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Abstract—JIT spraying allows an attacker to subvert a Just-
In-Time compiler, introducing instruction sequences useful to the
attacker into executable regions of the victim program’s address
space as a side effect of compiling seemingly innocuous code in
a safe language like JavaScript.

We present new JIT spraying attacks against Google’s V8
and Mozilla’s SpiderMonkey JavaScript engines on ARM. The
V8 attack is the first JIT spraying attack not to rely on
instruction decoding ambiguity, and the SpiderMonkey attack
uses the first ARM payload that executes unintended instructions
derived from intended instruction bytes without resynchronizing
to the intended instruction stream. We review the JIT spraying
defenses proposed in the literature and their currently-deployed
implementations and conclude that the current state of JIT
spraying mitigation, which prioritizes low performance overhead,
leaves many exploitable attacker options unchecked.

We perform an empirical evaluation of mitigations with low
but non-zero overhead in a unified framework and find that full,
robust defense implementations of diversification defenses can
effectively mitigate JIT spraying attacks in the literature as well
as our new attacks with a combined average overhead of 4.56%
on x86-64 and 4.88% on ARM32.

I. INTRODUCTION

Web browsers are complex programs and continue to
exhibit soundness errors in their memory access patterns that
form the basis for a broad array of exploits. The combination
of the large legacy software footprint and performance over-
head concerns have limited the practical effect of proposals
to rewrite browsers in memory-safe languages or with tight
runtime control flow integrity checks. Instead, most industrial
browser developers focus on the use of mitigations that prevent
control flow violations from being reliably exploited (e.g.,
stack cookies, W ⊕ X, Address Space Layout Randomization
(ASLR), safe memory management functions, pointer encryp-
tion, Microsoft EMET, etc.) While none of these are fool proof,
taken together they have been highly effective at complicating
the exploitation of vulnerabilities.

However, one major loophole remains in the form of “Just-
In-Time” (JIT) compilation. All of today’s browsers make use

of JIT compilation to improve JavaScript performance and
thus require data pages be writable and executable (and for
reasons we will explain, typically allow pages to be in both
states simultaneously for extended periods of time). Thus,
by combining this implicit ability to create new executable
code (implicitly bypassing W ⊕ X) with the heap spraying
technique commonly used to bypass ASLR defenses, attackers
can still inject new code and blindly redirect to it. While a
range of defenses against such “JIT spraying” attacks have ben
proposed, modern browsers typically only implement versions
of those mitigations that have extremely low overhead (e.g.,
occasionally blinding large constants).

In this paper we explore the practical import of these
choices. Our first contribution is to demonstrate the feasibility
of two new JIT spraying attacks affecting web browsers on
Android phones, the first of which provides practical code
injection against the Chrome V8 JIT on ARM and the second
of which provides Turing-complete malicious computation
against Mozilla’s SpiderMonkey JIT on ARM. Thus, taken
together with recent work by Lian et al. [17] showing JIT
spraying vulnerabilities in Webkit (i.e., Apple phones), all
major smartphone browsers (almost 2 billion computers) are
vulnerable to this style of attack. Our second contribution is a
collection of open source implementations of existing proposed
JIT spraying mitigations for SpiderMonkey on both ARM32
and x86-64 and empirical evaluations of their performance
overhead on a consistent testing platform. We find that en-
abling constant blinding—which incurs the highest overhead
of any single mitigation that we implemented—can reduce
the probability of landing a JIT spray exploit by a factor of
2.41× 10462 with an overhead of just 1.39% and 3.99% on
x86-64 and ARM32, respectively. We argue that the value of
mitigation justifies the small performance penalty and that JIT
developers should implement register randomization, constant
blinding, call frame randomization, random NOP insertion,
and base offset randomization (with combined average runtime
overheads of 4.56% and 4.88% on x86-64 and ARM32,
respectively) to close this remaining code reuse loophole.

II. BACKGROUND

When a JIT compiler compiles code in a high level
language into native instructions, the opcodes and operands it
emits are heavily influenced by the potentially-untrusted high
level code. Furthermore, the high level code can create new
native code at-will by dynamically creating and evaluating new
code. This grants the untrusted party who wrote the high level
code unprecedented influence over large swaths of executable
memory in the language runtime’s address space. Blazakis [7]
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9090B8 90 90 90 3C 35 90 90 90 3C 35 90 3C

mov eax, 3c909090h xor eax, 3c909090h xor eax, 3c909090h

NOP cmp al, 
35hNOPNOPcmp al, 

35hNOP NOP NOP NOP NOP NOP

Fig. 1: Illustration of a NOP sled encoded in the bytes imple-
menting the statement x = 0x3c909090 ˆ0x3c909090
ˆ0x3c909090;

was the first to publicize an attack which leveraged these
properties of a JIT compiler to perform code injection on x86.
In the attack, the adversary encodes a NOP sled and shellcode
in a seemingly-innocuous sequence of bitwise XOR operations
resembling the following:

x = 0x3c909090 ˆ 0x3c909090 ˆ 0x3c909090;

When compiling the above, the ActionScript JIT compiler
produces the bytes shown in dashed boxes in Figure 1, which
encode the x86 instructions shown in the solid-bordered boxes
below them. However, since x86 instructions have variable
lengths and can be decoded at any byte alignment, an alternate
decoding of the bytes can be observed by disassembling from
any unintended instruction boundary, as shown in the bottom
row of Figure 1 in double-lined boxes. This alternate decoding
functions as a NOP sled which lands at 4 out of 5 byte offsets
and can be extended without resynchronizing to the intended
instruction stream as long as the opcode bytes for XOR (the
0x35 bytes) continue to be consumed as instruction operands.

In an actual attack, the NOP sled would be lengthened
by extending the chain of XORed 0x3c909090 constants,
and eventually the 0x90 bytes would be replaced with the
encodings for shellcode instructions, with the limitation that
each shellcode instruction fit into three consecutive 0x90 byte
slots. The attacker would place the XOR chain statement in a
function then repeatedly declare and invoke it in order to cause
the JIT compiler to fill as many pages as possible of executable
memory with the hidden NOP sled and shellcode. By spraying
NOP sleds that are much larger than the shellcode, execution
beginning at a random address in sprayed code has nearly an
80% chance of successfully executing the shellcode.

More generally, the opportunities for exploitation intro-
duced by JIT compilers are code reuse (e.g., the attack
described above) and code corruption, wherein the attacker
abuses the fact that JIT code memory must, at some point in
time (or for many JITs, at all times), be writable. Writable
code memory—once thought to be a relic of the bygone
pre-W ⊕ X era—is necessary not only for the JIT to create
and delete code, but also for the frequent patching many
JIT implementations undertake to support inline caching, a
performance optimization employed by nearly all JavaScript
JIT compilers to ease the burden of the dynamic type system.

Since Blazakis first brought JIT spraying into the public
eye, it has been extended to JavaScriptCore’s non-optimizing
JIT for x86 [26], Mozilla’s JaegerMonkey and TraceMonkey
JITs [25] for x86, the Tamarin ActionScript JIT for ARM [6],
and JavaScriptCore’s optimizing JIT for ARM’s Thumb-2
instruction set [17]. JIT compilers have also been abused to

construct ROP gadgets that are exploited with the aid of a
memory disclosure vulnerability [4], [18]. With the exception
of [18], all past incarnations of JIT spraying have relied on
constant values supplied by the attacker in high level code; and
without exception, all past JIT spraying attacks have made use
of malicious instructions encoded at instruction boundaries not
intended by the JIT compiler. These attacks would be thwarted
by a robust implementation of constant blinding (cf. §IV). In
§III-B, we will introduce a new JIT spraying attack against V8
on ARM which is the first JIT spraying attack that does not
rely on the execution of JIT code at unintended instruction
boundaries and, like [18], does not abuse the translation of
untrusted constants into instruction operands in JIT code.

III. NOVEL JIT SPRAYING THREATS AGAINST ARM
In this section, we present two novel JIT spraying threats

against ARM. The first (§III-B) is a proof of concept end-to-
end attack against Chrome’s V8 JavaScript engine that applies
Lian et al.’s gadget chaining technique [17]. Its novelty rests
in the distinction that, unlike all prior JIT spraying attacks,
this one does not rely on the improper disassembly of JIT
code. Afterwards, we describe a method for encoding a “self-
sustaining” JIT spraying payload which, in contrast to prior
JIT spraying payloads for ARM, can execute an arbitrary
number of malicious instructions without resynchronizing to
the intended instruction stream (§III-C). We used this method
to implement a proof of concept payload against Mozilla’s
SpiderMonkey JavaScript engine which interprets instructions
for a One Instruction Set Computer.

A. Instruction sets on ARM

The discussion of our new threats hinge on an under-
standing of certain low-level details of the ARM architecture.
Therefore, we briefly introduce relevant aspects of the instruc-
tion sets supported by 32-bit ARM chips1. Recent ARM chip
designs (ARMv6T2 and later) have mandatory support for
at least two instruction sets. These are the original “ARM”
instruction set, and the newer “Thumb-2” instruction set. The
ARM instruction set is composed of fixed-width 32-bit instruc-
tions stored in memory as 32-bit-aligned words. The Thumb-2
instruction set, on the other hand, is designed for improved
code density and contains both 16-bit and 32-bit wide instruc-
tions stored in memory as a single 16-bit aligned halfword and
two consecutive 16-bit aligned halfwords, respectively.

