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Abstract. Supervised learning techniques have shown substantial progress
on video summarization. State-of-the-art approaches mostly regard the
predicted summary and the human summary as two sequences (sets),
and minimize discriminative losses that measure element-wise discrep-
ancy. Such training objectives do not explicitly model how well the pre-
dicted summary preserves semantic information in the video. Moreover,
those methods often demand a large amount of human generated sum-
maries. In this paper, we propose a novel sequence-to-sequence learning
model to address these deficiencies. The key idea is to complement the
discriminative losses with another loss which measures if the predicted
summary preserves the same information as in the original video. To this
end, we propose to augment standard sequence learning models with an
additional “retrospective encoder” that embeds the predicted summary
into an abstract semantic space. The embedding is then compared to
the embedding of the original video in the same space. The intuition is
that both embeddings ought to be close to each other for a video and its
corresponding summary. Thus our approach adds to the discriminative
loss a metric learning loss that minimizes the distance between such pairs
while maximizing the distances between unmatched ones. One important
advantage is that the metric learning loss readily allows learning from
videos without human generated summaries. Extensive experimental re-
sults show that our model outperforms existing ones by a large margin
in both supervised and semi-supervised settings.

Keywords: video summarization, sequence-to-sequence learning

1 Introduction

The amount of online video data is staggering: hundreds of hours of videos
are uploaded to YouTube every minute [2], video posts on Facebook have been
increasing by more than 90% annually, and by Cisco’s estimate, traffic from
online videos will constitute over 80% of all consumer Internet traffic by 2020.
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Fig. 1. Conceptual diagram of our approach. Our model consists of two components.
First, we use seq2seq models to generate summaries. Secondly, we introduce an retro-
spective encoder that maps the generated summaries to an abstract semantic space so
that we can measure how well the summaries preserve the information in the original
videos, i.e. the summary (×) should be close to its original video (•) while distant
from other videos ({•, •}) and summaries ({×, ×}). In this semantic space, we derive
metric learning based loss functions and combine them with the discriminative loss by
matching human generated summaries and predicted ones. See text for details.

As such, there has been a growing interest in automatic video summarization.
The main objective is to shorten a video while still preserving the important
and relevant information it contains. A shortened video is more convenient and
efficient for both interactive use (such as exploratory browsing), fast indexing
and matching (such as responding to search queries). To this end, a common
type of summary is composed of a selected set of frames (i.e. keyframes) [15, 19,
30, 32, 40, 40, 50, 63], segments, or subshots (i.e. keyshots) [29, 34, 41, 43]. Other
formats are possible [12, 14, 25, 46, 51], though they are not the focus of this
work.

Many methods for summarization have been proposed and studied. Among
them, supervised learning based techniques have recently gained significant at-
tention [6, 15, 18, 19, 49, 54, 64–66]. As opposed to unsupervised ones [21, 25, 26,
30, 33, 34, 36, 38, 43, 63], supervised techniques explicitly maximize the correspon-
dence between the automatically generated summary and the human created
one. As such, those techniques often achieve higher performance metrics.

In particular, recent work on applying sequence-to-sequence learning tech-
niques to video summarization has introduced several promising models [64, 65,
38, 66, 24]. Viewing summarization as a structured prediction problem, those
techniques model the long-range dependency in video using the popular long
short-term memory units (LSTM) and its variants [7, 17, 20]. The key idea is to
maximize the accuracy of which frames or subshots are selected in the summary.
Fig. 2 shows the basic concepts behind these modeling techniques to which we
collectively refer as seq2seq.

The conventional overlap accuracy is a useful surrogate for measuring how
good the generated summaries are. However, it suffers from several flaws. First, it
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emphasizes equally the local correspondence between human and machine sum-
maries on all frames or subshots. For instance, for a video of a soccer game, while
arguably the moment around a goal-shot is likely in every human annotator’s
summary, whether or not other less critical events (before or after the shot) are
included could be quite varying – for example, subshots showing running across
different sections of the play-field are equally good (or bad). Thus modeling those
subshots in the summary is not always useful and necessary. Instead, we ought
to assess whether the summary “holistically” preserves the most important and
relevant information in the original video.

