Transition-based Parsing

» We can build a dependency parser using a chart-based algorithm
like CKY

» Time: O(n3), but the algorithm is very tricky!

» Transition-based, or shift-reduce, is another style of parser;
similar to deterministic parsing for compilers

» A tree is built from a sequence of incremental decisions moving
left to right through the sentence

» Stack contains partially-built tree, buffer contains rest of sentence

Transition System

ROOT
A/f\/\

| ate some spaghetti bolognese
» Initial state: Stack: [ROOT] Buffer: [| ate some spaghetti bolognese]

» Shift: top of buffer -> top of stack
» Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognhese]

» Shift 2: Stack: [ROOT | ate] Buffer: [some spaghetti bolognhese]

Transition System

ROOT
A/K\/\

| ate some spaghetti bolognese

» State: Stack: [ROOT | ate] Buffer: [some spaghetti bologhese]

» Left-arc (reduce): Let o denote the stack, 0|w_1 = stack ending in w1

» “Pop two elements, add an arc, put them back on the stack”
% W_9 is nhow a child of w_1

» State: Stack: [ROOT ate|] Buffer: [some spaghetti bolognhese]

v
|

Arc-Standard Parsing

ROOT
A/K\/\

| ate some spaghetti bolognese

» Start: stack: [ROOT], buffer: [| ate some spaghetti bolognese]

» Arc-standard system: three operations
» Shift: top of buffer -> top of stack

» Left-Arc: [o|w_o, w_1|—|o|w_1| w_s is now a child of w_;
» Right-Arc [0|w_g, w_1| —|o|w_2|, w_1is now a child of w_s

» End: stack contains [ROOT], buffer is empty |[]

» How many transitions do we need if we have n words in a sentence?

» There are other transition systems, but we won’t discuss these

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
N LA pop two, left arc between them
| ate some spaghetti bolognese RA pop two, right arc between them

[ROOT] E [l ate some spaghetti bologhese]
[ROOT I] [ate some spaghetti bolognese]
[ROOT | ate] [some spaghetti bolognhese]
[ROOT aife] [some spaghetti bolognese]

|

» Could do the left arc later! But no reason to wait
» Can’t attach ROOT <- ate yet even though this is a correct dependency!

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
N LA pop two, left arc between them
| ate some spaghetti bolognese RA pop two, right arc between them

[ROOT ate] [some spaghetti bologhese]
f
.
[ROOT ate some spaghetti] [bolognese]

| 0

[ROOT ate spaghetti] [bolognese]

| some

Il

Arc-Standard Parsing

ROOT S top of buffer -> top of stack
N m—a————— LA pop two, left arc between them
| ate some spaghetti bolognese RA pop two, right arc between them

[ROOT ate spaghetti bolognese| [] Stack consists of all words that are

T v still waiting for right children, end
>OME with a bunch of right-arc ops

[ROOT ate Spagheth] []
: L~ Final state:
| some bolognese [ROOT] 1

[ROOT ate] IEI[] Tate .
v ?pagh\eAtti T sp¢agh\eA1:h
oy bolognese <ome Polognese

some

Building Transition-Based Parsers

[ROOT] [l ate some spaghetti bologhese]

» How do we make the right decision in this case?

» Only one legal move (shift)

[ROOT ate some spaghetti] [bolognhese]

v
|

» How do we make the right decision in this case? (all three actions legal)

» Multi-way classification problem: shift, left-arc, or right-arc?

argmaxae{stA,RA}wTf(stack, buffer, a)

Features for Shift-Reduce Parsing

[ROOT ate some spaghetti] [bolognhese]

v
|

» Features to know this should left-arc?
» One of the harder feature design tasks!

» In this case: the stack tag sequence VBD - DT - NN is pretty informative
— looks like a verb taking a direct object which has a determiner in it

» Things to look at: top words/POS of buffer, top words/POS of stack,
leftmost and rightmost children of top items on the stack

Training a Greedy Model

[ROOT ate some spaghetti] [bolognhese]

v
|

argmaxaé{S,LAyRA}wTf(stack, buffer, a)

» Can turn a tree into a decision sequence a by building an oracle

» Train a classifier to predict the right decision using these as training data

» Training data assumes you made correct decisions up to this point
and teaches you to make the correct decision, but what if you
screwed up...

Training a Greedy Model

State space

Start state —_— Gold end state

» Greedy: 2n local training examples

» Non-gold states unobserved during training: consider
making bad decisions but don’t condition on bad decisions