At any given time, a 32-bit ARM core is said to be exe-
cuting in either “ARM mode” or “Thumb mode.” Interworking
between ARM code and Thumb-2 code is possible through the
use of unprivileged interworking branch instructions, which
either unconditionally toggle the processor between modes
or derive the desired execution mode of the branch target
from the least significant bit of the branch target address.
Since both ARM and Thumb-2 instructions are aligned to at
least 16-bit boundaries, the least significant bit of any valid
instruction address is unused. Interworking branch instructions
take advantage of this by repurposing the bit. If the bit is set,
the target is executed in Thumb mode; otherwise it is executed
in ARM mode.

1Support for a 64-bit instruction set called A64 was introduced in ARMv8-
A. However, since support for A64 is not mandatory in ARMv8-A, and many
32-bit ARM chips remain on the market, we do not consider omission of A64
a significant limitation.
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B. JIT spraying on ARM without improper disassembly

In this subsection, we describe a new proof of concept
attack against Chrome’s V8 JavaScript engine on ARM which
demonstrates—for the first time against any architecture—the
feasibility of carrying out a JIT spraying attack that uses JIT-
emitted instruction bytes without exploiting ambiguity in the
decoding of those instructions. In fact, this attack relies on
neither untrusted constants appearing in JIT code as immediate
operands nor execution of JIT code at unintended instruction
boundaries. Since V8’s JIT compiler emits fixed-width 32-bit
ARM instructions, the latter non-dependency is trivial, pro-
vided that the JIT spraying payload is executed in ARM mode.

The V8 attack uses the gadget chaining technique intro-
duced by Lian et al.[17]; gadget chaining is a technique in
which an attacker’s high level language (HLL) code (e.g.,
JavaScript) is able to treat unsafe computation performed by
reused code as though it were a subroutine. The attacker’s HLL
code invokes a control flow vulnerability to branch to a reused
code snippet, which performs unsafe computation then returns
control flow back to the HLL code. Each reused snippet is
referred to as a “gadget,” and each gadget may or many not
take arguments or return values to the HLL code. The use of
gadget chaining gadgets differs from ROP gadgets, however,
in that control flow after a gadget chaining gadget returns does
not continue directly to another gadget, but rather back to the
language runtime where the HLL code resumes execution.

The high level structure of the proof of concept attack is as
follows. After JIT spraying a particular store instruction (the
store gadget) into memory, the attacker clears the victim’s i-
cache of the sprayed store gadgets by calling numerous DOM
functions. She then guesses the address of a store gadget and
uses a hijacked virtual host function call2 to simultaneously
branch to that address and control the contents of the input
registers used by the store gadget. The first invocation of
the store gadget writes a return instruction (bx lr) into JIT
code a short distance after the store instruction. Subsequent
invocations are made in order to write 4 bytes at a time
of shellcode into the memory following the injected return
instruction. The victim’s i-cache is cleared once more, and
a final invocation of the store gadget overwrites the injected
return instruction with a NOP instruction and the execution of
the shellcode. The details of gadget layout and creation, the
artificial control flow vulnerability, and failure-tolerant gadget
invocation are described below.

1) Gadget layout and creation: The sprayed store gadget
consists of an intended store instruction used to spill a live
value onto the stack followed by at least one i-cache line (128
bytes on our test machine) of padding instructions that perform
bitwise operations over caller-saved registers. The injected
return instruction will be written after the one i-cache line
padding so that it will be executed during the same gadget
invocation that it is injected. The padding instructions must not
access memory because they are likely to cause a segmentation
fault or clobber critical machine state. They must also operate
only on caller-saved registers because they will execute as
intended and must preserve the values of callee-saved registers
for when the gadget returns.

2This was a vulnerability which we artificially injected into V8.

It is necessary to inject a return instruction rather than
allowing control flow fall through into the enclosing function’s
epilogue and return instruction because the epilogue performs
stack cleanup and loads the return address from the stack,
both of which would prevent a proper return to high level
language (HLL) code given our decision to use an injected
control flow vulnerability in the form of a hijacked virtual host
function call. When control flow arrives at the gadget under
those circumstances, the stack is not setup properly for a JIT
function epilogue to clean it up, and the return address resides
in the link register (LR) rather than on the stack. However, once
the store instruction has written its return instruction during its
first invocation, the gadget is a reusable primitive that can be
called repeatedly to overwrite arbitrary words in memory.

The sprayed store instruction is str r2, [r11,
#-20], where r11 is used as a frame pointer register in
V8’s JIT code. The JavaScript function whose JIT compilation
results in the emission of a spray gadget defines numerous
variables which are used in the computation of the return value.
By defining more such variables than there are allocatable
registers, V8’s optimizing JIT will begin spilling values onto
the stack. The sprayed store instruction is one such spilling
instruction. We eval() the definition and repeated invocation
of the sprayed function to trigger optimized compilation and
the spraying of a store gadget. Optimized compilation is neces-
sary because only the optimized compiler allocates and spills
registers, which are necessary to create the store instruction
and the subsequent memory-access-free padding instructions.

2) Artificial control flow vulnerability: For our proof of
concept attack, we simulated a memory corruption vulnera-
bility that could be used to hijack the virtual function table
pointer of a DOM object. We added a JavaScript host function
hijackVTable into V8 that performs the desired corruption.
Hijacked virtual functions are especially useful for a gadget
chaining because they can serve two purposes: subverting
control flow and controlling the gadget’s operands, which in
the case of the store gadget are two registers. We make use of
the DOM’s Blob class and its slice() method, which is
implemented as a C++ virtual function and accepts two longs
as arguments that can be controlled by a JavaScript caller. We
were fortunate that both arguments eventually reside in the
registers used by the store gadget (R2 and R11), despite the
fact that one of the long arguments is actually passed on the
stack. This occurs because the various trampolines executed to
shuffle values between the JavaScript calling convention and
the architecture ABI calling convention happen to leave a copy
of the stack-passed argument in R11.

3) Failure-tolerant invocation: In order to use the store
gadget, our control flow vulnerability must be able to precisely
target the gadget’s store instruction; if execution begins before
the store instruction, the intended instructions before it could
clobber the source register operand. If execution begins after
it, the new return sequence cannot be patched in during the
gadget’s first invocation, most likely leading to a crash. To
solve this problem, we place the gadget at a (semi-)predictable
offset within each coarse-grained memory allocation chunk.

V8’s code memory allocator maps a new 1MB chunk of
RWX memory if it can’t fulfill an allocation request from the
current pools of free JIT code memory. Allocation requests
are then satisfied starting at the low-addressed end of the
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new chunk. If we could coerce V8 into placing a copy of the
optimized function containing the store gadget as the first unit
of code compilation in each fresh 1MB code chunk, we would
need to guess only which 1MB chunk contains a sprayed
gadget (i.e., the most significant 12 bits of a 32-bit address).

Unfortunately, due to the nature of V8’s JIT compilation
pipeline, it is not possible to guarantee that the store gadget
will be the first unit of code compilation placed in each 1MB
chunk. During a single function instance’s lifetime from dec-
laration to optimized compilation, V8 produces four different
pieces of code which contend for the coveted first slot. They
are the anonymous function that declares the function being
sprayed, the unoptimized JIT code for the function being
sprayed, a second copy of the unoptimized JIT code (which is
produced once more after V8 decides to compile the function
with the optimized compiler), and the optimized JIT code for
the function being sprayed.

For reasons which will become apparent, it is essential
that these four pieces of code are emitted in that exact order,
with no interleaving between parts of consecutively-sprayed
instances of the function. Our spraying procedure ensures this
by invoking each instance of the sprayed function in a loop
a sufficiently-large number of times in order to cause V8
to consider the function “hot” and optimize it. The number
of loop iterations was tuned to be large enough that the
invocation loop for a particular instance of the function would
still be running when the optimized code (which is compiled
asynchronously) is finally emitted.

If the first piece of code in each 1MB chunk were chosen
uniformly at random from the four possibilities, 25% of the
time it would be the anonymous declaration function, over
whose size and contents we exert very little control. However,
due to the various space requirements of the different pieces
of code—384 bytes for the declaration, 2912 bytes for each
copy of the unoptimized code, and 672 bytes for the optimized
code—a new 1MB chunk is most likely to be allocated for the
large unoptimized spray code. Indeed, measurements of V8
embedded in Chrome show that the probabilities that the first
copy of optimized spray code in a 1MB chunk will be preceded
by 0, 1, and 2 copies of the unoptimized spray function are
0.391%, 49.2%, and 48.4%, respectively; and the probability
that the anonymous declaration function will take the first slot
is only 1.17%.

Although the optimized spray function is not likely to be
sprayed at any single location near the beginning of all 1MB
chunks, in over 98% of chunks, the only code preceding it
in a chunk are unoptimized spray functions, whose size and
contents we control. We take advantage of this fact and craft
the spray function in such a way that an intended return
instruction is emitted at the same offset (∆) from the beginning
of the function in unoptimized code as the store gadget in
optimized code. This makes it safe to accidentally branch into
an unoptimized spray function with a hijacked function call
since execution will immediately return rather than crashing.
Figure 2 illustrates how we accomplished this by placing
a conditional return early in the sprayed function to take
advantage of the fact that V8’s unoptimized JIT code is less
dense than its corresponding optimized code.

With the spray function’s unoptimized and optimized code
laid out as described, there is >98% probability that the store

function sprayMe(x) {
…
if (x == -1)
  return A;
…
// Trigger gadget production.
var R3 = R2a ^ 0x1098;

…
return B;
}

return B

return A

unusable gadget

gadget start
return A

return B

Δ

Unoptimized sprayMe()

Optimized sprayMe()

Fig. 2: Illustration of how a return instruction in unoptimized
JIT code is aligned to the same function offset ∆ as a gadget
in optimized JIT code.

