Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

Training Basics

» Basic formula: compute gradients on batch, use first-order optimization
method (SGD, Adagrad, etc.)

» How to initialize? How to regularize? What optimizer to use?

» This segment: some practical tricks. Take deep learning or optimization
courses to understand this further

How does initialization affect learning?

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H
g

d x n matrix nonlinearity m X d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?

» Nonconvex problem, so initialization matters!

How does initialization affect learning?

» Nonlinear model...how does this affect things?

» If cell activations are too large in absolute value, gradients are small

» ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative

Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in

that hidden layer are always O and have gradients of 0, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

» Glorot initializer: U —\/ . b ,+\/ . b
fan-1n 4+ fan-out fan-1n 4+ fan-out

» Want variance of inputs and gradients for each layer to be the same

» Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it "
has redundancy (a) Standard Neural Net (b) After applying dropout.

» One line in Pytorch/Tensorflow Srivastava et al. (2014)

Optimizer

» Adam (Kingma and Ba, ICLR 2015):
very widely used. Adaptive step size
+ momentum

» Wilson et al. NeurlPS 2017:
adaptive methods can actually

perform badly at test time
(Adam is in pink, SGD in black)

» One more trick: gradient clipping
(set a max value for your gradients)

0.7

) 0-5)

MNIST Loglst IC Regressuon

: — AdaGrad
: — SGDNesterov
: — Adam

"0 5

L 1 1 1 1 L L
10 15 20 25 30 35 40 45
iterations over entire dataset

40 60 80

Epoch

20

(e) Generative Parsing (Training Set)

Development Perplexity

training cost

4 bk b
B o o

e
N

0.50—
'H\A: “ — Adagrad+dropout
Wl'\lj RMSProp+dropout
A e T “l)' """"" SGDNesterov+dropout|]
| JL,.'MW, Adam+dropout
z z UI 'f'u -
: |'I] l‘ :
: V' JJ VHH lhﬁ”ﬁ
0.35 e | y‘v [1([a"l_n"] h m

IMDB BoW feature Loglstlc Regressmn

0 20 40 60 80 100 120 140 160

iterations over entire dataset

\\\ Adam (Default): 5.47-+0.02

/dam: S.BSt0.0li_\'____,,_..-.~-~—"J

RMSProp: 5.284+0.00 |

HB: 5.13+0.01"
Y

=

20 40 60 80
Epoch

100

(f) Generative Parsing (Development Set)

