Few-shot Prompting

» Form “training examples” from (x, y) pairs, verbalize them (can be
lighter-weight than zero-shot verbalizer)

* Input to GPT-3: v(x1) v(y1) v(x2) v(y2) ... v(Xtest)

Review: The cinematography was stellar; great movie!

Sentiment (positive or negative): positive

Review: The plot was boring and the visuals were subpar.

Sentiment (positive or negative): negative

Review: The movie’s acting could’ve been better, but the visuals and directing were top-notch.

Sentiment (positive or negative):

positive

> Usually works better than zero-shot (comparisons in a few slides)



What can go wrong?’

Review: The movie was great!
Sentiment: positive

Review: | thought the movie was alright; | would've seen it again.
Sentiment: positive

Review: The movie was pretty cool!

Sentiment: positive

Review: Pretty decent movie!

Sentiment: positive

Review: The movie had good enough acting and the visuals were nice.
Sentiment: positive

Review: There wasn't anything the movie could've done better.
Sentiment: positive

Review: Okay movie but could've been better.
Sentiment:

positive



What examples do we need?

> What if we take random sets of
training examples? There is
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Zhao et al. (2021)



Properties of In-context Examples

» Performance varies Accuracy Across Training Sets and Permutations

even across
permutations of
training examples

O
-

Q0
-
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Zhao et al. (2021)



Properties of In-context Examples

 Having unbalanced 1.0
training sets leads to
high “default” > 0.8
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Zhao et al. (2021)



Results: HELM
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> More in-context examples generally leads to better performance

Percy Liang et al. (2022)
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Rethinking Demonstrations

Z@ No Demos ' Demos w/ gold labels 9 Demos w/ random labels

- How necessary even are  Dels
the demonstrations?

> Surprising result: using
random labels does not
substantially decrease
performance??
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Min et al. (2022)



Rethinking Demonstrations
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> Having even mislabeled demonstrations is much better than having no
demonstrations, indicating that the form of the demonstrations is partially
responsible for in-context learning

Min et al. (2022)



