# busters.py # ---------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to # http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ Busters.py is a vengeful variant of Pacman where Pacman hunts ghosts, but cannot see them. Numbers at the bottom of the display are noisy distance readings to each remaining ghost. To play your first game, type 'python pacman.py' from the command line. The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun! """ from game import GameStateData from game import Game from game import Directions from game import Actions from game import Configuration from util import nearestPoint from util import manhattanDistance import sys, util, types, time, random, layout, os ######################################## # Parameters for noisy sensor readings # ######################################## SONAR_NOISE_RANGE = 15 # Must be odd SONAR_MAX = (SONAR_NOISE_RANGE - 1)/2 SONAR_NOISE_VALUES = [i - SONAR_MAX for i in range(SONAR_NOISE_RANGE)] SONAR_DENOMINATOR = 2 ** SONAR_MAX + 2 ** (SONAR_MAX + 1) - 2.0 SONAR_NOISE_PROBS = [2 ** (SONAR_MAX-abs(v)) / SONAR_DENOMINATOR for v in SONAR_NOISE_VALUES] def getNoisyDistance(pos1, pos2): if pos2[1] == 1: return None distance = util.manhattanDistance(pos1, pos2) return max(0, distance + util.sample(SONAR_NOISE_PROBS, SONAR_NOISE_VALUES)) observationDistributions = {} def getObservationDistribution(noisyDistance): """ Returns the factor P( noisyDistance | TrueDistances ), the likelihood of the provided noisyDistance conditioned upon all the possible true distances that could have generated it. """ global observationDistributions if noisyDistance == None: return util.Counter() if noisyDistance not in observationDistributions: distribution = util.Counter() for error , prob in zip(SONAR_NOISE_VALUES, SONAR_NOISE_PROBS): distribution[max(1, noisyDistance - error)] += prob observationDistributions[noisyDistance] = distribution return observationDistributions[noisyDistance] ################################################### # YOUR INTERFACE TO THE PACMAN WORLD: A GameState # ################################################### class GameState: """ A GameState specifies the full game state, including the food, capsules, agent configurations and score changes. GameStates are used by the Game object to capture the actual state of the game and can be used by agents to reason about the game. Much of the information in a GameState is stored in a GameStateData object. We strongly suggest that you access that data via the accessor methods below rather than referring to the GameStateData object directly. Note that in classic Pacman, Pacman is always agent 0. """ #################################################### # Accessor methods: use these to access state data # #################################################### def getLegalActions( self, agentIndex=0 ): """ Returns the legal actions for the agent specified. """ if self.isWin() or self.isLose(): return [] if agentIndex == 0: # Pacman is moving return PacmanRules.getLegalActions( self ) else: return GhostRules.getLegalActions( self, agentIndex ) def generateSuccessor( self, agentIndex, action): """ Returns the successor state after the specified agent takes the action. """ # Check that successors exist if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.') # Copy current state state = GameState(self) # Let agent's logic deal with its action's effects on the board if agentIndex == 0: # Pacman is moving state.data._eaten = [False for i in range(state.getNumAgents())] PacmanRules.applyAction( state, action ) else: # A ghost is moving GhostRules.applyAction( state, action, agentIndex ) # Time passes if agentIndex == 0: state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around else: GhostRules.decrementTimer( state.data.agentStates[agentIndex] ) # Resolve multi-agent effects GhostRules.checkDeath( state, agentIndex ) # Book keeping state.data._agentMoved = agentIndex state.data.score += state.data.scoreChange p = state.getPacmanPosition() state.data.ghostDistances = [getNoisyDistance(p, state.getGhostPosition(i)) for i in range(1,state.getNumAgents())] if agentIndex == self.getNumAgents() - 1: state.numMoves += 1 return state def getLegalPacmanActions( self ): return self.getLegalActions( 0 ) def