The second difficulty of employing overlap accuracy (and thus to a large
degree, supervised learning techniques) is the demand of time-consuming and
labor-intensive annotation procedures, which has been a limiting factor of ex-
isting datasets, cf. [65]. Thus supervised techniques have limited applicability
when the annotated data is scarce.

To address these flaws, we propose a new sequence learning model — retro-
spective sequence-to-sequence learning (re-seq2seq). The key idea behind re-
seq2seq is to measure how well the machine-generated summary is similar to
the original video in an abstract semantic space.

Specifically, as the original video is processed by the encoder component of a
seq2seq model, the encoder outputs a vector embedding which represents the
semantic meaning of the original video. We then pass the outputs of the
decoder, which should yield the desired summary, to a retrospective encoder to
infer a vector embedding to represent the semantic meaning of the sum-
mary. If the summary preserves the important and relevant information in the
original video, then we should expect that the two embeddings are similar (e.g.
in Euclidean distance). Fig. 1 schematically illustrates the idea. Besides learning
to “pull” the summary close to the original video, our model also “pushes far
away” the embeddings that do not form corresponding pairs.

The measure of similarity (or distance) is combined with the standard loss
function (in seq2seq models) that measures how well the summary aligns locally
on the frame/shot-level with what is provided by human annotators. However,
the proposed learning of similarity in the abstract semantic space provides ad-
ditional benefits. Since it does not use any human annotations, our measure can
be computed on videos without any “ground-truth” summaries. This provides
a natural basis for semi-supervised learning where we can leverage the large
amount of unlabeled videos to augment training.

To summarize, our contributions are: (i) a novel sequence learning model for
video summarization, which combines the benefits of discriminative learning by
aligning human annotation with the model’s output and semi-supervised/unsup-
ervised learning which ensure the model’s output is in accordance with the origi-
nal video by embedding both in close proximity; (ii) an extensive empirical study
demonstrating the effectiveness of the proposed approach on several benchmark
datasets, and highlighting the advantages of using unlabeled data to improve
summarization performance.
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2 Related Work

Unsupervised video summarization methods mostly rely on manually designed
criteria [8, 11, 21, 25, 27, 30, 31, 33, 34, 36, 43, 45, 50, 63, 67], e.g. importance, rep-
resentativeness, and diversity. In addition, auxiliary cues such as web images [21,
26, 27, 50] or video categories [44, 45] are also exploited in the unsupervised
(weakly-supervised) summarization process.

Supervised learning for video summarization has made significant progress [6,
15, 18, 19, 64]. Framing the task as a special case of structured prediction, Zhang
et al. [65] proposed to use sequence learning methods, and in particular, sequence-
to-sequence models [7, 10, 52] that have been very successful in other structured
prediction problems such as machine translation [22, 23, 35, 47, 58], image or
video caption generation [55, 57, 59], parsing [56], and speech recognition [4].

Several extensions of sequence learning models have since been studied [24,
38, 66, 68]. Yang et al. [60] and Mahasseni et al. [38] bear a somewhat similar
modeling intuition as our approach. In their works, the model is designed such
that the video highlight/summary (as a sequence) can generate another (video)
sequence similar to the original video. However, this desideratum is very chal-
lenging to achieve. In particular, the mapping from video to summary is lossy,
making the reverse mapping almost unattainable: for instance, the objects that
are in the discarded frames but missing from the summarization frames cannot
be reliably recovered from the summary alone. In contrast, our model has a
simpler architecture, and contains fewer LSTMs units (thus fewer parameters);
our approach only desires that the embeddings of human created and predicted
summaries be close. It attains better results than those reported in [38].

Zhou et al. [68] propose to use reinforcement learning to model the sequen-
tial decision-making process of selecting frames as a summary. While interesting,
the design of reward functions with heuristic criteria can be as challenging as
using unsupervised methods for summarization. It shows minor gains over the
less competitive model in the fully supervised learning model of [65]. Both Zhao
et al. [66] and Ji et al. [24] introduce hierarchical LSTMs and attention mech-
anisms for modeling videos. They focus on maximizing the alignment between
the generated summaries and the human annotators’. Our approach also uses
hierarchical LSTMs but further incorporates objectives to match the generated
summaries and the original videos, i.e. aiming to preserve important information
in the original videos. The experimental study demonstrates the advantages.

