
Transformer	Language	Modeling

I							saw				the				dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W	is	a	(vocab	size)	x	(hidden	size)	
matrix;	linear	layer	in	PyTorch	
(rows	are	word	embeddings)

equivalent	to

word	probs

‣ hi	is	the	embedding	of	dog	
produced	by	the	Transformer

Training	Transformer	LMs

<s>							I							saw				the				dog

‣ Input	is	a	sequence	of	words,	output	is	those	words	shifted	by	one

I							saw				the				dog		running

‣ Allows	us	to	train	on	predictions	across	several	timesteps	simultaneously	
(similar	to	batching	but	this	is	NOT	what	we	refer	to	as	batching)

Training	Transformer	LMs

I							saw				the				dog

Total	loss	=	sum	of	negative	log	
likelihoods	at	each	position

P(w|context)

loss	=	—	log	P(w*|context)

loss_fcn	=	nn.NLLLoss()

loss	+=	loss_fcn(log_probs,	ex.output_tensor)

[seq	len,	num	output	classes] [seq	len]

‣ Batching	is	a	little	tricky	with	NLLLoss:	need	to	collase	[batch,	seq	len,	num	
classes]	to	[batch	*	seq	len,	num	classes].	You	do	not	need	to	batch

Batched	LM	Training

I	saw	the	dog	running	in	the	park	and	it	looked	very	excited	to	be	there

<s>							I							saw				the				dog

I							saw				the				dog		running

<s>						in						the				park			and

in						the				park			and					it
batch	dim

‣ Multiple	sequences	and	multiple	
timesteps	per	sequence

looked	very	excited	to	be

A	Small	Problem	with	Transformer	LMs

<s>							I							saw				the				dog

‣ With	standard	self-attention:	“I”	attends	to	“saw”	and	the	model	is	
“cheating”.	How	do	we	ensure	that	this	doesn’t	happen?

I						saw				the				dog		running

‣ This	Transformer	LM	as	we’ve	described	it	will	easily	achieve	perfect	
accuracy.	Why?

Attention	Masking

<s>							
I							
saw				
the				
dog

‣ What	do	we	want	to	prohibit?

‣ This	is	called	a	causal	mask	(also,	causal	self-attention	/	causal	
Transformers).	Only	things	in	the	“past”	can	influence	the	“present”

<s>							I							saw				the				dog

Query	words

Key	words

Implementation	in	PyTorch

‣ nn.TransformerEncoder	can	be	built	out	of	nn.TransformerEncoderLayers,	
can	accept	an	input	and	a	mask	for	language	modeling:

#	Inside	the	module;	need	to	fill	in	size	parameters

layers	=	nn.TransformerEncoderLayer([...])

transformer_encoder	=	nn.TransformerEncoder(encoder_layers,	num_layers=[...])

[.	.	.]

#	Inside	forward():	puts	negative	infinities	in	the	red	part

mask	=	torch.triu(torch.ones(len,	len)	*	float('-inf'),	diagonal=1)

output	=	transformer_encoder(input,	mask=mask)

