
Batching

‣ Batching	data	gives	speedups	due	to	more	efficient	matrix	opera5ons

‣ Need	to	make	the	computa5on	graph	process	a	batch	at	the	same	5me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch	sizes	from	1-100	o>en	work	well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Training	Basics

‣ Basic	formula:	compute	gradients	on	batch,	use	first-order	op5miza5on	
method	(SGD,	Adagrad,	etc.)

‣ How	to	ini5alize?	How	to	regularize?	What	op5mizer	to	use?

‣ This	segment:	some	prac5cal	tricks.	Take	deep	learning	or	op5miza5on	
courses	to	understand	this	further

How	does	ini5aliza5on	affect	learning?

V

n	features

d	hidden	units

d	x	n	matrix m	x	d	matrix

so>maxWf
(x
)

z

nonlinearity	
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How	do	we	ini5alize	V	and	W?	What	consequences	does	this	have?

‣ Nonconvex	problem,	so	ini5aliza5on	maTers!

How	does	ini5aliza5on	affect	learning?

‣ Nonlinear	model…how	does	this	affect	things?

‣ If	cell	ac5va5ons	are	too	large	in	absolute	value,	gradients	are	small

‣ ReLU:	larger	dynamic	range	(all	posi5ve	numbers),	but	can	produce	
big	values,	can	break	down	if	everything	is	too	nega5ve

Ini5aliza5on

1)	Can’t	use	zeroes	for	parameters	to	produce	hidden	layers:	all	values	in	
that	hidden	layer	are	always	0	and	have	gradients	of	0,	never	change

‣ Can	do	random	uniform	/	normal	ini5aliza5on	with	appropriate	scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Glorot	ini5alizer:

‣Want	variance	of	inputs	and	gradients	for	each	layer	to	be	the	same

‣ Batch	normaliza5on	(Ioffe	and	Szegedy,	2015):	periodically	shi>+rescale	
each	layer	to	have	mean	0	and	variance	1	over	a	batch	(useful	if	net	is	deep)

2)	Ini5alize	too	large	and	cells	are	saturated

Dropout

‣ Probabilis5cally	zero	out	parts	of	the	network	during	training	to	prevent	
overfiang,	use	whole	network	at	test	5me

Srivastava	et	al.	(2014)

‣ Similar	to	benefits	of	
ensembling:	network	
needs	to	be	robust	to	
missing	signals,	so	it	
has	redundancy

‣ Form	of	stochas5c	
regulariza5on	

‣ One	line	in	Pytorch/Tensorflow

Op5mizer

‣ Adam	(Kingma	and	Ba,	ICLR	2015):	
very	widely	used.	Adap5ve	step	size	
+	momentum

‣Wilson	et	al.	NeurIPS	2017:	
adap5ve	methods	can	actually	
perform	badly	at	test	5me	
(Adam	is	in	pink,	SGD	in	black)

‣ One	more	trick:	gradient	clipping	
(set	a	max	value	for	your	gradients)