3 Approach

We start by stating the setting for the video summarization task, introducing the
notations and (briefly) the background on sequence learning with LSTMs [20, 39,
52, 61]. We then describe the proposed retrospective encoder sequence-to-sequence
(re-seq2seq) approach in detail. The model extends the standard encoder-
decoder LSTM by applying an additional encoder on the outputs of the decoder
and introducing new loss functions.
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Fig. 2. Our proposed approach for video summarization. The model has several distinc-
tive features. First, it uses hierarchical LSTMs: a bottom layer of LSTMs models shots
composed of frames and an upper-layer LSTM models the video composed of shots.
Secondly, the model has a retrospective encoder (green) that computes the embeddings
of the outputs of the decoder (red). The training objective for the retrospective encoder
is to ensure the embedding of the summary outputs matches the embedding computed
from the original inputs, cf. eq. (5).

3.1 Setting, notations, and sequence learning models

We represent a video as a sequence X = {x1,x2, · · · ,xT} where xt, t ∈ 1, · · · , T ,
is the feature vector characterizing the t-th frame in the video. We denote
(sub)shots in the video by B = {b1, b2, · · · , bB}. Each of the B shots refers
to a consecutive subset of X, and doesn’t overlap with others.
Video summarization task The task is to select a subset of shots as the
summary, denoted as Y = {y1,y2, · · · ,yL} where yl indicates the feature vector
for the l-th shot in the summary. Obviously we desire L < B < T. The ground-
truth keyshots are denoted as Z = {z1, z2, · · · , zL}.

When B is not given (which is common in most datasets for the task), we
use a shot-boundary detection model to infer the boundaries of the shots. This
leads to misaligned shot boundaries between what is given in the ground-truth
keyshots and what is inferred. We discuss how we handle this in the experimental
details and in the Suppl. For clarity, we assume B is known and given throughout
this section.
Sequence learning Long short-term memory (LSTMs) are a special kind of
recurrent neural networks that are adept at modeling long-range dependencies.
They have been used to model temporal (and sequential) data very success-
fully [13, 20, 61]. An LSTM has time-varying memory state variables ct and an
output variable ht. The values of those variables depend on the current input,
past outputs, and memory states. The details of the basic LSTM cells that we
use in this paper are documented in the Suppl. and [16, 65].

seq2seq typically consists of a pair of LSTMs—the encoder and the decoder—
which are combined to perform sequence transduction [3, 55]. Specifically, the
encoder reads the input sequence {x1,x2, · · · ,xT} sequentially (or in any prede-
fined order), and calculates a sequence of hidden states H = {h1,h2, · · · ,hT}.
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Each hidden state ht at step t feeds into the next step at (t + 1). The last
hidden state hT feeds into the decoder. The decoder is similar to the encoder
except for two changes: (1) the decoder has its own hidden state sequence
V = {v1,v2, · · · ,vL}; (2) the decoder does not have external input. Instead,
its input (i.e. its version of xt) at step (l + 1) is now its own output at step l,
given by yl = g(yl−1,vl). Note that the function g(·) as well as other parame-
ters in the encoder/decoder are learnt from data. Fig. 2 illustrates these steps,
though in the context of hierarchical LSTMs.

3.2 Retrospective-encoder sequence-to-sequence (re-seq2seq)

We propose several important extensions to the original seq2seq model: hier-
archical modeling of frames and shots, and new loss functions for training.

Hierarchical modeling As shown in [42, 66, 55], the ideal length of video for
LSTM modeling is less than 100 frames despite LSTMs’ ability to model long-
range dependencies. Thus, it is challenging to model long videos. To this end,
we leverage the hierarchical structures in a video [66] to capture dependencies
across longer time spans.

