
RNN	Motivation

‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	position	in	the	
feature	vector	has	fixed	semantics

‣ Instead,	we	need	to:

1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	still	exploiting	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	Abstraction

‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	
that	hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y

‣ Optionally:	cell	state	c	(used	in	LSTMs	but	not	all	architectures)

‣ Example:

the							movie							was							great it							was							not							great



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	tiny	gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ Repeated	multiplication	by	V	causes	problems

ht = tanh(Wxt + V ht�1 + bh)



RNNs:	Why	not?

‣ Slow.	They	do	not	parallelize	and	there	are	O(n)	non-parallel	operations	
to	encode	n	items

‣ Solution:	Transformers.	They	can	scale	to	thousands	of	words!

previous	h next	h

(previous	c) (next	c)

input	x

output	y

‣ Vanishing	gradient	makes	it	hard	to	learn.	LSTMs	can	help…but	not	enough*

*This	is	somewhat	addressed	by	recent	innovations	like	state-space	models


