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Example crash consistency bug
mkdir(A);fsync(A);CRASH!
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Output of ls –l in parent directory:

Expected:
total 0
drwxr-xr-x 2 root root 4096 Nov 9 08:23 A

Actual:
ls: cannot access 'A': Input/output error 
total 0 
d????????? ? ? ? ? ? A



Projects
1. Fuzzing for persistent memory file system crash 

consistency bugs
2. Ext4 journal verification
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Persistent memory (PM)
• Non-volatile
• Similar performance to 

DRAM
• Byte-addressable
• High capacity
• File systems: NOVA, SplitFS, 

Strata, ext4-DAX…
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General approach
•Based on CrashMonkey+ACE (OSDI’18)
•Record-and-replay approach

1. Run a workload that accesses the file system
2. Record writes to persistent media via file system
3. Replay writes up to simulated crash point
4. Check consistency

• Some new challenges…
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Challenges
•How to log writes?
• CrashMonkey: intercept block I/O by mounting FS on 

wrapper block device
•PM writes are made via memory load/store interface
•Data must be explicitly flushed or bypass cache with 

special assembly instructions to guarantee durability 
Key issue: no software layer at which to intercept 
writes
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Challenges
•What types of programs should we test on?
• Few known bugs, little existing work

The NOVA team was aware of one crash-consistency 
bug in their file system 

8



Current approach
•Observation: most writes/flushes to PM in file systems 

are made by a small set of central library functions
• Loadable kernel module to automatically instrument 

PM writer functions

•Baseline: tests from ACE
• Found 4 bugs in NOVA with ACE-generated test cases!
• All confirmed and fixed in main NOVA repo
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NOVA crash consistency bugs
•NULL pointer dereference in recovery procedure on 1 

core due to bug in per-CPU metadata access
•Made crash recovery impossible on single core machines

• fsync’ed directory inaccessible due to missing flush 
on an inode field after mkdir
• File system unwritable due to lack of flush of updated 

inumber information after mkdir
•New directory unreadable and undeletable due to 

lack of flush on inode valid field after mkdir
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Next steps
• Fuzzing
• Generate new test programs based on past programs that 

exposed bugs
• Syzkaller (Linux kernel fuzzer) for generating syntactically 

valid sequences of file system calls
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Projects
1. Fuzzing for persistent memory file system crash 

consistency bugs
2. Ext4 journal verification
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File system verification
•Can we formally prove that a file system has no crash 

consistency bugs?
• Some prior work
• FSCQ (SOSP ‘15)
• Yggdrasil (OSDI ’16)

•Problem: no work on verifying existing file systems
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Very quick verification background
•Hoare triples: {P} S {Q}
• For a precondition P, a statement S, and a postcondition 

Q: assume P and execute S. 
• If Q always holds, the triple is valid

•Hoare triples form basis of deductive program 
verification
•Can specify a program using Hoare triples and check 

correctness using SMT solver
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Our goal: formally verify Linux’s JBD2 
journaling system
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Current approach
• Exploring both bounded 

model checking and full 
deductive verification
•One possible workflow:
• Boogie: intermediate 

verification language
• Corral: bounded verifier
• SMACK: C à Boogie translator
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Challenges
•How best to model on disk state?
•How to reduce amount of manual effort?
• Is bounded verification feasible?
• Is full verification feasible?
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Conclusion
•Crash consistency bugs can have serious 

consequences in real file systems
• PM file systems
•Mature systems like ext4

• Exploring 2 approaches to finding bugs
•Record-and-replay + fuzzing for PM file systems
• Formal verification of ext4 journal
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Supplemental slides
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Writing to PM
• x86
• CLWB: flush a cache line to 

persistent memory
• SFENCE: enforces order in 

which memory stores 
become globally visible 
• CLWB+SFENCE: enforces 

order in which data is made 
durable in PM

No CLWB è data is not guaranteed to be persisted! 21



Very quick ext4 background
• Ext4: most widely used Linux file system
•Uses a journal (JBD2) to ensure crash consistency
•Make a note of new operations in journal before actually 

executing them
• If we crash, replay journal onto the main FS

Transaction 
1 start Some data Some more 

data
Transaction 

1 end
Transaction 

2 start …
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Corral
•Reachability problem: for a control flow graph, does 

there exist a path from the initial state to the error 
state?
• I.e., is there an execution that establishes the presence of 

an error?
• In general, recursively enumerable and undecidable

•Reachability is decidable for bounded programs
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Corral
• Takes a recursion bound from the user
• Statically inlines loops and recursive procedures up to 

provided bound
• Inlined program can be verified as though it is a 

program with no loops
•Makes verification decidable because all possible 

executions can now be explored
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