As shown in Fig. 2, there are two encoder layers made of LSTM units for
modeling frames and shots, respectively. The first layer is responsible for mod-
eling at the frame level and yielding a representation for all the frames in the
current shot. This representation is then fed as input to the second LSTM layer.
The final output of the second layer is then treated as the embedding for the
whole video as it combines all the information from all the shots.

Concretely, for the first layer LSTMs, the input is xt, the feature vector for
the tth frame. Assuming t is within a shot bb, the hidden state of this layer’s

LSTM unit is h
(1)
t , encoding all frames from the beginning of the shot boundary

by computing over the current feature xt and the previous hidden state h
(1)
t−1.

When t passes the shot’s ending boundary, we denote the final hidden state
of the LSTM unit as sb, the encoding vector for the current shot bb. The LSTM

unit’s memory c
(1)
t and the initial hidden state h

(1)
t are then reset to c

(1)
0 and

h
(1)
0 which are both zero vectors in our model (one can also learn them).

After all the frames are processed, we have a sequence of encodings S = {sb}
for b = 1, 2, · · · ,B. We construct another LSTM layer over S. The hidden states

of this layer are denoted by h
(2)
b . Of particular importance is h

(2)
B which is

regarded as the encoding vector for the whole video. (One can also introduce
more layers for finer-grained modeling [9], and we leave that for future work.)

The decoder layer is similar to the one in a standard non-hierarchical LSTM

(cf. Fig. 2). It does not have any input (except h
(2)
B initializes the first LSTM

unit in the layer), and its output is denoted by yl for l = 1, 2, · · · , L. Its hidden
states are denoted by vl, which is a function of the previous hidden state vl−1
and output yl−1. The output yl is parameterized as a function of vl.

Regression loss function for matching summaries In supervised learning
for video summarization, we maximize the accuracy of whether a particular
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frame/subshot is selected. To this end, one would set the output of the decoder
as a binary variable and use a cross-entropy loss function, cf. [65] for details.

In our model, however, we intend to treat the outputs as a shortened video se-
quence and regard yl as visual feature vectors (of shots). Thus, the cross-entropy
loss function is not applicable. Instead, we propose the following regression loss

`summary =

L∑
i

‖yl − gl‖22, (1)

where gl is a target vector corresponding to the l-th shot in the ground-truth
summary Z. Suppose this shot corresponds to the bl-th shot in the sequence of
shots B, where bl is between 1 and B. We then compose gl as the concatenation
of two vectors: (1) the encoding sbl of the bl-th shot as computed by the first
LSTM layer, and (2) the average of frame-level vectors xt within the bl-th shot.
We use x̄bl to denote this average. gl is thus given by

gl = [sbl x̄bl ]. (2)

This form of gl is important. While the goal is to generate outputs yl closely
matching the encodings of shots, we could obtain trivial solutions where the
LSTMs learn to encode shots as a constant vector and to output a constant
vector as the summary. The inclusion of the video’s raw feature vectors in the
learning effectively eliminates trivial solutions.

Embedding matching for the summary and the original The intuition
behind our modeling is that the outputs should convey the same amount of
information as the inputs. For summarization, this is precisely the goal: a good
summary should be such that after viewing the summary, users would get about
the same amount of information as if they had viewed the original video.

How to measure and characterize the amount of information conveyed in the
original sequence and the summary? Recall that the basic assumption about the
encoder LSTMs is that they compress semantic information of their inputs into

a semantic embedding, namely h
(2)
B , the final hidden state4. Likewise, if we add

another encoder to the decoder output Y , then this new encoder should also be
able to compress it into a semantic embedding with its final hidden state uL.
Fig. 2 illustrates the new re-seq2seq model structure.