θ

return

return

gadget start

ψ 

ψ 

Δ

Δ

Δ

1MB Chunk Start

Legend

Chunk Header

Unoptimized fxn

Optimized fxn

Fig. 3: Illustration of the beginning of a 1MB chunk that can
be probed for the location of a gadget in a failure-tolerant
manner. An incorrect guess of θ or θ + ψ will only execute
a harmless return instruction. ∆ is the common offset of both
the return instruction and the gadget in both the unoptimized
and optimized code.

gadget will reside at one of the following offsets in a given
1MB chunk: θ, θ + ψ, or θ + 2ψ. The values of both θ and
ψ are deterministic and known. The value of θ is the size of
the fixed-sized header at the start of each 1MB chunk plus ∆;
and ψ is the size of the unoptimized spray function. Figure 3
illustrates an example memory layout at the beginning of a
1MB allocation chunk in which two copies of the sprayed
function produced by the non-optimizing JIT precede a copy
of the sprayed function produced by the optimizing JIT. The
optimized copy contains the store gadget, which resides at the
offset θ + 2ψ from the start of the chunk. Observe that if
there were zero or one copies of the unoptimized function
code before the optimized copy, the gadget’s offset from the
chunk’s start would be θ and θ + ψ, respectively.

This meticulously-crafted memory layout enables us to
probe for the gadget’s address in a failure-tolerant manner. The
first time the attacker triggers the control flow vulnerability, she
guesses a 1MB chunk and targets the common offset in the first
function in the chunk (θ). In the unlikely event that the first
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DCBARaw bytes

15                               4

Thumb
B A D C

ARM Rd imm12
15   1231                              20 11                                0

D C B A
111000100000

19   16

Rn

imm12 111000100000Rd Rn
3       015   12 11                                0

Fig. 4: Illustration of how the immediate-operand bitwise AND
instruction from the ARM instruction set can be decoded as
two 16-bit Thumb-2 instructions.

function in the 1MB chunk is a declaration (1.17% probability,
assuming spray code is monopolizing JIT code memory), the
attack will fail. However, with high probability, it will be a
copy of the sprayed function’s optimized or unoptimized code.
In those cases, either the gadget or a return instruction will
execute. If it is the former, the attack succeeds; otherwise,
the hijacked virtual function call will immediately return.
Eventually, the attacker’s script will expect an invocation of
the store gadget to result in shellcode execution, and when
that fails to occur, it can be concluded that the control flow
vulnerability was targeting a return instruction rather than a
store gadget. The script can then increase the target address of
the control flow vulnerability by the size of the unoptimized
spray function (ψ) and try again.

V8 limits the amount of JIT code memory at 256MB. If
the attacker is able to monopolize these 256MB, her odds of
success depend mostly on her ability to guess which 1MB
chunks contain JIT code. On a 32-bit system, a conservative
estimate is 6.125% (256/4096 × 0.98); however, a more
realistic estimate might take into account that the location of
JIT code regions can be narrowed down to half of the available
address space, giving a probability of 12.25%.

C. Constructing a self-sustaining ARM JIT spraying payload

Prior JIT spraying attacks against ARM failed to repurpose
JIT code to form a “self-sustaining” JIT spraying payload that
executes in its entirety once execution branches to it.3 Instead,
Lian et al. [17] introduced the gadget chaining technique,
which we borrowed in the attack we presented in §III-B. Lian
et al. studied JavaScriptCore, which emits Thumb-2 instruc-
tions, and considered the viability of self-sustaining payloads
that encode an unintended instruction stream—be it a stream
of ARM or Thumb-2 instructions—using intended Thumb-2
instructions; they found such payloads to be infeasible.

In this section, we describe a method for encoding an
unintended Thumb-2 instruction stream using ARM instruc-
tions emitted by the Mozilla SpiderMonkey JavaScript engine’s
optimizing JIT compiler IonMonkey. Our technique can be
used by an attacker to achieve arbitrary Turing-complete
computation while executing only instructions decoded from
intended instruction bytes. Whereas the proof of concept JIT
spraying attacks against ARM described in [17] and §III-B
use the JIT spraying payload to launch a JIT code corruption
attack, the technique described in this section is effective even
in the presence of non-writable JIT code.

3Beck [6] demonstrated a spraying technique against the Tamarin Action-
Script JIT on ARM that would enable the encoding of a self-sustaining
payload, but it leverages constant pools—data values inlined with JIT code—
rather than maliciously-repurposed instructions.

function sbnz(a, b, c, d)
Mem[c] = Mem[b] - Mem[a]
if (Mem[c] != 0)

// branch to instruction at address d
else

// fallthrough to next instruction

Listing 1: Pseudocode for the sbnz instruction.

We implemented a proof of concept self-sustaining payload
which executes an interpreter loop for a One Instruction Set
Computer (OISC) [19], an abstract universal machine that has
only one instruction. There are many options for the single
instruction; we implemented Subtract and Branch if Non-
Zero (SBNZ). Listing 1 shows the pseudocode for the sbnz
instruction. In the remainder of this subsection, we describe
in detail our technique for constructing a self-sustaining JIT
spraying payload capable of Turing-complete computation, a
NOP-sled construction method, the means by which a self-
sustaining payload may be invoked, and the limitations of the
technique and our proof of concept payload.

1) Payload-building technique: We first describe our
method for encoding an unintended Thumb-2 instruction
stream among the intended ARM instructions emitted by
Mozilla SpiderMonkey’s optimizing JIT compiler IonMonkey
and orchestrating the proper flow of control through the un-
intended instructions. Our technique makes use of the bitwise
AND instruction, which computes the bitwise AND of a 12-bit
immediate value (imm12) and the contents of a register (Rn)
and stores the result into an arbitrary register (Rd). By carefully
structuring our JavaScript code, we are able to control both 4-
bit register operands and the 12-bit immediate for a total of 20
out of 32 bits. The bytes in the encoding of ARM’s immediate-
operand bitwise AND instruction form two consecutive 16-bit
Thumb instructions, as shown in Figure 4. From top to bottom,
the rows show the layout of the ARM AND instruction, the
in-memory layout of those bytes, and the layout of those same
bytes when decoded as Thumb-2 instructions.

The observant reader may be curious as to why the
unintended Thumb-2 instruction stream will decode to 16-
bit instructions rather than 32-bit Thumb-2 instructions. The
reason is that 32-bit Thumb-2 instructions must begin with the
bit prefix 111012 or 11112, but IonMonkey only allocates live
values to registers in the range 00002–10112, inclusive. Neither
byte B nor byte D in this particular instruction can contain
this prefix, and therefore Thumb-mode decoding beginning at
either halfword can only yield 16-bit Thumb-2 instructions.
Why not choose an ARM instruction whose byte B or byte D
can include 32-bit Thumb-2 instruction prefixes? The reason
is that it is difficult for an adversary to coerce the JIT compiler
into producing such instructions; and very few bits within those
instructions are easily influenced by the attacker.

In addition to the constraints on the Rd register, the first
Thumb-2 instruction is also constrained by the set of valid
12-bit immediate operands to the ARM AND instruction. The
12-bit immediate is meant to be interpreted as an 8-bit value
with a 4-bit rotation field, but valid encodings must use the
smallest possible rotation value. Therefore, it is impossible to
induce the JIT compiler into emitting certain bit patterns in
the imm12 field. Taking these constraints into account, the
halfword formed by bytes C and D can still encode a broad
range of 16-bit Thumb-2 instructions.
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add r6, #0 b loopback_0vpc_update_0:

add r6, #4 b loopback_1

add r6, #4 b loopback_2

mov pc, r6loopback_0:

mov pc, r6loopback_1:

mov pc, r6loopback_2:

vpc_update_1:

vpc_update_2:

pair_0:

pair_1:

mov r6, pc b vpc_update_0

shellcode_insn_1 b vpc_update_1

shellcode_insn_2 b vpc_update_2pair_2: }Branch
Block 1

}Branch
Block 2

}Branch
Block 3

Fig. 5: Illustration of using a virtual PC (in this case R6) to
more efficiently utilize the space skipped over by branches.

The second Thumb-2 instruction must be an unconditional
PC-relative forward branch of at least 512 halfwords. The Rn
field forms the least-significant 4 bits of the branch distance
in units of halfwords. The self-sustaining payload works by
chaining together pairs of unintended 16-bit Thumb-2 instruc-
tions with these unconditional branches. The first Thumb-2
instruction performs useful work for the adversary; the second
branches to the first Thumb-2 instruction in a subsequent pair.
For this branch to target the first instruction in a pair, the
branch offset must be an odd number of halfwords, so Rn must
be an odd-numbered register. The value of the PC in Thumb
mode is the address of the current instruction plus 4 (i.e., 2
halfwords). Consequently, the closest we can place the next
pair of unintended Thumb-2 instructions is (512+1+2)×2 =
1030 bytes after the start of the unintended branch instruction.

