Phrase-Based Machine Translation

cat ||| chat ||| 0.9

the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6

language ||| langue ||| 0.9

my house ||| ma maison ||| 0.9

Phrase table P(f|e)

N

Language
model P(e)

Unlabeled English data

P(e|f) o< P(fle)P(e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to
English

N

“Translate faithfully but make fluent English”

Phrase-Based Machine Translation

» Noisy channel model: P(e|f) =« P(f|e) P(e) (ignore P(f) term)
Translation Language
model (TM) model (LM)

» Inputs needed
» Language model that scores P(eiler,...,ei—1) = P(ejl€i—n—1,...,€i—1)
» Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)

» What we want to find: e produced by a series of phrase-by-phrase
translations from an input f

Phrase Lattice
ST N TN NN Y IS RS BT

Mary = __not = __gilve —the —green
did not _a_sla.p__b.}; —green witch

—_—Dno. —_—tao the

—did not give —_—toe

—_— the

» Given an input sentence, look at our phrase table to find all possible
translations of all possible spans

» Monotonic translation: need to translate each word in order, explore
paths in the lattice that don’t skip any words

» Looks like Viterbi, but the scoring is more complicated

Koehn (2004)

Monotonic Translation

» If we translate with beam search, what state do we need to keep in
the beam?

— o
» Score arg max H P(fle) - HP(ez-|ei_1,ei_2)
I =

e

» Where are we in the sentence

» What words have we produced so far (actually only need
to remember the last 2 words when using a 3-gram LM)

Monotonic Translation

Mary ..did not » Beam state: where we’re at, what
. -1.1 . -0.1 . .
idx =1 idx = 2 the current translation so far is,
and score of that translation
Mary not| ,,
iax = 2 » Advancing state consists of trying
Mary no each possible translation that

-2.9 is i
Ay = 9 could get us to this timestep

Monotonic Translation

..did not
-0.1| score =log [P(Mary) P(not | Mary) P(Maria | Mary) P(no | not)]

idx = 2
W_J W_J
/ LM ™™

Mary not
idx =2

-1.2
In reality: score = a log P(LM) + B log P(TM)
Mary no ..and TM is broken down into several features

. -2.9
idx =2

Monotonic Translation

...did not
idx =2

Mary not
idx =2

Mary no
idx = 2

-1.2

-2.9

» Two ways to get here: Maria
+ no dio or Maria no + dio

» Beam contains options from
multiple segmentations of
input — as many hypotheses
as paths through the lattice
(up to beam size)

Non-Monotonic Translation

» More flexible model: can visit source
sentence “out of order”

e: Mary did not

e: Mary slap

Fo *_kkk____

» State needs to describe which

p: .043
words have been translated
and which haven’t

» Big enough phrases already translated: Maria, dio,
capture lots of reorderings, so this una, bofetada

isn’t as important as you think

“Training” Decoders

score = a log P(t) + B log P(s|t)

..and P(s|t) is in fact more complex

» Usually 5-20 feature weights to set,
want to optimize for BLEU score
which is not differentiable

» MERT (Och 2003): decode to get 1000-
best translations for each sentence in a
small training set (<1000 sentences), do
line search on parameters to directly
optimize for BLEU

error count

9480

9470 |

9460

9450 -

9440 -

9430

9420

9410

9400

| | | |
unsmoothed error count

smoothed error rate (alpha=3)

Moses

» Toolkit for machine translation due to Philipp Koehn + Hieu Hoang

» Pharaoh (Koehn, 2004) is the decoder from Koehn’s thesis

» Moses implements word alignment, language models, and this
decoder, plus a ton more stuff

» Highly optimized and heavily engineered, could more or less
build SOTA translation systems with this from 2007-2013