To learn this “retrospective” encoder, we use the following loss

`match = ‖h(2)
B − uL‖22. (3)

Contrastive embedding for mismatched summary and original We can
further model the alignment between the summary and the original by adding

4 Otherwise, we would not have expected h
(2)
B to be able to generate the summary to

begin with.
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penalty terms that penalize mismatched pairs:

`mismatch =
∑
h′

[m+ ‖h(2)
B − uL‖22 − ‖h′ − uL‖22]+

+
∑
u′

[m+ ‖h(2)
B − uL‖22 − ‖h

(2)
B − u′‖22]+, (4)

where h′ (or u′) is the hidden state in the shot-level LSTM layer (or the re-

encoder LSTM layer) from a video other than h
(2)
B (or a summary other than

uL). m > 0 is a margin parameter and [·]+ = max(0, ·) is the standard hinge loss
function. In essence this loss function aims to push apart mismatched summaries
and videos.

Final training objective We train the models by balancing the different types
of loss functions

` = `summary + λ`match + η`mismatch, (5)

where the λ and η are tradeoff parameters.

Note that neither `match nor `mismatch requires human annotated summaries.
Thus they can also be used to incorporate unannotated video data which are
disjoint from the annotated data from which `summary is computed. Our empirical
results will show that learning with these two loss terms noticeably improves
learning with only the discriminative loss.

The specific forms of `match and `mismatch are also reminiscent of metric learn-
ing (for multi-way classification) [5]. In particular, we transform both the sum-
mary and the video into vectors (through a series of encoder/decoder LSTMs)
and perform metric learning in that abstract semantic space. However, differ-
ent from traditional metric learning methods, we also need to learn to infer the
desired representations of the structured objects (i.e. sequences of frames).

Implementation details Throughout our empirical studies, we use standard
LSTM units. The dimensions of the hidden units for all LSTM units are 256.
All LSTM parameters are randomly initialized with a uniform distribution in
[−0.05, 0.05]. The models are trained to converge with Adam [28] with an initial
learning rate 4e − 4, and mini-batch size of 10. All experiments are on a single
GPU. Please refer to the Suppl. for more details.

4 Experiments

We first introduce the experimental setting (datasets, features, metrics) in sec-
tion 4.1. We then present the main quantitative results in the supervised learn-
ing setting to demonstrate the advantages of the proposed approach over exist-
ing methods in section 4.2. We further validate the proposed approach in the
semi-supervised setting in section 4.3. We perform ablation studies and analyze
strengths and weaknesses of our approach in section 4.4 and 4.5.
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4.1 Setup

Datasets We evaluate on 3 datasets. The first two have been widely used to
benchmark summarization tasks [24, 38, 65, 68]: SumMe [19] and TVSum [50].
SumMe consists of 25 user videos of a variety of events such as holidays and
sports. TVSum contains 50 videos downloaded from YouTube in 10 categories.
Both datasets provide multiple user-annotated summaries per video.

Following [65], we also use Youtube [11] and Open Video Project (OVP)
[1, 11] as auxiliary datasets to augment the training data. We use the same set
of features, i.e. each frame xi is represented by the output of the penultimate
layer (pool 5) of GoogLeNet [53] (1024 dimensions). As pointed out in [65], the
limited amount of annotated data limits the applicability of supervised learning
techniques. Thus, we focus on the augmented setting (if not specified oth-
erwise) as in that work and other follow-up ones5. In this setting, 20% of the
dataset is used for evaluation, 20% is used for validation (in our experiments)
and the other 60% is combined with auxiliary datasets for training. We tune
hyperparameters, e.g. λ and η, w.r.t. the performance on the validation set.

We also demonstrate our model on a third dataset VTW [62] which is
large-scale and originally proposed for video highlight detection. In [66], it is
re-targeted for video summarization by converting the highlights into keyshots.
VTW collects user-generated videos which are mostly shorter than ones in
SumMe and TVSum. The dataset is split into 1500 videos for training and 500
videos for testing as in [66]. We have not been able to confirm the split details
so our results in this paper are not directly comparable to their reported ones.

Shot boundary generation As mentioned in section 3, shot boundaries for
each video are required for both training and testing. However, none of the
datasets used in the experiments are annotated with ground-truth shot bound-
aries: VTW is annotated only for keyshots, SumMe is annotated by multiple
users for keyshots, and TVSum is annotated by fix-length intervals (2 seconds).
To this end, we train a single-layer LSTM for shot-boundary detection with
another disjoint dataset, CoSum [8]. CoSum has 51 videos with human anno-
tated shot-boundaries. The LSTM has 256−dim hidden units and is trained for
150 epochs with learning rate 4e− 4. We then threshold the predictions on any
new videos to detect the boundaries. The best thresholds are determined by the
summarization performance on the validation set. Please refer to details on shot
boundary detection in the Suppl.