Naı̈vely chaining 1030-byte forward branches would
require an exorbitant amount of memory to encode even a
simple payload. To reduce the space requirements of our
self-sustaining payload, we designate a general purpose
register as a virtual PC which we use to loop execution
back into the branched-over space, where another unintended
instruction pair has been placed. We define a branch block
as the largest block of unintended instruction pairs whose
first unintended instruction pair skips over all subsequent
unintended instructions pairs in that branch block. Figure 5
shows the virtual PC method with 3 branch blocks under
simplified conditions. Note how execution flows through each
unintended instruction pair in each branch block (with the
exception of branch block 3, which only executes the first
unintended instruction in the pair), then through the second
instruction pair in each branch block, etc. In our proof of
concept payload, 12-bit immediate encoding rules require
us to populate a register with the virtual PC advancement
amount and perform register-register addition rather than
register-immediate addition. Furthermore, in order to prevent
dead store elimination, the JavaScript statements that produce
unintended instruction pairs reside in separate mutually-
exclusive conditional blocks, resulting in a larger virtual
PC advancement amount of 36 bytes (Listing 2). Note that
although Figure 5 shows only three branch blocks, longer
payloads can be encoded by inserting branch blocks before
the “vpc update” block. Another option is to increase the size
of branch blocks by using an intended instruction other than

TABLE I: Table of instructions implementing the SBNZ OISC
abstract machine as a self-sustaining payload. Horizontal rules
indicate branch block boundaries where padding is inserted.

# Label
Unintended Thumb

instruction
Intended ARM

instruction

1 vpc init add r6, pc, #36 and r10, r1, #9437184
2 add, r7, #1 and r3, r1, #262144
3 oisc pc init mov r5, sp and r4, r1, #114294784
4 interpreter loop top ldr r1, [r5, #0] and r6, r1, #2686976
5 ldr r2, [r5, #4] and r6, r1, #6946816
6 ldr r3, [r5, #8] and r6, r1, #11206656
7 ldr r1, [r1, #0] and r6, r1, #589824
8 ldr r2, [r2, #0] and r6, r1, #1179648
9 sub r2, r2, r1 and r1, r1, #335872

10 str r2, [r3, #0] and r6, r1, #26
11 cbz r2, #104 (zero) and r11, r1, #-2013265918
12 non zero ldr r5, [r5, #12] and r6, r1, #15532032
13 subs r6, #162 and r3, r1, #2592
14 zero adds r5, r5, #13 and r3, r1, #54525952
15 adds r5, r5, #3 and r3, r1, #12582912
16 subs r6, #215 and r3, r1, #3440

1 incr init movs r7, #35 and r2, r1, #9175040
2–12 vpc advance (× 11) adds r6, r7 and r4, r1, #1040187392

13 non zero loopback subs r6, #162 and r3, r1, #2592
14–15 vpc advance (× 2) adds r6, r7 and r4, r1, #1040187392

16 zero loopback subs r6, #217 and r3, r1, #3472

1–16 branch vpc (× 16) mov pc, r6 and r4, r1, #191889408

function sprayMe(r0, R10, FP, r8, R7, R5) {
// Statements to define additional variables and
// populate their values into registers go here
if (R10 == 0) {

R10 = R1 & 9437184; // and r10, r1, #9437184
} else if (R10 == 1) {

R3 = R1 & 262144; // and r3, r1, #262144
} else if (R10 == 2) {
...
}
// Return statement using all variables goes here

}

Listing 2: The structure of the JavaScript function sprayed to
produce the self-sustaining SBNZ OISC payload.

bitwise AND; for example, bitwise XOR and OR would result
in branch blocks that are 64 and 768 bytes longer, respectively.

Using the virtual PC method, we implemented the inter-
preter loop for an SBNZ OISC abstract machine. We designate
a general-purpose register as the OISC PC and use unintended
instructions to perform the subtraction and update the OISC
PC according to its outcome. Our implementation expects the
first instruction, composed of four consecutive 32-bit addresses
corresponding to the four instruction operands, to reside at the
top of the stack when it begins executing. The instructions
used to build the interpreter are shown in Table I. Note that
instructions 1 and 2 within each branch block are 40 bytes
apart, whereas all other inter-instruction spacing within branch
blocks is 36 bytes. When tracing control flow through the
table, remember that instructions sharing a common number
in the first column will be executed consecutively with one
another with the exception of instruction 11 in the first branch
block (cbz), which may branch to the zero label. This proof
of concept demonstrates the feasibility of performing Turing-
complete computation with unintended Thumb-2 instructions
decoded from intended ARM instruction bytes that are exe-
cuted as a self-sustaining payload.

2) Encoding a NOP sled: It is possible to construct a
NOP sled by placing n+ k branch blocks prior to the branch
blocks containing shellcode. The unintended instruction pairs
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in the initial n branch blocks exist only to direct control
flow forward to the final k branch blocks. The unintended
instructions in the final k branch blocks of the NOP sled use
their statically-predetermined offset within the branch blocks
to construct a branch to the first unintended instruction in the
first shellcode branch block. For example, the first unintended
instruction in the final NOP sled branch block must effect a
large forward branch to skip the entire branch block, but the
last unintended instruction in the same branch block need only
skip any remaining tail in its own branch block and whatever
short head exists at the beginning of the next branch block.

The success rate of correctly landing in the NOP sled
depends on how densely unintended instruction pairs can
be packed in the final k branch blocks. The only way to
both achieve a high density of unintended instruction pairs
and avoid dead store elimination is to use the the desti-
nation register of the intended AND instruction as one of
the input operands. For example, and r1, r1, #10; and
r1, r1, #10 is okay, but and r4, r1, #10; and
r4, r1, #10 is not because the first instruction can—and
will—be eliminated. Recall that the register must also be
odd-numbered in order for the unintended branch instruction
in each pair to correctly target the beginning of the next
unintended instruction pair. We were unable to devise a NOP
sled whose unintended instructions are derived from only
intended instructions operating on odd-numbered registers.
We must therefore sacrifice density in the same manner as
described in §III-C1 and place unintended instruction pairs in
the NOP sled 36 bytes (9 ARM instructions) apart. The success
rate of correctly landing in such a NOP sled is therefore 1/9.

3) Executing the payload: Static code for the ARM archi-
tecture is compiled with the expectation that callees and callers
might need to be executed in a different instruction set mode;
therefore, interworking branches abound. An attacker will most
likely only need to ensure that the control flow vulnerability
she exploits targets an address whose least significant bit is set,
which will cause her payload to be executed in Thumb mode.

4) Limitations: A major limitation of the payload encoding
method described in this section is that we are unable to encode
an unintended system call instruction. In order to do so, we
would need to be able to control an intended instruction whose
destination register (or source register in the case of a store
instruction) is the stack pointer; we are not aware of such a
capability against IonMonkey. However, the Turing-complete
computation that this type of payload is able to construct can
be used to orchestrate a code reuse attack against static code
which contains system call instructions.

Our proof of concept SBNZ OISC implementation requires
the operands to the sbnz instruction to contain absolute
addresses. This requires the attacker either to learn where her
SBNZ instructions will reside via an information leak or to
heap spray them. Unfortunately, heap spraying SNBZ instruc-
tions competes with JIT spraying. A more practical SBNZ
OISC implementation might use stack pointer offsets rather
than absolute addresses for sbnz operands. The attacker could
even devise an SBNZ NOP sled to place on the stack before
her SBNZ shellcode to mitigate an unpredictable stack layout.

As we mentioned above, the set of unintended Thumb-2
instructions that we were able to encode was constrained by the
set of registers that could be chosen as the destination register

in the intended ARM instruction. We were fortunate that
IonMonkey’s allocates live values to R11 because it enabled
us to encode the “Compare and Branch on Zero” (cbz)
instruction, which is crucial for Turing-completeness. V8, on
the other hand, does not allocate live values to register R11,
significantly complicating the encoding of a Turing-complete
payload. However, even if it were not possible to encode
Turing-complete computation in the self-sustaining payload,
the technique allows for the construction of more sophisticated
gadgets for use in gadget chaining.

IV. JIT SPRAYING MITIGATIONS

Researchers and practitioners have proposed numerous mit-
igations against the security risks introduced by JIT compilers.
The mitigations vary widely in peformance overhead, difficulty
of integration into an existing JIT compiler, and defensive
effectiveness. We organize these efforts into the following
three categories: capability confinement, memory protection,
and diversification. In order to place our own defense imple-
mentations and the performance evaluations thereof (§V) into
context, we provide an overview of JIT spraying mitigation
proposals in these three classes and their adaptations (when
applicable) in real world JIT implementations.

A. Capability confinement

The objective of capability confinement defenses is to
make JIT code an unattractive reuse target in general by
reducing the set of capabilities that JIT code can possess. More
sophisticated capability confinement defenses also prevent JIT
code from corrupting itself. The least sophisticated capability
confinement defenses employ simple heuristics to detect sys-
tem calls from JIT code [11] or the emission of long sequences
of consecutive instructions taking 32-bit immediate operands,
where those sequences begin with mov reg, imm32 [5],
which was the hallmark of Blazakis’ original attack. Though
the performance overhead of [11] is not prohibitive at 1.84%
on the SPEC CPU2000 Integer benchmark ([5] does not report
on its performance overhead), the two heuristic defenses can
be easily circumvented by reusing statically-compiled system
calls and avoiding the creation of the initial mov instruction,4
respectively. The next two capability confinement defenses
offer much stronger security benefits through sandboxing.