generatePacmanSuccessor( self, action ): """ Generates the successor state after the specified pacman move """ return self.generateSuccessor( 0, action ) def getPacmanState( self ): """ Returns an AgentState object for pacman (in game.py) state.pos gives the current position state.direction gives the travel vector """ return self.data.agentStates[0].copy() def getPacmanPosition( self ): return self.data.agentStates[0].getPosition() def getNumAgents( self ): return len( self.data.agentStates ) def getScore( self ): return self.data.score def getCapsules(self): """ Returns a list of positions (x,y) of the remaining capsules. """ return self.data.capsules def getNumFood( self ): return self.data.food.count() def getFood(self): """ Returns a Grid of boolean food indicator variables. Grids can be accessed via list notation, so to check if there is food at (x,y), just call currentFood = state.getFood() if currentFood[x][y] == True: ... """ return self.data.food def getWalls(self): """ Returns a Grid of boolean wall indicator variables. Grids can be accessed via list notation, so to check if there is food at (x,y), just call walls = state.getWalls() if walls[x][y] == True: ... """ return self.data.layout.walls def hasFood(self, x, y): return self.data.food[x][y] def hasWall(self, x, y): return self.data.layout.walls[x][y] ############################## # Additions for Busters Pacman # ############################## def getLivingGhosts(self): """ Returns a list of booleans indicating which ghosts are not yet captured. The first entry (a placeholder for Pacman's index) is always False. """ return self.livingGhosts def setGhostNotLiving(self, index): self.livingGhosts[index] = False def isLose( self ): return self.maxMoves > 0 and self.numMoves >= self.maxMoves def isWin( self ): return self.livingGhosts.count(True) == 0 def getNoisyGhostDistances(self): """ Returns a noisy distance to each ghost. """ return self.data.ghostDistances ############################################# # Helper methods: # # You shouldn't need to call these directly # ############################################# def __init__( self, prevState = None ): """ Generates a new state by copying information from its predecessor. """ if prevState != None: self.data = GameStateData(prevState.data) self.livingGhosts = prevState.livingGhosts[:] self.numMoves = prevState.numMoves; self.maxMoves = prevState.maxMoves; else: # Initial state self.data = GameStateData() self.numMoves = 0; self.maxMoves = -1; self.data.ghostDistances = [] def deepCopy( self ): state = GameState( self ) state.data = self.data.deepCopy() state.data.ghostDistances = self.data.ghostDistances return state def __eq__( self, other ): """ Allows two states to be compared. """ return self.data == other.data def __hash__( self ): """ Allows states to be keys of dictionaries. """ return hash( str( self ) ) def __str__( self ): return str(self.data) def initialize( self, layout, numGhostAgents=1000 ): """ Creates an initial game state from a layout array (see layout.py). """ self.data.initialize(layout, numGhostAgents) self.livingGhosts = [False] + [True for i in range(numGhostAgents)] self.data.ghostDistances = [getNoisyDistance(self.getPacmanPosition(), self.getGhostPosition(i)) for i in range(1, self.getNumAgents())] def getGhostPosition( self, agentIndex ): if agentIndex == 0: raise "Pacman's index passed to getGhostPosition" return self.data.agentStates[agentIndex].getPosition() def getGhostState( self, agentIndex ): if agentIndex == 0: raise "Pacman's index passed to getGhostPosition" return self.data.agentStates[agentIndex] ############################################################################ # THE HIDDEN SECRETS OF PACMAN # # # # You shouldn't need to look through the code in this section of the file. # ############################################################################ COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill TIME_PENALTY = 1 # Number of points lost each round class BustersGameRules: """ These game rules manage the control flow of a game, deciding when and how the game starts and ends. """ def newGame( self, layout, pacmanAgent, ghostAgents, display, maxMoves= -1 ): agents = [pacmanAgent] + ghostAgents initState = GameState() initState.initialize( layout, len(ghostAgents)) game = Game(agents, display, self) game.state = initState game.state.maxMoves = maxMoves return game def process(self, state, game): """ Checks to see whether it is time to end the game. """ if state.isWin(): self.win(state, game) if state.isLose(): self.lose(state, game) def win( self, state, game ): game.gameOver = True def lose( self, state, game ): game.gameOver = True class PacmanRules: """ These functions govern how pacman interacts with his environment under the classic game rules. """ def getLegalActions( state ): """ Returns a list of possible actions. """ return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls ) getLegalActions = staticmethod( getLegalActions ) def applyAction( state, action ): """ Edits the state to reflect the results of the action. """ legal = PacmanRules.getLegalActions( state ) if action not in legal: raise "Illegal action", action pacmanState = state.data.agentStates[0] # Update Configuration vector = Actions.directionToVector( action, 1) pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector ) applyAction = staticmethod( applyAction ) class GhostRules: """ These functions dictate how ghosts interact with their environment. """ def getLegalActions( state, ghostIndex ): conf = state.getGhostState( ghostIndex ).configuration return Actions.getPossibleActions( conf, state.data.layout.walls ) getLegalActions = staticmethod( getLegalActions ) def applyAction( state, action, ghostIndex): legal = GhostRules.getLegalActions( state, ghostIndex ) if action not in legal: raise Exception("Illegal ghost action: " + str(action)) ghostState = state.data.agentStates[ghostIndex] vector = Actions.directionToVector( action, 1 ) ghostState.configuration = ghostState.configuration.generateSuccessor( vector ) applyAction = staticmethod( applyAction ) def decrementTimer( ghostState): timer = ghostState.scaredTimer if timer == 1: ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos ) ghostState.scaredTimer = max( 0, timer - 1 ) decrementTimer = staticmethod( decrementTimer ) def checkDeath( state, agentIndex): pacmanPosition = state.getPacmanPosition() if agentIndex == 0: # Pacman just moved; Anyone can kill him for index in range( 1, len( state.data.agentStates ) ): ghostState = state.data.agentStates[index] ghostPosition = ghostState.configuration.getPosition() if GhostRules.canKill( pacmanPosition, ghostPosition ): GhostRules.collide( state, ghostState, index ) else: ghostState = state.data.agentStates[agentIndex] ghostPosition = ghostState.configuration.getPosition() if GhostRules.canKill( pacmanPosition, ghostPosition ): GhostRules.collide( state, ghostState, agentIndex ) checkDeath = staticmethod( checkDeath ) def collide( state, ghostState, agentIndex): state.data.scoreChange += 200 GhostRules.placeGhost(ghostState, agentIndex) # Added for first-person state.data._eaten[agentIndex] = True state.setGhostNotLiving(agentIndex) collide = staticmethod( collide ) def canKill( pacmanPosition, ghostPosition ): return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE canKill = staticmethod( canKill ) def placeGhost(ghostState, agentIndex): pos = (agentIndex * 2 - 1, 1) direction = Directions.STOP ghostState.configuration = Configuration(pos, direction) placeGhost = staticmethod( placeGhost ) class RandomGhost: def __init__( self, index ): self.index = index def getAction( self, state ): return random.choice( state.getLegalActions( self.index ) ) def getDistribution( self, state ): actions = state.getLegalActions( self.index ) prob = 1.0 / len( actions ) return [( prob, action ) for action in actions] ############################# # FRAMEWORK TO START A GAME # ############################# def default(str): return str + ' [Default: %default]' def parseAgentArgs(str): if str == None: return {} pieces = str.split(',') opts = {} for p in pieces: if '=' in p: key, val = p.split('=') else: key,val = p, 1 opts[key] = val return opts def readCommand( argv ): """ Processes the command used to run pacman from the command line. """ from optparse import OptionParser usageStr = """ USAGE: python busters.py <options> EXAMPLE: python busters.py --layout bigHunt - starts an interactive game on a big board """ parser = OptionParser(usageStr) parser.add_option('-n', '--numGames', dest='numGames', type='int', help=default('the