Evaluation Given the heterogeneous video types and summary formats in these
datasets, we follow the procedures outlined in [65, 66] to prepare training, valida-
tion, and evaluation data. In particular, we set the threshold of the total duration
of keyshots as 15% of the original video length (for all datasets), following the
protocols in [19, 50, 66]. Then we compare the generated summary A to the user

5 Zhao et al. [66] use a larger dataset MED [45] to augment the training, which results
in a larger number of videos (235), as opposed to 154 video in [65, 24, 38, 68]. Since
their code is unavailable, we have re-implemented their method to the best of our
knowledge from their paper and experimented in the same setting as ours and others.
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Table 1. Performance (F-score) of various supervised video summarization methods
on three datasets. Published results are denoted in italic; our implementations are in
normal font. Nonzero values of λ and η represent contributions from relevant terms in
our models.

SumMe TVSum VTW

dppLSTM [65] 42.9 59.6 44.3

SUM-GAN [38] 43.6 61.2 -

DR-DSN [68] 43.9 59.8 -

H-RNN [66] 43.6 61.5 46.9

seq2seq (frame only) 40.8 56.3 -

re-seq2seq (λ = 0, η = 0) 43.2 61.9 45.1

re-seq2seq (λ = λ∗, η = η∗) 44.9 63.9 48.0

summary B for evaluation, by computing the precision (P) and recall (R), ac-
cording to the temporal overlap between the two, as well as their harmonic mean
F-score [18, 19, 50, 65, 38, 66]. Higher scores are better. Please refer to the Suppl.
for details on the performance and evaluation with user summaries.

4.2 Supervised Learning Results

In Table 1, we compare our approach to several state-of-the-art supervised meth-
ods for video summarization. We report published results in the table as well as
results from our implementation of [66]. Only the best variants of all methods
are quoted and presented. We have implemented a strong baseline re-seq2seq
(λ = 0, η = 0), trained with the objective function eq. (5) described in section 3.
This baseline is different from the LSTM-based seq2seq models in [65] where the
model is frame-based, to which we refer as seq2seq (frame only). re-seq2seq
(λ = 0, η = 0) has the advantage of hierarchical modeling. Optimal λ∗ and η∗

are tuned over the validation set and λ∗ = 0.1, 0.1, 0.2 and η∗ = 0.15, 0.1, 0.2 for
SumMe, TVSum, and VTW, respectively. The cells with red-colored numbers
indicate the best performing methods in each column.
Main results Our approach re-seq2seq (λ = λ∗, η = η∗) performs the best
on all 3 datasets. Hierarchical modeling is clearly advantageous, evidenced by
the performance of all our model variations and [66]. Our model re-seq2seq
(λ = 0, η = 0) is slightly worse than [66], most likely due to the fact we use
regression as summary loss while they use cross-entropy. Note that regression
loss is needed in order to incorporate matching and mismatching losses in our
model, cf. eq (5). The advantage of incorporating the retrospective encoder loss
is clearly evidenced.

4.3 Semi-Supervised Learning Results

Next we carry out experiments to show that the proposed approach can ben-
efit from both unlabeled and labeled video data. For labeled data, we use the
same train and test set as in the augmented setting, i.e. OVP + Youtube +
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Table 2. F-scores on the TVSum dataset in the semi-supervised learning setting. n
indicates the number of unannotated videos used for training.

n = 0 n = 150 n = 500 n = 1000 n = 1500 n = 1800

pre-training
63.9

64.1 64.4 64.5 64.7 64.9
joint-training 64.1 64.7 64.9 65.1 65.2

Table 3. Performance of our model with different types of shot boundaries.