1) NaCl-JIT: NaCl-JIT [3] is a system that extends the
Native Client (NaCl) sandbox [34] so that a language run-
time running in the sandbox can dynamically install, invoke,
modify, and delete code within the sandbox on the fly. The
sandbox provides the following three high level guarantees
about sandboxed code execution: (1) it cannot read or write
outside of a contiguous region of data memory; (2) it contains
only instructions drawn from a whitelist, and they reside in
a contiguous region of sandboxed code memory; and (3)
aside from API calls into the NaCl runtime, its control flow
only executes instructions decoded at intended instruction
boundaries within the aforementioned code memory region.
Thus, even a malicious JIT-compiled program that is able to
completely commandeer the sandboxed language runtime and

4Rather than writing high-level code of the form var x =
(imm32ˆ...ˆimm32);, one can write var x = (yˆ...ˆimm32);
where y is not defined as a constant, which will not require moving a
constant into a register.
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issue arbitrary NaCl-JIT API calls still cannot access memory
outside of the sandbox or directly execute non-whitelisted
instructions such as system calls or cache flushes. While
this may allow a malicious JIT-compiled program to access
sandbox memory in ways that the sandboxed language runtime
did not intend for it to access, the underlying system outside
the sandbox remains safe.

The NaCl sandbox is implemented via code verification,
instruction bundling, and (for most architectures) software
guards, which incur a high overhead. The runtime overhead
of the NaCl-JIT port of the V8 JavaScript engine on the V8
JavaScript benchmark suite ranges from 28%-60% on x86-32
and x86-64. While NaCl-JIT’s security properties are indeed
alluring, performance regressions on this order are unlikely to
be considered acceptable for a mainstream JavaScript engine
actively engaged in the benchmark wars.

2) RockJIT: RockJIT [23] offers a platform similar to
NaCl-JIT with considerable performance improvements due
to more efficient JIT code validation and a more efficient
mechanism for protecting control flow (fine-grained control
flow integrity (CFI) [2] (without a shadow stack) in the lan-
guage runtime and coarse-grained CFI on JIT code). RockJIT’s
authors ported the V8 JavaScript engine to use RockJIT; and
on the same set of benchmarks over which NaCl-JIT showed
a 51% overhead, RockJIT had just 9.0% overhead. Over the
entire Octane 2 JavaScript benchmark suite, RockJIT incurred
a 14.6% average overhead.

However, these performance gains come with security
risks. Notably, RockJIT allows the (untrusted) language run-
time to directly make system calls (excluding memory repro-
tection), and it trusts the language runtime to announce indirect
branch targets within JIT code so that RockJIT can update the
CFI policy. A control flow bending [8] attack would enable
an attacker to abuse the lack of a shadow stack and issue any
system call present in the language runtime.

B. Memory protection

A vulnerability commonly introduced by JavaScript JIT
compilers is permanent RWX permissions on JIT code pages,
even on systems that enforce W ⊕ X on normal code and data
pages. This practice is done in the name of performance; inline
caching (IC) [12]—a performance optimization popular [30],
[20], [1] among JavaScript implementations—often requires
the frequent compilation of short code stubs during JIT code
execution as well as the patching of calls to those stubs into
existing code. Leaving JIT code pages RWX at all times
eliminates memory reprotection system calls during inline
cache installation and maintenance as well as those that would
be necessary during the compilation of normal program code.

RWX memory poses a significant threat to JIT security.
Lian et al.’s attack against the JavaScriptCore JIT on ARM [17]
as well as the new attack we introduced in § III-B rely
on always-RWX JIT code pages in order to perform self-
modification of JIT code. Memory protection defenses seek to
rid JIT code of its always-RWX memory protection status by
adapting W ⊕ X to dynamically-generated code. Two popular
approaches to memory protection for JIT code are transient
protection and dual mapping.

1) Transient protection: A recent addition to the Spider-
Monkey JavaScript engine [21] is W ⊕ X protection for JIT

code with the aim of preventing corruption of JIT code. When
the defense is enabled, JIT code is RX by default, and when
the runtime needs to modify a unit of code compilation, that
unit is temporarily reprotected RW. The performance overhead
of this change is less than 1% on the Kraken and Octane
JavaScript benchmark suites and no more than 4% overhead
on the SunSpider benchmark suite. SpiderMonkey’s imple-
mentation of inline caches inherently favors low-overhead
W ⊕ X protection, as it requires far less-frequent patching
(and therefore fewer memory reprotection system calls) and
stub compilation than other compilers such as V8. Reducing
the need for patching in V8 is a non-trivial matter. In fact, the
V8 team has explained to us that although they are undergoing
efforts to eliminate patching for some types of ICs, others are
still considered too performance-sensitive. Unfortunately, this
means that transient W ⊕ X protection will likely remain too
expensive for V8.

JITScope [35] is a proposed defense that provides
normally-RX protection similar to SpiderMonkey’s W ⊕ X
defense, but it reprotects memory more frequently and there-
fore incurs a higher overhead (1.6%-6.0%). Although these
defenses offer protection against code corruption in single-
threaded environments, Song et al. [28] demonstrated that Web
Workers [31]—which enable JavaScript programs to spawn
multiple threads that can communicate with one another—
could be used to circumvent such transient memory protections
by creating a race condition. While one thread coerces the
language runtime into making a particular memory region
writable (e.g., by triggering an inline cache patch), another
thread exploits a vulnerability that corrupts the writable JIT
code memory. This attack does, however, require that the
attacker be able to predict the address of the JIT code memory
that will be made writable by the former thread, which is an as-
sumption that does not go hand in hand with a spraying attack.

JITDefender [9] and JITSafe [10] take a different approach
and seek to prevent malicious code reuse; they allow JIT code
to be writable at all times and enable executability only when
the language runtime enters it. JITSafe and JITDefender incur
<1% overhead, but they do not protect against JIT spraying
when the control flow vulnerability is triggered by JavaScript.
For example, each JIT sprayed function containing the JIT
spraying payload could call another instance of the function
in order to make all copies simultaneously executable; the
last callee in the chain would then trigger the control flow
vulnerability.

2) Dual mapping: As we saw in §IV-B1, varying JIT code’s
writability and executability over time can be vulnerable to
race condition attacks. Furthermore, toggling between RW and
RX protections is not even possible on all systems. SELinux
prohibits processes from adding executability to memory if it
has ever been writable in the past [13] in order to thwart code
injection attacks that attempt to grant executability to shellcode
injected into a data buffer.

A proposed alternative to transient memory protection is
creating separate virtual memory mappings with immutable
RW and RX protection status for physical JIT code pages.
These mappings are either contained within a single process
or split between two processes. The SpiderMonkey team
experimented with a single-process dual mapping scheme [22]
and found that it incurred about a 1% slowdown, but it
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was not deployed to production because an information leak
vulnerability could reveal the locations of both mappings and
eliminate the defense’s effectiveness. Other research efforts
address the shortcomings of single-process dual mapping by
separating the RW and RX mappings of JIT code across
process boundaries. A trusted process holds either the RW
or RX mapping, and an untrusted process holds the comple-
mentary mapping. However, introducing this separation into
an existing language runtime requires invasive process re-
architecting as well as runtime overhead in the form of inter-
process communication. Lobotomy [16] and SDCG [28] take
opposite approaches and allow the untrusted process to handle
the RW and RX mappings, respectively. Overhead for these
dual mapping defenses is high. Lobotomy suffers a mean
overhead of 387%, and SDCG takes a 16.6% performance hit.

C. Diversification

The cornerstone of all attacks that reuse JIT-emitted code
for malicious purposes [7], [26], [27], [25], [17], [4] is the
assumption that, for a given input program, a particular JIT
compiler will always emit the same sequence of machine in-
structions (modulo memory addresses embedded in the code).
Diversification defenses seek to invalidate this assumption,
thereby undermining the utility of JIT-emitted code for ma-
licious reuse. Diversification defenses can be organized into
the following two categories: intra-instruction randomization
and code layout randomization. Because most diversification
defense proposals in the literature combine various flavors of
diversification defenses and evaluate them on varying plat-
forms and benchmarks, rather than report the overheads found
in the literature, we refer the reader to §V-F wherein we report
the overheads of our own implementations of diversification
defenses, evaluated under a unified testing framework.

1) Intra-instruction randomization: Intra-instruction ran-
domization defenses invalidate an attacker’s assumption that
particular instruction encodings will appear in JIT code mem-
ory. The three types of intra-instruction randomization that
appear in the literature are register randomization, constant
blinding, and call frame randomization.

a) Register randomization: Register randomization per-
mutes register assignment during compilation, resulting in
instructions whose register operands are unpredictable [32],
[33] and can often be performed with nominal overhead at
compile time, though some runtime overhead may be added
due to instructions that require longer encodings for certain
register operand values.

b) Constant blinding: Immediate operands can con-
sume a large percentage of an instruction’s encoding and are
often derived from untrusted values provided in the code being
compiled. This grants attackers a large amount of control over
the code produced by the JIT compiler, enhancing its utility for
malicious code reuse. Indeed, predictable immediate operands
have been a cornerstone of many JIT spraying attacks. Con-
stant blinding [32], [25], [33], [10], [14] seeks to eliminate this
predictability. A typical implementation of constant blinding
splits each instruction that contains an untrusted immediate
operand into two instructions whose respective immediate
operands are functions of the untrusted immediate and a
random secret value. The side effect of the composition of
the two new instructions is the same as that of the original

instruction, but neither of the new immediate operands are
predictable. The overhead of constant blinding comes in the
form of both increased code footprint and increased execution
time. Athanasakis et al. [4] estimate that constant blinding can
result in up to 80% additional instructions.

