whe, her, ere, re>
4-grams: <whe, wher, here, ere>,
5-grams: <wher, where, here>,
6-grams: <where, where>

» Replace W - C in skip-gram computation with (Z Wy C)

gengrams

Bojanowski et al. (2017)

Pre-trained Models: ELMo, GPT, BERT

» These encode “subwords” rather than words. Underscore indicates that
the following token continues the existing word

and there were no re fueling stations anywhere

one of the city ’s more un princi pled real estate agents

» Any word is either in the subword vocabulary or can be expressed as a
sequence of subwords in the vocabulary

» Embeddings are computed using RNNs and Transformers. We can’t just
look up an embedding for each word, but actually need to run a model

» Learn embeddings through language modeling (discussed in the second
half of the course)