SumMe TVSum

re-seq2seq (λ = λ∗, η = 0) w/ KTS 44.5 62.8

re-seq2seq (λ = λ∗, η = 0) w/ LSTM 44.6 63.0

re-seq2seq (λ = λ∗, η = η∗) w/ KTS 44.8 63.6

re-seq2seq (λ = λ∗, η = η∗) w/ LSTM 44.9 63.9

SumMe + 80%TVSum, and 20% TVSum, respectively. For unlabeled data, we
randomly sample n videos from the VTW dataset and ignore their annotations.
We investigate two possible means of semi-supervised training:

(1) pre-training : the unlabeled data are used to pre-train re-seq2seq to mini-
mize `match and `mismatch only. The pre-trained model is further fine-tuned
with labeled training data to minimize eq. (5).

(2) joint-training : We jointly train the model with labeled training data and
unlabeled data: we minimize eq. (5) for labeled data, and minimize `match
and `mismatch for unlabeled data.

Note that the test set is only for testing and not used as either labeled or unla-
beled data during training, which is different from the transductive setting [38].
Results are shown in Table 2. In general, both pre-training and joint-training
show improvements over supervised learning, and joint-training seems slightly
better with more unlabeled data. Results are also encouraging in showing that
more unlabeled data can help improve more.

Table 4. Performances of transductive setting on SumMe and TVSum.

SumMe TVSum

SUM-GAN [38] 43.6 61.2

re-seq2seq (λ = λ∗, η = η∗) 45.5 65.4

4.4 Ablation Study

Shot-boundaries Shot boundaries play an important role in keyshot-based
summarization methods. In this paper we learn an LSTM to infer the shot bound-
aries, while in [65] an unsupervised shot boundary detection method, KTS [45],
is applied. Table 3 reports the performances of our model with shot boundaries
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Table 5. Performance of the proposed approach with different choices of λ and η

SumMe TVSum VTW

re-seq2seq (λ = 0, η = 0) 43.2 61.9 45.1

re-seq2seq (λ = λ∗, η = 0) 44.6 63.0 47.7

re-seq2seq (λ = 0, η = η∗) 44.6 63.2 47.8

re-seq2seq (λ = λ∗, η = η∗) 44.9 63.9 48.0

generated by KTS and the learned LSTM, respectively. The main observation is
better shot boundary detection in general improves summarization.
Transductive setting To make a fair comparison to [38], we next perform our
model in the transductive setting, where the testing data are included in com-
puting the two new loss terms `match and `mismatch. The results are shown in
Table 4 and they are clearly stronger than those in the supervised setting (Ta-
ble 1). One possible interpretation for this case is that our model maps the video
and its summary in close proximity while the reconstruction from a summary to
the original video in [38] may be lossy or even unattainable.
Contributions of each loss term Table 5 reports experiments of the proposed
approach with different combinations of `match and `mismatch through their bal-
ancing parameters, i.e. λ and η. To summarize, jointly minimizing both loss
terms brings the state-of-the-art performance on all datasets. Furthermore, the
performances of different combinations of loss terms are consistent across the
3 datasets: using `mismatch alone gets the same or slightly better performances
compared to using `match alone, while combining both of them always obtains
the best performance. Please refer to the Suppl. for model details.
Other detailed analysis in Suppl. We summarize additional discussions as
follows. We show that summaries by our approach obtain comparable diversity
to ones by dppLSTM [65]. We also show that our approach outperforms the
autoencoder-based method [60]. We further analyze the correlation between our
approach and recent works [48, 49] on the query-focused summarization.

4.5 Qualitative Results and Analysis

How does re-seq2seq summarize differently than regular seq2seq ? We
examine a few exemplar video summarization results in Fig. 3 to shed light on
how the learning objective of re-seq2seq affects summarization results. Our
approach aims to reduce the difference in semantic embeddings for both input
videos and output summaries, cf. eq. (5). Balancing the need to match between
the outputs and human summaries, it would be sensible for our approach to
summarize broadly. This will result in comprehensive coverage of visual features,
and thus increase the chance of more similar embeddings. The opposite strategy
of selecting from a concentrated area is unlikely to yield high similarity as the
selected frames are unlikely to provide a sufficient coverage of the original.

