Transformer Language Modeling

word probs . he
[777771 P(w|context) = xp(w -)
h D . €Xp(W - hy)
equivalent to
| saw the dog P(w|context) = softmax(Wh;)
> hjis the embedding of dog ~ Wis a (vocab size) x (hidden size)
produced by the Transformer matrix; linear layer in PyTorch

(rows are word embeddings)

Training Transformer LMs

| saw the dog running

I | | D e
<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one

> Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs
I:I P(w | context)

"oss = — log P(w™* | context)
__ I Total loss = sum of negative log

_ likelihoods at each position

I | | |
| saw the dog

loss fcn = nn.NLLLoss()

loss += loss fcn(log probs, ex.output tensor)
[seq len, num output classes] [seq len]

>~ Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num
classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

batch dirm / (looked very excited to be
\K in the park and it h

o

saw the dog running
-

— 11 |\ <s> in the park and JJ
<> | saw the dog y

> Multiple sequences and multiple
timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

| saw the dog running
I | D | e

I | | D e
<s> | saw the dog

> With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

> What do we want to prohibit?

Key words
<s> | saw the dog
<S> .
| I
Query words ¢aw D
the I
dog

> This is called a causal mask (also, causal self-attention / causal
Transformers). Only things in the “past” can influence the “present”

Implementation in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,
can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters

layers = nn.TransformerEncoderLayer([...])

transformer _encoder = nn.TransformerEncoder(encoder layers, num layers=[...])
[. .]

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)

output = transformer _encoder(input, mask=mask)

