Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

# input is [batch size, num feats]
# gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well



Training Basics

» Basic formula: compute gradients on batch, use first-order optimization
method (SGD, Adagrad, etc.)

» How to initialize? How to regularize? What optimizer to use?

» This segment: some practical tricks. Take deep learning or optimization
courses to understand this further



How does initialization affect learning?

P(y|x) = softmax(Wg(V f(x)))

d hidden units

H
g

d x n matrix nonlinearity m X d matrix
n features (tanh, relu, ...)

» How do we initialize V and W? What consequences does this have?

» Nonconvex problem, so initialization matters!



How does initialization affect learning?

» Nonlinear model...how does this affect things?

» If cell activations are too large in absolute value, gradients are small

» ReLU: larger dynamic range (all positive numbers), but can produce
big values, can break down if everything is too negative



Initialization
1) Can’t use zeroes for parameters to produce hidden layers: all values in

that hidden layer are always O and have gradients of 0, never change

2) Initialize too large and cells are saturated

» Can do random uniform / normal initialization with appropriate scale

» Glorot initializer: U —\/ . b ,+\/ . b
fan-1n 4+ fan-out fan-1n 4+ fan-out

» Want variance of inputs and gradients for each layer to be the same

» Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)



Dropout

» Probabilistically zero out parts of the network during training to prevent
overfitting, use whole network at test time

» Form of stochastic
regularization

» Similar to benefits of
ensembling: network
needs to be robust to
missing signals, so it "
has redundancy (a) Standard Neural Net (b) After applying dropout.

» One line in Pytorch/Tensorflow Srivastava et al. (2014)



Optimizer

» Adam (Kingma and Ba, ICLR 2015):
very widely used. Adaptive step size
+ momentum

» Wilson et al. NeurlPS 2017:
adaptive methods can actually

perform badly at test time
(Adam is in pink, SGD in black)

» One more trick: gradient clipping
(set a max value for your gradients)
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