Fig. 3 precisely highlights the strategy adopted by our approach. The video of
Fig. 3(a) is about bike parades. re-seq2seq (λ = 0, η = 0) summarizes the mid-
section of the video, but completely misses the important part in the beginning,
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Fig. 3. Exemplar videos and predicted summaries by re-seq2seq (λ = λ∗, η = η∗)
(blue) and re-seq2seq (λ = 0, η = 0) (red). Pictures on the top are sampled from
the video and ones in the bottom are sampled from the corresponding summary. The
ground-truth importance scores are shown as gray background. See text for details.

which tells us the parades actually start from suburb via a bridge to downtown.
In contrast, re-seq2seq (λ = λ∗, η = η∗) selects broadly from video shots, which
show much better consensus with the video. In Fig. 3(b), however, re-seq2seq
(λ = λ∗, η = η∗) underperforms (slightly) re-seq2seq (λ = 0, η = 0). The video
depicts a flash mob in Copenhagen. re-seq2seq (λ = 0, η = 0) gets a better F-
score by focusing on the mid-section of the video where there are a lot of human
activities and is able to correctly get the major events in that region. re-seq2seq
(λ = λ∗, η = η∗), on the other hand, spreads out its selection and takes only a
small part of the major event compared to re-seq2seq (λ = 0, η = 0).

While more error analysis is desirable, these preliminary evidences seem to
suggest that re-seq2seq (λ = λ∗, η = η∗) would work well for videos that depict
various scenes and activities that follow a storyline. In particular, it might not
work well with “bursty videos” where there are interesting but short shots of
videos scattered in the middle of a large number of frames with non-essential
information likely to be discarded when summarized.

Can re-seq2seq lead to semantically similar embeddings between the
video and summary? Here we evaluate how well the video and summary can
be embedded in close proximity. Videos used here are sampled from the TVSum
dataset. For re-seq2seq (λ = 0, η = 0), we input the summary to the same
encoder as for videos and obtain the outputs of the encoder as the embedding,
and in re-seq2seq (λ = λ∗, η = η∗), we collect the embedding for the summary
from the retrospective LSTM encoder. We then use t-SNE [37] to visualize the
embeddings in 2d space as shown in Fig. 4. We use circles to denote video
embeddings, and crosses for summary embeddings. Each video-summary pair is
marked by the same color.
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(a) re-seq2seq(λ = 0, η = 0) (b) re-seq2seq(λ = λ∗, η = η∗)

Fig. 4. t-SNE visualization of semantic encodings of videos (denoted as •) and their
summaries (denoted as ×). Corresponding pairs are in the same color. The closer they
are the better. Each dashed ellipsoid indicates that a video is the nearest neighbor to
its summary after embedding. See text for details.

We can clearly observe that the video and its summary are mostly embedded
much closer by re-seq2seq (λ = λ∗, η = η∗)(Fig. 4 (b)) than ones by re-seq2seq
(λ = 0, η = 0)(Fig. 4 (a)). In particular the video embedded by re-seq2seq
(λ = λ∗, η = η∗) mostly has its corresponding summary as the nearest neighbor,
while this is usually not the case in ones by re-seq2seq (λ = 0, η = 0). More-
over, embeddings of videos and summaries in Fig. 4 (a) are ‘clustered’ together
compared to ones in Fig. 4 (b), where different pairs of video and summary are
relatively far away from each other. This shows the proposed approach embeds
a summary and its original video into similar locations, while pushing apart
mismatched summaries and original videos.

5 Conclusion

We propose a novel sequence-to-sequence learning model for video summariza-
tion that not only minimizes the discriminative loss for matching the generated
and target summaries, but also embeds corresponding video and summary pairs
in close proximity in an abstract semantic space. The proposed approach exploits
both labeled and unlabeled videos to derive semantic embeddings. Extensive ex-
perimental results on multiple datasets show the advantage of our approach over
existing methods in both supervised and semi-supervised settings. In the future,
we plan to explore more delicate strategies to combine unlabeled data during
training to improve summarization performance.
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