BERT: Model and Applications
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trained on a large corpus

Devlin et al. (2019)



What can BERT do?
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» Artificial [CLS] token is used as the vector to do classification from

» Sentence pair tasks (entailment): feed both sentences into BERT

» BERT can also do tagging by predicting tags at each word piece

Devlin et al. (2019)



What can BERT do?
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[CLS] A boy plays in the snow [SEP] A boy is outside

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

» How does BERT model sentence pair tasks?

» Transformers can capture interactions between the two sentences (even
though the NSP objective doesn’t really cause this to happen)

Devlin et al. (2019)




What can BERT NOT do?

» BERT cannot generate text (at least not in an obvious way)

» Can fill in MASK tokens, but can’t generate left-to-right (you can put MASK
at the end repeatedly, but this is slow)

» Masked language models are intended to be used primarily for “analysis”
tasks

Devlin et al. (2019)



Fine-tuning BERT

Class » Fine-tune for 1-3 epochs, small
Label

learning rate

» Large changes to weights up here
(particularly in last layer to route the right
information to [CLS])

» Smaller changes to weights lower down in
the transformer

Single Sentence » Small LR and short fine-tuning schedule
(b) Single Sentence Classification Tasks: mean WEightS don’t change much
SST-2, ColLA

» More complex “triangular learning
rate” schemes exist



Fine-tuning BERT

Pretrainin Adaptation NER SA Nat. lang. inference Semantic textual similarity
clrainims aplalion — ~ N11.2003 SST-2 MNLI  SICK-E SICK-R MRPC STS-B
Skip-thoughts - 81.8 62.9 - 86.6 75.8 71.8
A 91.7 91.8 79.6 86.3 86.1 76.0 75.9

EI.Mo Y 91.9 91.2 76.4 83.3 83.3 74.7 75.5
A== 0.2 0.6 3.2 3.3 2.8 1.3 0.4

» 922  93.0 84.6 84.8 86.4 78.1 82.9

BERT-base &Y 924 935 84.6 85.8 88.7 84.8 87.1
A= 0.2 0.5 0.0 1.0 2.3 6.7 4.2

» BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters et al. (2019)



Evaluation

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k  sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity  Pearson/Spearman corr. misc.
QQP 36dk 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc.  misc.
QNLI 105k 54k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

Wang et al. (2019)



Evaluation

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k| -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 81.0 860 61.7| 74.0
BiLSTM+ELMo+Attn  76.4/76.1  64.8 799 90.4 360 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 703 88.1 913 454 80.0 823 56.0| 752
BERTRASE 84.6/83.4 712 90.1 935 521 858 889 66.4| 79.6
BERT[ ARGE 86.7/859 721 91.1 949 60.5 865 89.3 70.1| 819

» Huge improvements over prior work (even compared to ELMo)

» Effective at “sentence pair” tasks: textual entailment (does sentence A
imply sentence B), paraphrase detection

Devlin et al. (2019)



Analysis
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» Heads on transformers learn interesting and diverse things: content

heads (attend based on content), positional heads (based on position),
etc.

Clark et al. (2019)



Analysis

Head 8-10

- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation
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Head 8-11

- Noun modifiers (e.g., determiners) attend

to their noun

- 94.3% accuracy at the det relation
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» Still way worse than what supervised parsing systems can do, but
interesting that this is learned organically



ROBERTa

“Robustly optimized BERT”

Model data bsz steps :?E‘;Ig) MNLI-m SST-2
160GB of data instead e —
Of 16 GB with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
. . + pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
Dynamic masking: standard —_-
LARGE

BERT uses the same MASK with BOOKS + WIKI 13GB 256 1M  90.9/81.8 86.6 93.7
scheme for every epoch,
RoBERTa recomputes them

New training + more data = better performance

For this and more: check out Huggingface Transformers or fairseq

Liu et al. (2019)