Lian et al. [17, §VI.A] found that JavaScriptCore employs
a very weak form of constant blinding; it only blinds a subset
of constants and each with only 1/64 probability, which was
insufficient to prevent a JIT spraying attack on ARM. In our
study of V8, we found that it only blinds constants >0x1ffff
that are being moved into a register or pushed onto the stack.
This implementation fails to protect against even Blazakis’
originally-publicized JIT spraying attack and only applies to
x86-32 and x86-64. Athanasakis et al.’s [4] investigation into
Internet Explorer’s Chakra JIT uncovered that it always blinds
constants >0xffff, but this was not enough to prevent them
from using untrusted constants to encode ROP gadgets.

c) Call frame randomization: Call frame randomiza-
tion [32] scrambles the instructions that are used to access
values such as arguments, local variables, spilled temporary
values, etc. in a function’s call frame. These instructions usu-
ally access memory at predictable immediate offsets relative to
the stack pointer or a call frame register, which as we show in
§III-B, can provide an attacker with a convenient predictable
memory access instruction for reuse.

2) Code layout randomization: Predictable are not only the
contents of JIT code, but also the layout of its instructions
relative to one another and the boundaries of coarser-grained
memory allocation units. Nearly all JIT spraying attacks we
have seen so far rely on predictable code layout either to
prevent an unintended instruction stream from resynchronizing
to the intended stream or to predict the relative or absolute
locations of instructions. Two strategies have been proposed
to diversify JIT code layout at both fine and coarse granu-
larity: random NOP insertion and base offset randomization,
respectively.

a) Random NOP insertion: Random NOP inser-
tion [14], [15], [32], [25], [33] involves injecting semantic
NOP instructions at random in JIT code. Its effect is both
to randomize the offset of any given instruction from the
beginning of the unit of code compilation and, more gen-
erally, to randomize the relative offset between any given
pair of instructions. Like constant blinding, the overhead of
random NOP insertion comes from increased code footprint
(leading to increased i-cache pressure) and wasted cycles at
runtime; however the overhead for random NOP insertion
scales with code size rather than the number of untrusted
constants compiled. Lian et al.’s [17] study of JavaScriptCore
revealed that JSC’s non-optimizing JIT avoids the scaling
overhead problem by only randomly inserting a single NOP
instruction at a fixed location at the beginning of certain units
of code compilation, which provides very little security benefit.
Athanasakis et al. [4] report that Internet Explorer’s Chakra
JIT employs random NOP insertion, but they omit details of
its implementation.

b) Base offset randomization: Base offset
randomization [25] places a random amount of “dead”
space before the beginning of each unit of code compilation,
either in the form of NOP instructions or free space. This
perturbs both the offset of the first unit of code compilation

9



when the JIT compiler maps a fresh region of executable
memory and the relative offsets between consecutively-
compiled units of code compilation. The absence of base
offset randomization is critical to the heap feng shui [29] used
to pinpoint gadget addresses in gadget chaining attacks such
as [17] and our V8 attack (§ III-B). Base offset randomization
would have drastically reduced the reliability of these attacks
with less overhead than random NOP insertion.

V. EVALUATION OF DIVERSIFICATION MITIGATIONS

As we saw in § IV, very few JIT spraying mitigations
that have been proposed have been deployed in production
browser releases, and those like constant blinding and random
NOP insertion that are deployed have been severely limited
to the point that they have lost their effectiveness. We argue
that JIT code reuse can be effectively mitigated via fully-
functional diversification defenses with only modest, but ul-
timately worthwhile, overhead. However, the answers to the
questions of how much performance overhead diversification
defenses incur and to what extent they improve security are
muddled. Various incarnations of the diversification mitiga-
tions described in § IV-C are mixed and matched to compose
many different defense systems mentioned in the literature [3],
[4], [10], [14], [15], [32], [33]. Many of these implementations
are not fully specified, and what descriptions exist often vary
considerably. Moreover, performance evaluations of diversi-
fication mechanisms are often reported as aggregates with
each other and other unrelated mitigations; and the hardware
and benchmarking suites on which the implementations are
evaluated vary by author.

Thus, there has been no clear source in the literature pro-
viding detailed implementation descriptions and measurements
of their associated runtime overheads on consistent hardware
and benchmarks. The purpose of this section is to provide that
information so that JIT compiler authors considering adopting
these defenses can more comfortably weigh the costs and
benefits of diversification defenses. To better understand the
benefits of each defense, we also analyze each defense with
respect to concrete JIT spraying attacks to quantify the factor
by which the probability of a successful attack is reduced.

To this end, we implemented all five diversification de-
fense techniques described in § IV-C on the SpiderMonkey
JavaScript engine for both its non-optimizing (Baseline) and
optimizing (IonMonkey) JIT compilers on the ARM32 and
x86-64 architectures.5 Our implementations are by no means
highly optimized; instead, our priority is to avoid creating
corner cases that can be exploited by a wily attacker to improve
her chances of defeating the mitigation. During development,
we found that random design decisions in the JIT backend
greatly impacted the difficulty of integrating defenses into
the existing system. That is not to say that these decisions
were made carelessly, but rather that they were perhaps not
made with thought towards the generality necessary to support
mitigations. The source code for our mitigations is available
as a public fork of Mozilla’s GitHub repository; our work is
based on top of commit ce31ad5.6

5We did not implement register randomization for x86-64’s non-optimizing
compiler for reasons described later.

6The fork can be found at https://github.com/wwlian/gecko-dev.

A. Register randomization

Implementing register randomization for IonMonkey is
extraordinarily non-invasive. IonMonkey compiles scripts to
an intermediate representation (IR) and performs analyses over
the IR in order to run a register allocator. We simply permute
the order in which the allocator considers physical registers to
satisfy allocation requirements. The changes for our implemen-
tation span 6 lines of code and randomize both floating point
and general purpose register allocations. Some IR instructions
are assigned fixed source or destination registers which cannot
be randomized at the level of the register allocator; however,
these fixed assignments do not bind to actual physical registers,
but rather “abstract registers” which are mapped to physical
registers. Fortunately, randomizing registers for the Baseline
JIT involves randomizing the mappings from these same
abstract registers to physical registers.

SpiderMonkey’s Baseline JIT does not use a register allo-
cator; instead it emits statically-defined instruction sequences
for bytecode instructions for a stack-based virtual machine.
The instruction sequences implementing bytecodes are de-
fined by C++ code that allocates abstract registers as source,
destination, and temporary registers used by each bytecode’s
implementation. To the C++ programmer, using an abstract
register “feels” like using a physical register, but they are
simply variables named after the physical registers that hold
an integer value identifying an actual physical register.

Randomizing registers for the Baseline JIT (and indirectly,
IonMonkey) involves permuting the underlying values that
are assigned to the abstract register variables named after
physical registers. Any uses of these variables will propagate
the randomized physical register mapping. However, additional
complexity must be introduced at the call and return control
flow edges between statically-compiled native code and JIT
code since certain values are expected to be passed between
native and JIT code in specific physical registers in accordance
with the architecture’s ABI. To ensure that JIT code—which
is defined in C++ under the assumption that abstract registers
named after physical registers actually refer to those physical
registers—is able to conform to the architecture ABI, we
introduce a sequence of pushes and pops into the trampolines
that execute at the boundaries between native and JIT code;
the pushes and pops have the effect of permuting registers or
inverting the permutation as needed.

In addition to the interoperability issues with native code,
there were other cases where assumptions regarding the bind-
ings between abstract registers and specific physical registers
caused no small number of headaches. In these corner cases,
violating these assumptions via randomization leads to incor-
rect behavior and data corruption that eventually causes a hard-
to-debug crash much later than the misbehavior itself. These
corner cases were very difficult to track down because the
assumptions relied on very low level details that were not
documented in any central location. For example, ARM is able
to load two 32-bit values from memory into two consecutively-
numbered general purpose registers as long as the lower-
numbered register is even. If C++ code used abstract registers
named after qualifying registers for such a load, randomization
can easily invalidate the consecutivity, parity, and ordering
assumptions.
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Floating point register randomization is unnecessary for the
Baseline JIT because it does not generate code that operates
on floating point registers (with the exception of IC stubs,
which are shared and cannot be sprayed). Instead, floating
point values in Baseline JIT code are stored in general purpose
registers and passed to IC stubs or host functions which
perform the desired floating point operations.

Special care must also be taken to maintain abstract reg-
isters’ volatility; in other words, we only permute volatile
(a.k.a. caller-saved) registers with other volatile registers and
likewise for non-volatile (callee-saved) registers. This is neces-
sary because there are instances where code using an abstract
register assumes that it maps to a non-volatile register and does
not save that register’s value prior to calling a subroutine. This
limitation only applies to the abstract-to-physical remapping;
in IonMonkey, values that are not bound to an abstract register
are free to be allocated to any register.

Because of the many intricacies of permuting the mapping
from abstract registers to physical registers, we limited our
remapping implementation to the ARM architecture. We also
limit randomization to registers that SpiderMonkey consid-
ers “allocatable,” which excludes the program counter, stack
pointer, link register, and a register used internally by the com-
piler for very short-lived scratch values. Although it presents
a significant weakness to our implementation, we do not
randomize the abstract register mapping that refers to the archi-
tecture ABI’s integer return register, as a considerable amount
of code assumes that it is not randomized. It should absolutely
be randomized, but this is presently left for future work.

The probability that an attacker’s payload will be emitted
as expected if it requires k out of n randomized registers to
be correctly mapped is (n− k)!/n!.

