
Transi'on-based	Parsing

‣We	can	build	a	dependency	parser	using	a	chart-based	algorithm	
like	CKY

‣ Time:	O(n3),	but	the	algorithm	is	very	tricky!

‣ Transi'on-based,	or	shi.-reduce,	is	another	style	of	parser;	
similar	to	determinis'c	parsing	for	compilers

‣ A	tree	is	built	from	a	sequence	of	incremental	decisions	moving	
leI	to	right	through	the	sentence

‣ Stack	contains	par'ally-built	tree,	buffer	contains	rest	of	sentence

Transi'on	System

I	ate	some	spagheM	bolognese

ROOT

‣ ShiI	1:	Stack:		[ROOT	I]				Buffer:		[ate	some	spagheM	bolognese]

‣ ShiI:	top	of	buffer	->	top	of	stack

‣ Ini'al	state:	Stack:		[ROOT]				Buffer:		[I	ate	some	spagheM	bolognese]

‣ ShiI	2:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheM	bolognese]

Transi'on	System

I	ate	some	spagheM	bolognese

ROOT

‣ State:	Stack:		[ROOT	I	ate]				Buffer:		[some	spagheM	bolognese]

‣ LeI-arc	(reduce):	Let					denote	the	stack,															=	stack	ending	in	w-1�
‣ “Pop	two	elements,	add	an	arc,	put	them	back	on	the	stack”

‣ State:	Stack:		[ROOT	ate]				Buffer:		[some	spagheM	bolognese]

I

�|w�2, w�1 ! �|w�1 w�1w�2 is	now	a	child	of

�|w�2, w�1 ! �|w�1

Arc-Standard	Parsing

‣ Start:	stack:	[ROOT],	buffer:	[I	ate	some	spagheM	bolognese]

‣ ShiI:	top	of	buffer	->	top	of	stack
‣ LeI-Arc: �|w�2, w�1 ! �|w�1 w�1w�2

‣ Right-Arc �|w�2, w�1 ! �|w�2

is	now	a	child	of,

w�1 w�2,

I	ate	some	spagheM	bolognese

‣ End:	stack	contains	[ROOT],	buffer	is	empty	[]

‣ How	many	transi'ons	do	we	need	if	we	have	n	words	in	a	sentence?

is	now	a	child	of

ROOT

‣ Arc-standard	system:	three	opera'ons

‣ There	are	other	transi'on	systems,	but	we	won’t	discuss	these

Arc-Standard	Parsing

[I	ate	some	spagheM	bolognese][ROOT]

[ROOT	I]

[ROOT	I	ate]

[ROOT	ate]

I

S

S

L

‣ Could	do	the	leI	arc	later!	But	no	reason	to	wait
‣ Can’t	a^ach	ROOT	<-	ate	yet	even	though	this	is	a	correct	dependency!

S					top	of	buffer	->	top	of	stack
LA
RA

[ate	some	spagheM	bolognese]

[some	spagheM	bolognese]

[some	spagheM	bolognese]

I	ate	some	spagheM	bolognese

ROOT
pop	two,	leI	arc	between	them
pop	two,	right	arc	between	them

Arc-Standard	Parsing

S					top	of	buffer	->	top	of	stack
LA
RAI	ate	some	spagheM	bolognese

ROOT
pop	two,	leI	arc	between	them
pop	two,	right	arc	between	them

[ROOT	ate]

I

[some	spagheM	bolognese]

[ROOT	ate	some	spagheM]

I

[bolognese]

[ROOT	ate	spagheM]

I some

[bolognese]

S

L

S

S

Arc-Standard	Parsing

S					top	of	buffer	->	top	of	stack
LA
RAI	ate	some	spagheM	bolognese

ROOT
pop	two,	leI	arc	between	them
pop	two,	right	arc	between	them

[ROOT	ate	spagheM	bolognese]

I some

[ROOT	ate	spagheM]

I some bolognese
[ROOT	ate]

I
some bolognese

spagheM

Stack	consists	of	all	words	that	are	
s'll	wai'ng	for	right	children,	end	
with	a	bunch	of	right-arc	ops

[ROOT]

I
some bolognese
spagheM

ate

[]

[]

[]
[]

Final	state:

R

R

Building	Transi'on-Based	Parsers

[ROOT	ate	some	spagheM]

I

[bolognese]

‣Mul'-way	classifica'on	problem:	shiI,	leI-arc,	or	right-arc?

[ROOT] [I	ate	some	spagheM	bolognese]

‣ How	do	we	make	the	right	decision	in	this	case?

‣ How	do	we	make	the	right	decision	in	this	case?	(all	three	ac'ons	legal)

‣ Only	one	legal	move	(shiI)

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)

Features	for	ShiI-Reduce	Parsing

[ROOT	ate	some	spagheM]

I

[bolognese]

‣ Features	to	know	this	should	leI-arc?

‣ One	of	the	harder	feature	design	tasks!

‣ In	this	case:	the	stack	tag	sequence	VBD	-	DT	-	NN	is	pre^y	informa've	
—	looks	like	a	verb	taking	a	direct	object	which	has	a	determiner	in	it

‣ Things	to	look	at:	top	words/POS	of	buffer,	top	words/POS	of	stack,	
leImost	and	rightmost	children	of	top	items	on	the	stack

Training	a	Greedy	Model

[ROOT	ate	some	spagheM]

I

[bolognese]

‣ Train	a	classifier	to	predict	the	right	decision	using	these	as	training	data
‣ Can	turn	a	tree	into	a	decision	sequence	a	by	building	an	oracle

‣ Training	data	assumes	you	made	correct	decisions	up	to	this	point	
and	teaches	you	to	make	the	correct	decision,	but	what	if	you	
screwed	up…

argmaxa2{S,LA,RA}w
>f(stack, bu↵er, a)

Training	a	Greedy	Model

‣ Greedy:	2n	local	training	examples

State	space

Gold	end	stateStart	state

‣ Non-gold	states	unobserved	during	training:	consider	
making	bad	decisions	but	don’t	condi'on	on	bad	decisions

