
Finding File System Crash 
Consistency Bugs Through 

Fuzzing and Verification
Hayley LeBlanc, Vijay Chidambaram, James Bornholt, Isil Dillig



2



Example crash consistency bug
mkdir(A);fsync(A);CRASH!

3

Output of ls –l in parent directory:

Expected:
total 0
drwxr-xr-x 2 root root 4096 Nov 9 08:23 A

Actual:
ls: cannot access 'A': Input/output error 
total 0 
d????????? ? ? ? ? ? A



Projects
1. Fuzzing for persistent memory file system crash 

consistency bugs
2. Ext4 journal verification

4



Persistent memory (PM)
• Non-volatile
• Similar performance to 

DRAM
• Byte-addressable
• High capacity
• File systems: NOVA, SplitFS, 

Strata, ext4-DAX…

5



General approach
•Based on CrashMonkey+ACE (OSDI’18)
•Record-and-replay approach

1. Run a workload that accesses the file system
2. Record writes to persistent media via file system
3. Replay writes up to simulated crash point
4. Check consistency

• Some new challenges…

6



Challenges
•How to log writes?
• CrashMonkey: intercept block I/O by mounting FS on 

wrapper block device
•PM writes are made via memory load/store interface
•Data must be explicitly flushed or bypass cache with 

special assembly instructions to guarantee durability 
Key issue: no software layer at which to intercept 
writes

7



Challenges
•What types of programs should we test on?
• Few known bugs, little existing work

The NOVA team was aware of one crash-consistency 
bug in their file system 

8



Current approach
•Observation: most writes/flushes to PM in file systems 

are made by a small set of central library functions
• Loadable kernel module to automatically instrument 

PM writer functions

•Baseline: tests from ACE
• Found 4 bugs in NOVA with ACE-generated test cases!
• All confirmed and fixed in main NOVA repo

9



NOVA crash consistency bugs
•NULL pointer dereference in recovery procedure on 1 

core due to bug in per-CPU metadata access
•Made crash recovery impossible on single core machines

• fsync’ed directory inaccessible due to missing flush 
on an inode field after mkdir
• File system unwritable due to lack of flush of updated 

inumber information after mkdir
•New directory unreadable and undeletable due to 

lack of flush on inode valid field after mkdir
10



Next steps
• Fuzzing
• Generate new test programs based on past programs that 

exposed bugs
• Syzkaller (Linux kernel fuzzer) for generating syntactically 

valid sequences of file system calls

11



Projects
1. Fuzzing for persistent memory file system crash 

consistency bugs
2. Ext4 journal verification

12



File system verification
•Can we formally prove that a file system has no crash 

consistency bugs?
• Some prior work
• FSCQ (SOSP ‘15)
• Yggdrasil (OSDI ’16)

•Problem: no work on verifying existing file systems

13



Very quick verification background
•Hoare triples: {P} S {Q}
• For a precondition P, a statement S, and a postcondition 

Q: assume P and execute S. 
• If Q always holds, the triple is valid

•Hoare triples form basis of deductive program 
verification
•Can specify a program using Hoare triples and check 

correctness using SMT solver
14



Our goal: formally verify Linux’s JBD2 
journaling system

15



Current approach
• Exploring both bounded 

model checking and full 
deductive verification
•One possible workflow:
• Boogie: intermediate 

verification language
• Corral: bounded verifier
• SMACK: C à Boogie translator

16



Challenges
•How best to model on disk state?
•How to reduce amount of manual effort?
• Is bounded verification feasible?
• Is full verification feasible?

17



Conclusion
•Crash consistency bugs can have serious 

consequences in real file systems
• PM file systems
•Mature systems like ext4

• Exploring 2 approaches to finding bugs
•Record-and-replay + fuzzing for PM file systems
• Formal verification of ext4 journal

18



19



Supplemental slides

20



Writing to PM
• x86
• CLWB: flush a cache line to 

persistent memory
• SFENCE: enforces order in 

which memory stores 
become globally visible 
• CLWB+SFENCE: enforces 

order in which data is made 
durable in PM

No CLWB è data is not guaranteed to be persisted! 21



Very quick ext4 background
• Ext4: most widely used Linux file system
•Uses a journal (JBD2) to ensure crash consistency
•Make a note of new operations in journal before actually 

executing them
• If we crash, replay journal onto the main FS

Transaction 
1 start Some data Some more 

data
Transaction 

1 end
Transaction 

2 start …
22



Corral
•Reachability problem: for a control flow graph, does 

there exist a path from the initial state to the error 
state?
• I.e., is there an execution that establishes the presence of 

an error?
• In general, recursively enumerable and undecidable

•Reachability is decidable for bounded programs

23



Corral
• Takes a recursion bound from the user
• Statically inlines loops and recursive procedures up to 

provided bound
• Inlined program can be verified as though it is a 

program with no loops
•Makes verification decidable because all possible 

executions can now be explored

24