B. Constant blinding

Most constant blinding implementations observed in real-
world code only blind a limited subset of instructions or
untrusted constants, presumably under the rationale that some
instructions and constants are harmless and therefore rep-
resent unnecessary overhead if blinded. Our implementa-
tion blinds every untrusted (meaning that it appears in the
JavaScript code) integer and floating point constant. Un-
trusted constants only appear in Baseline JIT code as val-
ues that are loaded into registers; we protect Baseline JIT
code by blinding those load instructions using the canoni-
cal mov reg, blinded_val; xor reg, secret in-
struction sequence, where secret is an immediate with a
unique7 32-bit random value, and blinded_val is an imme-
diate whose value is secret ⊕ untrusted_constant.

We implement constant blinding for IonMonkey by in-
jecting blinding instructions into the architecture-independent
intermediate representation (IR) called MIR. MIR is compiled
from SpiderMonkey’s interpreter bytecode, optimized, lowered
to an architecture-dependent IR, then finally compiled to native
code. During construction of the MIR code, we tag constants
found in the bytecode as untrusted so that we avoid blinding
constants generated by the compiler that were not present
in the JavaScript. After the MIR has been optimized, we

7Unlike some constant blinding implementations (e.g., V8) which share the
same secret value among constants within the same compilation unit, ours
generates a fresh secret for each constant.
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Fig. 6: Baseline JIT call stacks with and without call frame
randomization. Stacks grow downward.

replace untrusted constants that remain with a sequence of
MIR instructions that implement constant blinding in the same
XOR-based manner as the Baseline JIT’s constant blinding. It
is important to apply constant blinding only after optimizations
have completed to avoid potential constant folding optimiza-
tions, which would undo the blinding.

In order to predict the code sequences that will be generated
for any given untrusted k-bit constant, the attacker must guess
each corresponding secret bit, for which she has a success
probability of 2−k. Since all constants are blinded with unique
secrets, the attacker’s probability of predicting the code for the
n untrusted constants, each k bits long, needed for her JIT
spraying payload is 2−kn.

C. Call frame randomization

SpiderMonkey’s Baseline JIT and IonMonkey JIT use very
different call frame conventions requiring different treatment
to randomize. The Baseline JIT uses a frame pointer relative
to which all call frame elements are accessed and pushes
outgoing function arguments onto the stack as part of its
implementation of a stack-based virtual machine. IonMonkey,
on the other hand, performs frame pointer omission (i.e., call
frame elements are accessed relative to the stack pointer)
and pre-allocates enough stack space during each function
prologue to fit the maximum number of outgoing function
call arguments across all calls within that function. For both
Baseline and IonMonkey call frames, we randomly shift the
frame pointer and stack pointer, respectively, relative to the
call frame elements. Whenever possible, we also permuted
call frame elements of the same type, and when neither of the
above was possible, we performed a process similar to constant
blinding to the load/store instructions accessing the call frame.

1) Baseline JIT: Figure 6a illustrates the layout of an
unrandomized Baseline JIT call frame. All elements shown are
accessed at statically-computed frame pointer-relative offsets.
Baseline JIT code stores three types of local variables on the
stack above the frame pointer, and we randomize their offsets
by permuting their orders within each type and randomly
increasing the size of the bookkeeping data structure pushed
onto the stack before them, shown as the dotted box in
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Figure 6b labeled “Random Padding.” The size of this padding
is determined for each function at JIT compile time and is
between 0 and 15, inclusive, units of stack alignment (the
size of which is 8 bytes for ARM32 and MIPS32 and 16
bytes otherwise). Because that does not change the frame
pointer’s relative offset to the incoming function arguments
and “Previous Frame Info,” we modify instructions that access
them in a manner similar to constant blinding. Rather than
accessing those elements at fixed offsets relative to the frame
pointer, each access site populates a scratch register with the
value of the frame pointer minus a unique random multiple of
4 in the range [0, 64)8 and performs the access using a new
offset that corrects for the shifted base register value.

We do not shift the incoming arguments by injecting stack
padding between them and the frame pointer location because
the great complexity of the code that traverses and unwinds the
call stack makes doing so very difficult. Similarly, we do not
permute incoming arguments on the stack because of the com-
plex interactions between their stack positions and SpiderMon-
key’s implementaion of JavaScript features like rest parame-
ters, default parameters, and the arguments object. However,
permuting call frame elements is secondary to shifting their
offsets since permutation without shifting is vulnerable to the
corner case where there is only one element to permute.

An attacker is only able to predict the blinding offset of an
incoming argument access site with probabiity 1

16 . Therefore,
if an attack relies on reusing n incoming argument access sites,
there is only a 1

16n chance that she will be able to predict all
necessary access site offsets. The deviation of the frame pointer
offset of a local variable or body/block-level lexically-scoped
variable from its unrandomized value can be interpreted as the
linear combination of independent discrete uniform random
variables. In particular, if there are n variables of a certain
type (local, body-level lexical, or block-level lexical), the offset
shift of the ith (0 ≤ i < n) variable of that type, is given by
Zi = −(Xi + Y ), where Xi is the shift due to permutation
and is distributed as Xi ∼ 8 · (U{0, n− 1} − i); and Y is
the shift due to padding the bookkeeping data structure and is
distributed as Y ∼ a · U{0,m − 1}, where a is the size of a
unit of stack alignment in bytes (which varies by architecture),
and m is the number of possible padding amounts (m = 16
for our implementation).

2) IonMonkey JIT: Figure 7a shows the IonMonkey call
frame layout. Since IonMonkey performs frame pointer omis-
sion, and all call frame elements are below the stack pointer,
we can shift all call frame accesses by pushing a random
amount of padding—whose size is determined once for each
compilation unit at JIT compile time—on top of the call frame.
The size of the padding is between 0 and 15, inclusive, units
of stack alignment (the size of which is 8 bytes for ARM32
and MIPS32 and 16 bytes otherwise). IonMonkey does not
store local values on the stack unless they must be spilled due
to register contention; we permute the order that these spilled
values are allocated to stack slots. Figure 7b illustrates the ap-
plication of these randomizations to an IonMonkey call frame.

Since the stack pointer-relative offset of all non-spill values
is shifted by a common value, an attacker’s probability of

8We use a multiple of 4 because the ARM code generation backend can
compile an optimized instruction sequence for certain cases where the offset
is a multiple of 4.
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the number of random NOPs inserted in n instructions.

guessing any number of non-spill value offsets is reduced by a
factor of 16. Spilled values have their values shifted according
to a distribution similar to the one described above for Baseline
JIT locals and lexically-scoped variables. One difference is that
spilled values may have varying sizes that are a multiple of 4
bytes, so the permutation distribution is not uniform.

D. Random NOP insertion

Our implementation of random NOP insertion places a
single NOP instruction before each intended instruction with
probability p = 1

8 . There is a small handful of exceptions
where random NOP insertion must be disabled due to assump-
tions in the JIT’s implementation regarding the precise layout
of a section of emitted code.

Random NOP insertion’s security benefit depends on the
attacker’s needs. If the attacker needs to predict the offset
of the nth instruction from the beginning of its unit of code
compilation, she must predict the number of NOPs that will be
inserted before it, given by the random variable X ∼ B(n, 18 ).
The attacker’s best guess is the mode of X; the probability
that this best guess will be correct as a function of n is shown
in Figure 8.

Alternately, an attacker might require n consecutive in-
structions with no random NOPs inserted between them (e.g.,
when the payload uses instructions decoded at unintended
instruction boundaries as in [7]), which occurs with probability
(1− p)n−1 =

(
7
8

)n−1
.
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TABLE III: Geometric mean of code size increases incurred
by diversification defenses when executing benchmark suites

x86-64 32-bit ARM

Register randomization -0.008% 1.01%

Constant blinding 0.433% 1.56%

Call frame randomization 2.79% 1.31%

Random NOP insertion 2.67% 12.58%

Base offset randomization 2.39% 2.52%

All 8.57% 18.15%

E. Base offset randomization

Whenever SpiderMonkey needs to find space to place a unit
of code compilation, it rounds up the size of the JIT code to
an architecture-specific alignment granularity G and searches
memory pools of allocated code memory for free space to
accomodate the rounded size. We randomize the base offsets
of each unit of code compilation by randomly increasing the
size of its allocation request by rG where r ∈ {0, 1, 2, ..., 15}
and shifting the code rG bytes further into the allocation. The
attacker’s probability of guessing the base offset shifts for n
consecutive units of code compilation is

(
1
16

)n
.

F. Benchmark results

We evaluated the performance overheads of our implemen-
tations on x86-64 and 32-bit ARM using the SunSpider 1.0.1,
Kraken 1.1, and Octane v.2 benchmarks suites. Results for x86-
64 were gathered on a quad-core Intel Core i7-870 2.93GHz
processor with 16GB RAM running Ubuntu 14.04.2 LTS
with kernel version 3.13.0-49-generic. Results for 32-bit ARM
were gathered on an octa-core AppliedMicro APM883208-X1
ARMv8 2.4GHz processor with 16GB RAM running 32-bit
Debian 8.0 in a chroot jail on APM Linux with kernel version
3.12.0-mustang sw 1.12.09-beta.

To evaluate our implementations, we built an unmodified
version of SpiderMonkey and a separate binary for each
diversification mechanism. We also built a binary that de-
ploys all implemented defenses. We executed each benchmark
suite 100 times for each binary and computed the arithmetic
means for each group of 100 benchmark scores. We computed
the overhead imposed on the results of “smaller-is-better”
benchmarks (SunSpider and Kraken) as v̄/ū − 1, where v̄
is the arithmetic mean of the 100 benchmark scores for a
particular modified binary, and ū is the arithmetic mean of the
100 benchmark scores for the unmodified binary. Octane is a
“bigger-is-better” benchmark whose scores are derived from a
“smaller-is-better” measurement by dividing a constant value
by the measurement, so we compute the overhead on its results
as ū/v̄ − 1.