number of GAMES to play'), metavar='GAMES', default=1) parser.add_option('-l', '--layout', dest='layout', help=default('the LAYOUT_FILE from which to load the map layout'), metavar='LAYOUT_FILE', default='oneHunt') parser.add_option('-p', '--pacman', dest='pacman', help=default('the agent TYPE in the pacmanAgents module to use'), metavar='TYPE', default='BustersKeyboardAgent') parser.add_option('-a','--agentArgs',dest='agentArgs', help='Comma seperated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"') parser.add_option('-g', '--ghosts', dest='ghost', help=default('the ghost agent TYPE in the ghostAgents module to use'), metavar = 'TYPE', default='RandomGhost') parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics', help='Generate minimal output and no graphics', default=False) parser.add_option('-k', '--numghosts', type='int', dest='numGhosts', help=default('The maximum number of ghosts to use'), default=4) parser.add_option('-z', '--zoom', type='float', dest='zoom', help=default('Zoom the size of the graphics window'), default=1.0) parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed', help='Fixes the random seed to always play the same game', default=False) parser.add_option('-s', '--showGhosts', action='store_true', dest='showGhosts', help='Renders the ghosts in the display (cheating)', default=False) parser.add_option('-t', '--frameTime', dest='frameTime', type='float', help=default('Time to delay between frames; <0 means keyboard'), default=0.1) options, otherjunk = parser.parse_args() if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + otherjunk) args = dict() # Fix the random seed if options.fixRandomSeed: random.seed('bustersPacman') # Choose a layout args['layout'] = layout.getLayout( options.layout ) if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found") # Choose a ghost agent ghostType = loadAgent(options.ghost, options.quietGraphics) args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )] # Choose a Pacman agent noKeyboard = options.quietGraphics pacmanType = loadAgent(options.pacman, noKeyboard) agentOpts = parseAgentArgs(options.agentArgs) agentOpts['ghostAgents'] = args['ghosts'] pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs args['pacman'] = pacman import graphicsDisplay args['display'] = graphicsDisplay.FirstPersonPacmanGraphics(options.zoom, \ options.showGhosts, \ frameTime = options.frameTime) args['numGames'] = options.numGames return args def loadAgent(pacman, nographics): # Looks through all pythonPath Directories for the right module, pythonPathStr = os.path.expandvars("$PYTHONPATH") if pythonPathStr.find(';') == -1: pythonPathDirs = pythonPathStr.split(':') else: pythonPathDirs = pythonPathStr.split(';') pythonPathDirs.append('.') for moduleDir in pythonPathDirs: if not os.path.isdir(moduleDir): continue moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')] for modulename in moduleNames: try: module = __import__(modulename[:-3]) except ImportError: continue if pacman in dir(module): if nographics and modulename == 'keyboardAgents.py': raise Exception('Using the keyboard requires graphics (not text display)') return getattr(module, pacman) raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.') def runGames( layout, pacman, ghosts, display, numGames, maxMoves=-1): # Hack for agents writing to the display import __main__ __main__.__dict__['_display'] = display rules = BustersGameRules() games = [] for i in range( numGames ): game = rules.newGame( layout, pacman, ghosts, display, maxMoves ) game.run() games.append(game) if numGames > 1: scores = [game.state.getScore() for game in games] wins = [game.state.isWin() for game in games] winRate = wins.count(True)/ float(len(wins)) print 'Average Score:', sum(scores) / float(len(scores)) print 'Scores: ', ', '.join([str(score) for score in scores]) print 'Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate) print 'Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins]) return games if __name__ == '__main__': """ The main function called when pacman.py is run from the command line: > python pacman.py See the usage string for more details. > python pacman.py --help """ args = readCommand( sys.argv[1:] ) # Get game components based on input runGames( **args )