Vectorization and Softmax

P(y|x) = - T X)) » Single scalar probability

oftmax

WlT (x) -1.1 0.036

» Three classes, - "’ class
“different weights” wp f(x) = 2.1 085 probs

wy f(X) 04 0.07

» Softmax operation = “exponentiate and normalize”

» We write this as: softmax(W f(x))

Logistic Regression with NNs

eXlD(Wg;r (%)) » Single scalar probability

P(y|x) = softmax(W f(x)) » Weight vector per class;
W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) » Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

num classes

d hidden units probs

d X n matrix nonlinearity = num classes x d
n features (tanh, relu, ...) matrix

Training Neural Networks

P(y|x) = softmax(Wz) z = g(V f(x))

» Maximize log likelihood of training data

L(x,1") =log P(y =1"|x) = log (softmax(Wz) - ;)
» i*: index of the gold label

» ei: 1 in the ith row, zero elsewhere. Dot by this = select jith index

L(x,1") =Wz-e;x — log Z exp(Wz) - e,

J

Backpropagation Picture

P(y|x) = softmax(Wg(V f(x)))
num classes
d hidden units probs

i H
g OL
Z oW
n features

» Gradient w.r.t. W: looks like logistic
regression, can be computed treating z
as the features

Backpropagation Picture

P(y|x) = softmax(Wg(V f(x)))

err(z)

» Can forget everything after z, treat
it as the output and keep backpropping

Computing Gradients with Backprop

L(x,17)=Wz-e;p — logZexp Wz)-e;, %= g(V f(x))
j Activations at
hidden layer

» Gradient with respect to V: apply the chain rule

EM (x, 7" 8L (x, 7" Oz _|99(a)|da | 4 _ v fx)
8‘/;']' N oa 0‘/;]

» First term: err(z); represents gradient w.r.t. z

» First term: gradient of nonlinear activation function at a (depends on
current value)

» Second term: gradient of linear function

Backpropagation Picture

P(y|x) = softmax(Wg(V f(x))) /

d hidden units probs

» Combine backward gradients with forward-pass products