The measured overheads of our implementations are shown
in Table II. We used Welch’s unequal variances t-test to test
the mean benchmark score from each variant’s 100 execution
sample against the mean benchmark score from the unmodi-
fied binary’s 100 execution sample and indicate statistically-
significant (p <0.05) changes to the mean by printing the cor-
responding overhead with boldface type. Note that overheads
are not independent and cannot necessarily be added.

G. Code size increase

To measure the impact of our mitigation implementations
on the memory demands of the JIT, we instrumented Spi-
derMonkey to emit the file name, line number, and number
of JIT code bytes used each time unit of code compilation
is compiled and executed the three benchmark suites once
on each binary variant. Let v̄i be the average code size of
the ith file name-line number pair, as emitted by a binary
variant implementing a one or more diversification defenses;
let ūi represent the average code size for the ith file name-
line number pair, as emitted by an unmodified SpiderMonkey
binary. We compute the increased memory usage for each
variant as n

√∏n
i=1(v̄i/ūi) − 1. Table III shows the code size

increases for each mitigation, broken down by architecture.

H. Concrete security analysis

In order to give concreteness to the security benefits offered
by our diversification defense implementations, we report on
our analysis of the estimated relative success probability of
four concrete JIT spraying attacks when launched against
individual diversification mitigations. The results are shown
in Table IV. Remember that since some defenses may interact
with one another, these relative probabilities may not neces-
sarily be combined by multiplication.

Our estimates are conservative; in order to make the
relative probabilities concrete, we have made assumptions in
the attacker’s favor when necessary. For example, random NOP
insertion can disrupt Blazakis’ JIT spray by causing its NOP
sled to resynchronize to the intended instruction stream, but the
probability of at least one NOP interrupting execution depends
on how many uninterrupted instructions the attacker requires,
including the NOP sled. This in turn depends on where in the
NOP sled the attacker’s control flow vulnerability happens to
divert control. Therefore, we conservatively assume that the
attacker’s control flow vulnerability directs execution to the
head of the shellcode and only compute the probability that
a NOP will not be inserted into the sequence of instructions
needed to encode a very short 10-instruction shellcode. We
consider minor adaptations to the existing attacks that allow
them to use the most likely diversification outcome when
possible, but we do not claim to have considered the most
optimized versions of each attack. Lastly, the values shown in
Table IV only reflect the relative success of a single instance
of the sprayed function.

Constant blinding, which incurs the greatest runtime over-
head among the surveyed diversification defenses, performs
tremendously well to mitigate [7], [17], and the self-sustaining
ARM payload (§III-C), which rely on attacker-chosen con-
stants appearing in JIT code. We also observe that register
randomization and call frame randomization complement con-
stant blinding by diversifying compiler-chosen operands, relied
upon heavily by our V8 attack.

We were surprised to find that register randomization
provided little defense against [7]. Blazakis’ attack is able to
fare well against register randomization because the attacker’s
payload is an unintended instruction stream (cf. § II) that skips
over intended instruction opcodes (the XOR opcode, in the
case of Blazakis’ attack) as long as the number of bytes to
be skipped is correctly predicted. The x86 XOR instruction’s
opcode is either 1 byte long when XORing against %eax or
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TABLE II: Diversification performance overheads. Bold typeface in non-geometric mean columns denotes statistically-significant
impact on the mean benchmark score of each 100-execution sample (Welch’s unequal variances t-test, p <0.05); and negative
overheads indicate improved performance. *Register randomization overhead for x86-64 only includes IonMonkey randomization.

x86-64 32-bit ARM

SunSpider Kraken Octane G. Mean SunSpider Kraken Octane G. Mean

Register randomization* -1.94% -0.829% -0.404% -1.06% 1.62% 0.456% 0.265% 0.777%

Constant blinding -1.36% 2.65% 2.93% 1.39% 1.62% 6.02% 4.39% 3.99%

Call frame frandomization -1.68% -0.199% 0.324% -0.523% 0.138% -2.26% -1.05% -1.06%

Random NOP insertion -0.762% 2.12% 1.44% 0.922% 1.67% 1.76% 1.35% 1.59%

Base offset randomization -2.38% -0.207% -0.846% -1.15% 0.498% 0.302% 0.223% 0.341%

All 1.71% 5.70% 6.33% 4.56% 4.44% 5.48% 4.71% 4.88%

TABLE IV: Estimated relative success probabilities for concrete attacks against single diversification defenses. Lower values
indicate better mitigation.

Register
randomization

Constant
blinding

Call frame
randomization

Random NOP
insertion

Base offset
randomization

Blazakis 2010 [7] (x86-32) 92.9% 6.84× 10−47% 100% 30.1% 100%
Lian et al. 2015 [17] (ARM) 1.79% 1.53× 10−3% 100% 3.74% 0.391%
ARM V8 gadget chaining (§III-B) 0.909% 100% 6.25% 3.70% 0.229%
SpiderMonkey self-sustaining ARM payload (§III-C) 2.51× 10−5% 4.15× 10−461% 100% 7.95× 10−21% 100%

2 bytes long when XORing against any other register. The
attacker can therefore assume with highest probability that the
XOR opcode will be 2 bytes long and adjust her payload to
skip over a 2-byte intended instruction opcode.

Random NOP insertion provides good protection across the
board by both disrupting the unintended instruction streams
used by Blazakis’ attack and the self-sustaining ARM payload
as well as diversifying the location of useful code gadgets used
by [17] and our new V8 attack. Base offset randomization, on
the other hand, only defends against the latter pair of attacks.
Base offset randomization offers better defense than NOP
insertion against a hypothetical attack in which the attacker
needs to predict the offset of an instruction near the beginning
of a unit of code compilation. If the instruction is one of the
first 3729 in a unit of code compilation, the attacker has a
greater probability of predicting the number of random NOPs
inserted before it (and by proxy its offset) than predicting the
base offset randomization of a unit of code compilation.

VI. DISCUSSION

The opportunities for both code corruption and code reuse
made possible by JIT compilers have been shown to be ex-
ploitable against real JIT implementations time and time again
[7], [27], [26], [6], [25], [24], [28], [4], [17]. Unfortunately,
the community developing arguably the most prominent and
vulnerable JITs—those found in web browsers—has been
slow to react to effectively mitigate these threats in their
JavaScript JITs. SpiderMonkey has taken the lead in code
corruption mitigation by deploying W ⊕ X JIT memory, but it
still lacks effective code reuse mitigations. Similarly, although
Internet Explorer’s Chakra deploys a form of random NOP

9This figure is a function of the probability of random NOP insertion and
the number of potential base offsets.

insertion, its constant blinding implementation, which does not
blind constants ≤0xffff, can still be bypassed to create ROP
payloads [4]. It is apparent to these authors that crafty attackers
can and will discover and exploit any corners cut in the imple-
mentations of JIT spraying defenses. For this reason, we urge
JIT developers to consider deploying defenses at full strength,
even at the expense of non-trivial performance overhead.

By reducing the predictability of instruction operands and
code layout, JIT code reuse can be mitigated. Rather than
selecting a subset of the diversification defenses evaluated in
§ V, we recommend all 5 be deployed simultaneously in order
to leave no stone unturned. If a JIT were to omit a particular
defense, that undiversified area would eventually become a
valuable piece of a future attack. This observation is merely a
corollary to our assertion in the previous paragraph that partial
implementations of defenses do not go unpunished.

Our measurements in §V indicate that most diversification
defenses can be deployed at full strength with only modest
performance and memory overhead. A noteworthy exception
is random NOP insertion for the ARM instruction set. Since
our implementation inserts a NOP between each instruction
with 12.5% probability, and all ARM instructions have the
same size, we observe a ≈12.5% code size increase. The x86-
64 architecture, in contrast, is able to achieve a much lower
memory overhead thanks to its 1-byte NOP instruction encod-
ing and variable-length instructions. JIT developers may wish
to consider carefully lowering the probability of random NOP
insertion on platforms with limited memory and fixed-width
instructions. To establish a lower bound on memory overhead
when random NOP insertion is dialed back, we measured
the memory overhead for ARM32 when all diversification
defenses except random NOP insertion are enabled and found
it to be 6.15%.
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A potential objection to diversification defenses is that an
attacker with arbitrary memory read capabilities can avoid
failure by spraying until her payload is emitted as desired.
While this is true, we argue that diversification defenses
mitigate the entire class of blind JIT spraying attacks and raise
the bar for malicious reuse of JIT code by mandating that a
memory disclosure accompany the control flow vulnerability.

Very recently-published work [18] demonstrates the cre-
ation of unintended instructions from the offset field in x86’s
PC-relative branch and call instructions. To mitigate this threat;
the authors of [18] implemented blinding of the implicit
constants in relative branches. At submission time, our diver-
sification implementations do not include this new mitigation,
and we recognize that future work will need to correct this flaw.

VII. CONCLUSION

As JIT compilers continue to blanket the landscape of
language runtimes, so do attacks that abuse their predictabil-
ity and unique memory protection model, as evidenced by
the new threats against ARM JITs introduced in this paper.
Implementations of mitigations have appeared in production
JITs, but their potential has been artificially limited in order to
boost performance, resulting in a failure to provide satisfactory
protection. The empirical evaluations and analyses in this paper
demonstrate that diversification defenses are effective and can
be implemented in full with only modest overhead. We en-
courage JIT developers to take our experiences implementing
diversification defenses and use them to guide implementations
on their own systems.
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